

WASTE-TO-ENERGY FACILITY

Appendices of Emissions Testing Report
November 2023 Survey
Fourth Quarter 2023

Table of Contents

<u>Appendix</u>

- A Quality Assurance / Quality Control Results
- B Calculations
- C Laboratory Results
- D Computer Generated Results
- E Field Data Sheets
- F Calibration Sheets and Technician Certificates

APPENDIX - A

QUALITY ASSURANCE / QUALITY CONTROL RESULTS

Quality assurance / quality control (QA/QC) is divided into four categories: administration, preparation, testing, and analysis. The following sections detail results found for the above four categories.

Administration:

- All field, process, and analytical data was reviewed to ensure data integrity and accuracy.
- Duplicate proof of draft and final report, including data entry, conducted.

Preparation:

- All glassware cleaned
- Blank samples of reagents collected.

Testing:

- Stack diameter and absence of cyclonic flow confirmed
- Calibrated magnehelic used for all velocity measurements
- All trains past pre- and post- leak checks.
- Isokinetics all within $100\% \pm 10\%$.

Analysis:

- Trace Metals and Mercury analysis conducted at Element Labs, Surrey, B.C.
- Fluoride (HF) analysis conducted at Element Labs in Surrey, B.C.
- Nitrous Oxide (N₂O) analysis conducted with portable analyzer by A. Lanfranco and Associates.
- Volatile Organic Compounds (VOC) analysis conducted at ALS Environmental in Simi Valley, CA.
- Particulate analysis conducted at A. Lanfranco and Associates Inc., Surrey, BC.
- Chain of Custody protocols followed for all samples.
- Acceptable blank values for all sample types. All samples blank corrected.

Sample Type	Blank Value				
Fourth Quarter 2023	Unit 1	Unit 2	Unit 3		
Filter	0.3 mg	0.1 mg	0.3 mg		
Front Half Washings	0.8 mg	1.1 mg	0.7 mg		
Mercury Front	<0.02 ug	<0.02 ug	<0.02 ug		
Mercury Back	<0.2 ug	<0.18 ug	<0.17 ug		
Trace Metals Front *	<11.8 ug	<25.9 ug	<12.4 ug		
Trace Metals Back*	<37.3 ug	<60.9 ug	<32.2 ug		
Ammonia	29.2 ug	13 ug	28.2 ug		
Fluoride	<5 ug	<7 ug	<8 ug		

Sum of all reported elements except Hg*

APPENDIX - B CALCULATIONS

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-11 were used to calculate particulate concentration at standard conditions on a dry basis. Equations 12-26 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 27-29 were used to calculate the volumetric flowrate of the stack flue gas.

App B.1

pp B.1	Contaminant Concentration Calculations	
	$c = \frac{m}{V_{std}}$	Equation 1
	$m_{part} = m_{filter} + m_{pw}$	Equation 2
	$m_i = m_{ana,i} - m_{blank}$	Equation 3
	$V_{std} = \frac{V_{std(imp)}}{35.315}$	Equation 4
	$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$	Equation 5
	$V_{samp} = V_{final} - V_{init}$	Equation 6
	$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$	Equation 7
ΔH_{av}	$h_{pe} = rac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}$, where $n=$ the number of points	Equation 8
	$OC = \frac{20.9 - \%O_{2c}}{20.9 - \%O_{2m}}$	Equation 9
$%O_{2m} = \frac{1}{2}$	$\frac{1}{n}\sum_{i=1}^{n}\%O_{2i}$, where $n=$ the number of O_{2} measurements	Equation 10
% <i>CO</i> ₂ =	$= \frac{1}{n} \sum_{i=1}^{n} \%CO_{2i}, where n = the number of CO_{2} measurements$	Equation 11

Where,

c = Contaminant concentration

m = Contaminant mass

 m_i = Net analytical mass (mg, ng, or μ g) $m_{ana,i}$ = Analytical mass (mg, ng, or μ g) m_{blank} = Blank analytical mass (mg, ng, or μ g)

 m_{part} = Total particulate mass (mg)

 m_{filter} = Net particulate gain from filter (mg)

 m_{pw} = Net particulate gain from probe wash (mg) $V_{std(imp)}$ = Sample volume at standard conditions (ft³) V_{samp} = Sample volume at actual conditions (ft³)

 V_{final} = Final gas meter reading (ft³) V_{init} = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) T_m = Gas meter temperature (°F)

 $T_{m(ave)}$ = Average gas meter temperature (°F) P_m = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg)

 ΔH_{ave} = Average of individual point orifice pressures (inches of H_2O) $\Delta H_{i(act)}$ = Individual recorded point orifice pressures (inches of H_2O)

OC = Oxygen correction factor (dimensionless)

 $%O_{2c}$ = Oxygen concentration to correct to (% dry basis)

 $\%O_{2m}$ = Average measured stack gas oxygen concentration (% dry basis) $\%CO_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant. For particulate, m is the sum of the mass contributed from probe washing and filter particulate.

App B.2 Isokinetic Variation Calculations

$$\Delta H_{l} = \frac{2.62 \times 10^{7} \times c_{p} \times A_{n} \times (1 - B_{wo}) \times M_{D} \times (T_{m} + 459.67) \times \Delta p_{l}}{k_{o} \times M_{w} \times (T_{Stk} + 459.67)} \qquad \text{Equation } 12$$

$$R_{m} = 85.49 \times c_{p} \times \sqrt{\Delta p_{l}} \times \sqrt{\frac{(T_{stk_{l}} + 459.67)}{M_{w} \times P_{B}}} \times 60 \times A_{n} \times \frac{(T_{m_{l}} + 459.67) \times (1 - B_{wo})}{(T_{stk_{l}} + 459.67) \times y} \qquad \text{Equation } 13$$

$$A_{n} = \pi \left(\frac{d_{n}}{24}\right)^{2} \qquad \qquad \text{Equation } 14$$

$$M_{w} = M_{D} \times (1 - B_{wo}) + 18 \times B_{wo} \qquad \qquad \text{Equation } 15$$

$$M_{D} = 0.44 \times \% CO_{2} + 0.32 \times \% O_{2} + 0.28 \times (100 - \% CO_{2} - \% O_{2}) \qquad \qquad \text{Equation } 16$$

$$T_{Stk} = \frac{1}{n} \sum_{l=1}^{n} T_{Stk_{l}}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation } 17$$

$$B_{wo} = \frac{V_{cond}}{V_{cond} + V_{std(limp)}} \qquad \qquad \text{Equation } 18$$

$$V_{cond} = 0.04707 \times V_{gain} \qquad \qquad \text{Equation } 19$$

$$Iso = \frac{1}{n} \sum_{l=1}^{n} Iso_{l}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation } 20$$

$$Iso_{l} = \frac{v_{nzi}}{v_{l}} \qquad \qquad \text{Equation } 21$$

$$v_{l} = 85.49 \times c_{p} \times \sqrt{\Delta p_{l}} \times \sqrt{\frac{(T_{Stk_{l}} + 459.67)}{(P_{Stk} \times M_{W})}} \qquad \qquad \text{Equation } 22$$

$$v_{nzi} = \frac{(V_{l} - V_{l-1}) \times y \times (T_{Stk_{l}} + 459.67) \times (P_{B} + \frac{\Delta H_{l(act)}}{13.6})}{A_{n} \times t_{l} \times 60 \times (T_{m(l)} + 459.67) \times P_{stk} \times (1 - B_{wo})} \qquad \qquad \text{Equation } 23$$

$$P_{stk} = P_B + \frac{P_g}{13.6}$$
 Equation 24

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
 , where $n =$ the number of points

Equation 25

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
, where $n =$ the number of points

Equation 26

Where,

 $A_n = Nozzle area (ft^2)$

 d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H₂O)

 P_g = Stack Static pressure (inches of H_2O) P_{stk} = Absolute stack pressure (inches of H_B) M_W = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

*%CO*₂ = Stack gas carbon dioxide concentration (% dry basis)

 $\%O_2$ = Stack gas oxygen concentration (% dry basis) B_{wo} = Stack gas water vapour, proportion by volume

V_{cond} = Total volume of water vapor collected, corrected to standard conditions

 (ft^3)

 V_{gain} = Condensate gain of impinger contents (mL) P_{std} = Standard pressure (29.92 inches of Hg)

 v_{stk} = Average flue gas velocity (ft/sec)

 v_i = Individual point flue gas velocity (ft/sec)

 v_{nz} = Average velocity at nozzle(ft/sec)

 v_{nzi} = Individual point velocity at nozzle(ft/sec) Iso_i = Individual point isokinetic variation (%)

Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (ft^3 /min)

App B.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$

$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
Equation 28

$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
 Equation 29

Where,

 $Q_A = Actual flowrate (Am^3/min)$

 $Qs = Flowrate (m^3/min)$ at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)

d = Diameter of stack (inches)

APPENDIX - C LABORATORY RESULTS

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696346

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023
Depart Number: 2047248

Report Number: 2947248

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696346

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023

Report Number: 2947248

Reference Number
Sample Date
Sample Time

1696346-1 Nov 15, 2023 NA 1696346-2 Nov 16, 2023 NA 1696346-3 Nov 17, 2023

A NA

Sample Location Sample Description

Field Blank Unit 1 (MV Unit 1 BLK + 4 Bottles) / 21.3 °C Field Blank Unit 2 (Unit 2 BLK + 4 Bottles) / 21.3 °C Field Blank Unit 3 (Unit 3 BLK + 4 Bottles) / 21.3 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	action 1A					
Aluminum		μg	<5	10	<5	5
Antimony		μg	<2	4	4	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	0.3	<0.3	0.3	0.25
Chromium		μg	<0.2	<0.2	<0.2	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	0.6	<0.3	<0.3	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	<0.3	<0.3	1	0.25
Nickel		μg	1	2	2	0.5
Phosphorus		μg	<2	<2	<2	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	4.6	5.1	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	5.3	4.8	5.1	0.5
Back Half Metals Fra	ection 2A					
Aluminum		μg	<5	20	10	5
Antimony		μg	<2	3	3	2.5
Arsenic		μg	3.7	1	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	<0.2	<0.2	<0.2	0.2
Cobalt		μg	0.5	0.6	<0.2	0.25
Copper		μg	<0.2	<0.2	0.8	0.25
Lead		μg	<1	<1	<1	1.5
Manganese		μg	0.8	<0.2	0.5	0.25
Nickel		μg	2.4	2.6	2	0.5
Phosphorus		μg	20	20	10	2.5
Selenium		μg	<1	<1	2.4	1.5
Tellurium		μg	5.5	8.6	<2	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	4.4	5.1	3.5	0.5
Volume	Sample	mL	347	358	317	
Volume	aliquot volume	mL	297	308	267	
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Field Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696346

Control Number:

Date Received: Nov 22, 2023 Dec 14, 2023 Date Reported:

Report Number: 2947248

Reference Number 1696346-1 1696346-2 1696346-3 Sample Date Nov 15, 2023 Nov 16, 2023 Nov 17, 2023 Sample Time NA NA NA **Sample Location**

Sample Description Field Blank Unit 1

(MV Unit 1 BLK + 4 Bottles) / 21.3 °C

Field Blank Unit 2 (Unit 2 BLK + 4 Bottles) / 21.3 °C

Field Blank Unit 3 (Unit 3 BLK + 4 Bottles) / 21.3 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	<0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	347	358	317	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.1	<0.1	<0.1	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	160	135	106	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	50	50	50	
Mercury	Fraction 3A	μg/sample	< 0.02	<0.01	<0.01	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	< 0.04	< 0.04	<0.04	
Mercury	As Tested	μg/L	< 0.05	0.08	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	< 0.02	0.03	<0.02	

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Field Blanks

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696346

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023
Report Number: 2947248

Method of Analysis

Welliou of Allalysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Dec 12, 2023	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 11, 2023	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 11, 2023	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 1, 2023	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 5, 2023	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696345

Control Number:

Date Received: Nov 22, 2023 Date Reported: Dec 14, 2023

Report Number: 2947247

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Filter Reagent Blanks

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Mercury

Project ID: Metro Vancouver WTE

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696345

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023

Report Number: 2947247

 Reference Number
 1696345-1
 1696345-2
 1696345-3

 Sample Date
 Nov 13, 2023
 Nov 13, 2023
 Nov 13, 2023

 Sample Time
 NA
 NA
 NA

 Sample Location
 NA
 NA
 NA

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3 Container 1 (filter) Container 1 (filter) Container 1 (filter)

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Units Results Results Results Analyte Front Half Metals Fraction 1A Aluminum 20 <5 <5 5 μg 3 7 2.5 6 Antimony μg Arsenic <1 <1 <1 1 μg Cadmium 0.3 0.4 < 0.3 0.25 μg Chromium < 0.2 < 0.2 < 0.2 0.2 μg Cobalt < 0.3 < 0.3 < 0.3 0.25 μg < 0.3 0.25 < 0.3 < 0.3 Copper μg Lead <2 <2 <2 1.5 μg < 0.3 <0.3 < 0.3 0.25 Manganese μg Nickel 3.6 2 2 0.5 μg Phosphorus μg 20 20 20 2.5 Selenium <2 <2 7.0 1.5 μg Tellurium 5.3 9.0 <2 2 μg Thallium <2 <2 <2 1.5 μg Vanadium <1 <1 <1 1 μg Zinc 5.8 4.9 5.2 0.5 μg Mercury by CVAA < 0.05 < 0.05 0.05 Mercury As Tested µg/L < 0.05 **Dilution Factor** As Tested 1 Sample 250 250 250 Volume mL Volume aliquot volume 25 25 25 mL Volume Final mL 40 40 40

< 0.02

Approved by:

Max Hewitt

Operations Manager

< 0.02

< 0.02

µg/sample

Fraction 1B

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696345

Control Number:

Date Received: Nov 22, 2023 Date Reported: Dec 14, 2023

Report Number: 2947247

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Dec 12, 2023	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Dec 5, 2023	Element Vancouver

* Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

Appendix C - Particulate Analysis

Client:Metro VancouverSample Date:Nov-14-17-23Source:Units 1, 2, and 3Location:WTE (Burnaby, B.C)

A. Lanfranco & Associates Standard Operating Procedure:

SOP 1.2.1 Gravimetric determination of total particulate matter

 •		
	lection	

Test #	Initia	I Fin	al Net Diference	Blank Adjusted	
	(grams) (gram	s) (grams)	(grams)	
Unit 1 Blank	0.4610	0.461	3 0.0003		
Unit 1 Run 1	0.4674			0.0006	
Unit 1 Run 2	0.463			0.0007	
Unit 1 Run 3	0.4650	0.465	0.0002	ND	
Unit 2 Blank	0.4722	2 0.472	3 0.0001		
Unit 2 Run 1	0.4636	0.466	0.0029	0.0028	
Unit 2 Run 2	0.4493	0.449	0.0004	0.0003	
Unit 2 Run 3	0.4693	0.469	0.0004	0.0003	
Unit 3 Blank	0.4543	3 0.454	0.0003		
Unit 3 Run 1	0.4710		0.0000	ND	
Unit 3 Run 2	0.4652			ND	
Unit 3 Run 3	0.4670	0.466	68 -0.0002	ND	
Front Half Washings:					
Test #	Initia	l Fin	al Net	Blank	
			Diference	Adjusted	
	(grams) (gram	s) (grams)	(grams)	
Unit 1 Blank	113.3298	3 113.330	0.0008		
Unit 1 Run 1	122.2529	122.253	0.0001	ND	
Unit 1 Run 2	122.2443			ND	
Unit 1 Run 3	127.1422	2 127.146	0.0042	0.0034	
Unit 2 Blank	96.0552	96.056	0.0011		
Unit 2 Run 1	118.5688			0.0030	
Unit 2 Run 2	110.955			ND	
Unit 2 Run 3	119.2573	3 119.261	1 0.0038	0.0027	
Unit 3 Blank	119.3298				
Unit 3 Run 1	123.757			ND	
Unit 3 Run 2	84.810			0.0001	
Unit 3 Run 3	118.653	5 118.653	0.0003	ND	
Task	Unit	Personnel	Date	Quality Control	Y/N
Fiter Recovery:	Unit 1	S.Harrington	14-15-Nov-23	Adequate PW volume:	Y
	Unit 2	S.Harrington	15-16-Nov-23	No sample leakage:	Y
	Unit 3	S.Harrington	16-17-Nov-23	Filter not compromised:	Y
PW Initial Analysis:	Unit 1	J. Ching	20-Nov-23		
	Unit 2	J. Ching	20-Nov-23		
	Unit 3	J. Ching	20-Nov-23		
PW, FilterFinal Analysis:	Unit 1	J. Ching	22-Nov-23		
, 2 1 1 1	Unit 2	J. Ching	22-Nov-23		
	Unit 3	J. Ching	22-Nov-23		
Data antarad to assessitant	All	=			
Data entered to computer:	All	S. Harrington	7-Dec-23		

Comments:

No problems encountered in sample analysis.

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

HF Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695612

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023

Report Number: 2945938

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

HF Blanks Project Name:

Project Location: LSD:

P.O.:

Proj. Acct. code:

Lot ID: 1695612

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023

Report Number: 2945938

Reference Number Sample Date Sample Time

Sample Location

1695612-1 Nov 15, 2023 NA

1695612-2 Nov 16, 2023

1695612-3 Nov 17, 2023

NA

NA

Sample Description

Matrix

Unit #1 HF Blank / 17.8 °C

Stack Samples

Unit #2 HF Blank / 17.8 °C

Stack Samples

Unit #3 HF Blank / 17.8 °C Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Volume	Sample	mL	176	223	267	
Dilution Factor	fluoride		1.00000000	1.00000000	1.0000000	0
Fluoride	As Tested	mg/L	< 0.03	< 0.03	< 0.03	0.03
Fluoride	Water Soluble	μg/sample	<5	<7	<8	

Element Vancouver

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Project ID: Metro Vancouver WTE
Project Name: HF Blanks

Project Name: HF B Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695612

Control Number:

Nov 22, 2023

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023 Report Number: 2945938

Method of Analysis

Company:

Method Name Reference Method Date Analysis Location Started

Anions by IEC in air (VAN) EMC * Determination of Hydrogen Halide &

Halogen Emissions from Stationary

Sources (Isokinetic), 26A

* Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323 F: info vancouver@eleme

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: HF Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695615

Control Number:

Date Received: Nov 20, 2023
Date Reported: Nov 24, 2023
Report Number: 2045042

Report Number: 2945943

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By: Company:

Attn: Missy

Project ID: Metro Vancouver WTE

HF Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695615

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023

2945943 Report Number:

Reference Number Sample Date Sample Time

Sample Location

Sample Description

1695615-1 Nov 15, 2023 NA

1695615-2 Nov 15, 2023 NA

1695615-3 Nov 15, 2023 NA

Unit #1 HF Run 3 /

Unit #1 HF Run 1 / 17.8 °C

Unit #1 HF Run 2 / 17.8 °C

17.8 °C Stack Samples

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Volume	Sample	mL	413	426	419	
Dilution Factor	fluoride		1.00000000	1.00000000	1.0000000	0
Fluoride	As Tested	mg/L	0.11	0.09	0.04	0.03
Fluoride	Water Soluble	μg/sample	44	40	20	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

HF Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695615

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023

2945943 Report Number:

1695615-5 Reference Number 1695615-4 1695615-6 Sample Date Nov 16, 2023 Nov 16, 2023 Nov 16, 2023 Sample Time NA NA NA

Sample Location

Unit #2 HF Run 2 / Unit #2 HF Run 3 / **Sample Description** Unit #2 HF Run 1 / 17.8 °C

17.8 °C 17.8 °C

Matrix Stack Samples Stack Samples Stack Samples

			<u>'</u>	<u>'</u>	•	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Volume	Sample	mL	343	384	358	
Dilution Factor	fluoride		1.00000000	1.00000000	1.0000000	0
Fluoride	As Tested	mg/L	0.05	0.08	0.07	0.03
Fluoride	Water Soluble	μg/sample	20	30	30	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: **HF Samples**

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695615

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023

Report Number: 2945943

Reference Number 1695615-7 1695615-8 1695615-9 Sample Date Nov 17, 2023 Nov 17, 2023 Nov 17, 2023 Sample Time NA NA NA

Sample Location

Unit #3 HF Run 1 / Unit #3 HF Run 2 / Unit #3 HF Run 3 / **Sample Description** 17.8 °C

17.8 °C 17.8 °C

Matrix Stack Samples Stack Samples Stack Samples

			•	•	•	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Volume	Sample	mL	426	407	485	
Dilution Factor	fluoride		1.00000000	1.00000000	1.0000000	00
Fluoride	As Tested	mg/L	0.09	0.07	0.06	0.03
Fluoride	Water Soluble	µg/sample	40	30	30	

Approved by:

Max Hewitt

Operations Manager

Element Vancouver

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

HF Samples

Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695615

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023

Report Number: 2945943

Method of Analysis

Method Name Method Reference Date Analysis Location Started

Anions by IEC in air (VAN) **EMC** * Determination of Hydrogen Halide & Nov 22, 2023

Halogen Emissions from Stationary

Sources (Isokinetic), 26A

* Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

Surrey, BC, Ca V4N 4W7

Attn: Missy

Sampled By: Company: Project ID:

Metro Vancouver WTE

Metals and Hg Samples

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696334

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023

Report Number: 2947231

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696334

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023
Report Number: 2047231

Report Number: 2947231

Reference Number
Sample Date
Sample Time
Sample Location

Sample Description

1696334-1 Nov 14, 2023 NA

1696334-2 Nov 15, 2023 NA 1696334-3 Nov 15, 2023

IA NA

Unit 1 Run 1 (Unit 1

Run 1 + 4 Bottles) / 21.3 °C

Unit 1 Run 2 (MV Unit 1 Run 2 + 4 Bottles) / 21.3 °C Unit 1 Run 3 (Unit 1 Run 3 + 4 Bottles) / 21.3 °C

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Analyte Units Results Results Results Limit Front Half Metals Fraction 1A Aluminum μg <5 10 8 5 Antimony <2 3 4 2.5 μg Arsenic 1 <1 <1 1 μg Cadmium 0.3 <0.3 0.25 μg < 0.3 Chromium 1.3 0.58 <0.2 0.2 μg 0.5 0.25 Cobalt 0.3 0.6 μg < 0.3 Copper < 0.3 2 0.25 μg <2 <2 2 1.5 Lead μg 2 1 0.5 0.25 Manganese μg Nickel 4.1 3.7 2 0.5 μg **Phosphorus** 9 6 <2 2.5 μg Selenium μg <2 7.1 7.5 1.5 Tellurium 4.6 4.5 <2 2 μg Thallium <2 <2 <2 1.5 μg Vanadium <1 <1 <1 1 μg 22 25.0 20 0.5 7inc μg **Back Half Metals Fraction 2A** μg 30 38 5 Aluminum 24 3 6 <2 2.5 Antimony μg Arsenic < 0.9 5.9 < 0.9 1 μg Cadmium < 0.2 0.2 < 0.2 0.25 μg Chromium 1.5 2.88 <0.2 0.2 μg Cobalt μg 0.6 < 0.2 < 0.2 0.25 <0.2 < 0.2 <0.2 0.25 Copper μg Lead μg 2.7 4.3 <1 1.5 1 2 0.9 0.25 Manganese μg Nickel 2 3.2 0.5 2.3 μg 20 20 Phosphorus 20 2.5 μg Selenium μg 2.6 <1 3.5 1.5 2 Tellurium 4.0 6.7 2 μg Thallium <1 <1 <1 1.5 μg Vanadium < 0.9 < 0.9 < 0.9 1 μg Zinc 8.3 6.2 3.8 0.5 μg Volume Sample mL 774 849 746 Volume aliquot volume mL 724 799 696 Mercury by CVAA 0.05 As Tested < 0.05 < 0.05 < 0.05 Mercury μg/L

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696334

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023
Report Number: 2047221

Report Number: 2947231

 Reference Number
 1696334-1
 1696334-2
 1696334-3

 Sample Date
 Nov 14, 2023
 Nov 15, 2023
 Nov 15, 2023

 Sample Time
 NA
 NA
 NA

Sample Location
Sample Description Unit

Unit 1 Run 1 (Unit 1 Run 1 + 4 Bottles) / 21.3 °C Unit 1 Run 2 (MV Unit 1 Run 2 + 4 Bottles) / 21.3 °C Unit 1 Run 3 (Unit 1 Run 3 + 4 Bottles) / 21.3 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	774	849	746	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	178	161	172	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	50	50	50	
Mercury	Fraction 3A	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	1000	1000	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.04	<0.08	<0.08	
Mercury	As Tested	μg/L	0.45	< 0.05	0.06	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.14	< 0.02	0.02	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696334

Control Number:

Date Received: Nov 22, 2023 Date Reported: Dec 14, 2023

Report Number: 2947231

Reference Number Sample Date Sample Time

1696334-4 Nov 15, 2023 NA

1696334-5 NA

Nov 16, 2023

1696334-6 Nov 16, 2023

NA

Sample Location Sample Description

Unit 2 Run 1 (Unit 2 Run 1 + 4 Bottles) / 21.3 °C

Unit 2 Run 2 (MV Unit - 2 Run 2 + 4 Bottles) / 21.3 °C

Unit 2 Run 3 (Unit - 2 Run 3 + 4 Bottles) / 21.3 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	ction 1A					
Aluminum		μg	10	10	7	5
Antimony		μg	<2	3	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	0.3	0.5	<0.3	0.25
Chromium		μg	0.94	<0.2	6.11	0.2
Cobalt		μg	<0.3	0.7	< 0.3	0.25
Copper		μg	0.4	<0.3	0.4	0.25
Lead		μg	<2	6.2	8.7	1.5
Manganese		μg	1	2	5.3	0.25
Nickel		μg	3.0	3.9	7.4	0.5
Phosphorus		μg	8	5	6	2.5
Selenium		μg	12	<2	<2	1.5
Tellurium		μg	3.9	7.7	5.9	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	17	21	24	0.5
Back Half Metals Frac	ction 2A					
Aluminum		μg	34	20	28	5
Antimony		μg	5	3	<2	2.5
Arsenic		μg	4.9	4.2	3.2	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	2.61	2.21	<0.2	0.2
Cobalt		μg	<0.2	<0.2	0.4	0.25
Copper		μg	0.9	<0.2	<0.2	0.25
Lead		μg	5.8	3.2	<1	1.5
Manganese		μg	1	1	1	0.25
Nickel		μg	2.6	5.1	2.6	0.5
Phosphorus		μg	24	22	26	2.5
Selenium		μg	<1	<1	<1	1.5
Tellurium		μg	9.1	2	4.3	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	6.8	20	5.8	0.5
Volume	Sample	mL	816	770	749	
Volume	aliquot volume	mL	766	720	699	
Mercury by CVAA	•					
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE
Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696334

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023
Report Number: 2047221

Report Number: 2947231

 Reference Number
 1696334-4
 1696334-5
 1696334-6

 Sample Date
 Nov 15, 2023
 Nov 16, 2023
 Nov 16, 2023

 Sample Time
 NA
 NA
 NA

Sample Location

Sample Description Unit 2 Run 1 (Unit 2

Run 1 + 4 Bottles) / 21.3 °C Unit 2 Run 2 (MV Unit - 2 Run 2 + 4 Bottles) / 21.3 °C Unit 2 Run 3 (Unit - 2 Run 3 + 4 Bottles) / 21.3 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	816	770	749	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	µg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	143	186	158	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	50	50	50	
Mercury	Fraction 3A	μg/sample	<0.01	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	1000	1000	1000	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.08	<0.08	<0.08	
Mercury	As Tested	μg/L	0.09	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.03	<0.02	<0.02	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696334

Control Number:

Date Received: Nov 22, 2023 Date Reported: Dec 14, 2023

2947231 Report Number:

Reference Number Sample Date Sample Time **Sample Location**

Sample Description

Nov 16, 2023 NA

Run 1 + 4 Bottles /

21.3 °C

1696334-7 1696334-8 NA

Nov 17, 2023

1696334-9 Nov 17, 2023

NA

Unit 3 Run 1 (Unit 3 Unit 3 Run 2 (MV

Unit 3 Run 2 + 4 Bottles) / 21.3 °C Unit 3 Run 3 (Unit 3 Run 3 + 4 Bottles) / 21.3 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	action 1A					
Aluminum		μg	10	20	477	5
Antimony		μg	10	20	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	0.4	0.4	0.4	0.25
Chromium		μg	2.1	0.95	1.5	0.2
Cobalt		μg	<0.3	0.9	<0.3	0.25
Copper		μg	<0.3	2	2	0.25
Lead		μg	<2	<2	3.3	1.5
Manganese		μg	1	1	1	0.25
Nickel		μg	5.7	3.3	3.1	0.5
Phosphorus		μg	6	3	9	2.5
Selenium		μg	<2	6.2	<2	1.5
Tellurium		μg	2	14	2.7	2
Thallium		μg	<2	<2	2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	17	15	28.0	0.5
Back Half Metals Fra	action 2A					
Aluminum		μg	10	9	10	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	3.8	0.9	<0.9	1
Cadmium		μg	<0.2	0.3	<0.2	0.25
Chromium		μg	<0.2	1.1	1.7	0.2
Cobalt		μg	0.6	0.7	<0.2	0.25
Copper		μg	<0.2	<0.2	1	0.25
Lead		μg	<1	<1	<1	1.5
Manganese		μg	0.3	0.5	1	0.25
Nickel		μg	2	2	4.0	0.5
Phosphorus		μg	20	20	25	2.5
Selenium		μg	<1	<1	8.3	1.5
Tellurium		μg	<2	2	2.8	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	4.5	10	5.5	0.5
Volume	Sample	mL	818	810	838	
Volume	aliquot volume	mL	768	760	788	
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05	<0.05	<0.05	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com
W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696334

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023
Page 14, 2023

Report Number: 2947231

 Reference Number
 1696334-7
 1696334-8
 1696334-9

 Sample Date
 Nov 16, 2023
 Nov 17, 2023
 Nov 17, 2023

 Sample Time
 NA
 NA
 NA

Sample Location

Sample Description Unit 3 Run 1 (Unit 3

Run 1 + 4 Bottles / 21.3 °C Unit 3 Run 2 (MV Unit 3 Run 2 + 4 Bottles) / 21.3 °C Unit 3 Run 3 (Unit 3 Run 3 + 4 Bottles) / 21.3 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	818	810	838	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	156	173	156	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	50	50	50	
Mercury	Fraction 3A	μg/sample	<0.02	<0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	1000	1000	1000	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.08	<0.08	<0.08	
Mercury	As Tested	μg/L	0.09	0.06	0.12	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.03	0.02	0.038	

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696334

Control Number:

Date Received: Nov 22, 2023 Date Reported: Dec 14, 2023

Report Number: 2947231

ethod	Of	Ana	Iysis

Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Dec 12, 2023	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	* Metals Emissions from Stationary Sources, 29	Dec 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	* Metals Emissions from Stationary Sources, 29	Dec 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	* Metals Emissions from Stationary Sources, 29	Dec 11, 2023	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	* Metals Emissions from Stationary Sources, 29	Dec 11, 2023	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Dec 1, 2023	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Dec 5, 2023	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

NH3 Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695601

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023

Report Number: 2945927

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695601

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023

Report Number: 2945927

Reference Number Sample Date Sample Time

Sample Location **Sample Description**

Matrix

1695601-1 Nov 15, 2023 NA

Stack Samples

1695601-2 Nov 16, 2023 NA

1695601-3 Nov 17, 2023

NA

Unit #1 NH3 Blk / 17.8 °C

Unit #2 NH3 Blk / 17.8 °C

Stack Samples

Unit #3 NH3 Blk / 17.8 °C Stack Samples

				•	•	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Ammonium - N	As Tested	μg/L	195	50	103	25
Dilution Factor	As Tested		1.00	1.00	1.00	
Sample Volume	Sample volume	mL	150	254	274	
Ammonium - N		μg/sample	29.2	13	28.2	

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

NH3 Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695601

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023 Report Number:

2945927

Method of Analysis

Method Name Method Reference Date Analysis Location Started

Ammonium in Impingers (VAN) **APHA** * Automated Phenate Method, 4500-NH3 G Nov 24, 2023 Element Edmonton - Roper

Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695608

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023 Report Number: 2945934

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695608

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023

2945934 Report Number:

Reference Number Sample Date Sample Time

Sample Location

1695608-1 Nov 15, 2023 NA

1695608-2 Nov 15, 2023

1695608-3 Nov 15, 2023 NA

NA

Unit 1 Run 2 NH3/

17.8 °C

Unit 1 Run 3 NH3 / **Sample Description** Unit 1 Run 1 NH3/ 17.8 °C 17.8 °C Matrix Stack Samples Stack Samples Stack Samples

	Units	Results	Results	Results	Nominal Detection Limit
As Tested	μg/L	2840	13100	4700	25
As Tested		1.00	10.0	1.00	
Sample volume	mL	395	434	445	
	μg/sample	1120	5690	2090	
	As Tested	As Tested µg/L As Tested Sample volume mL	Units Results As Tested μg/L 2840 As Tested 1.00 Sample volume mL 395	Units Results Results As Tested μg/L 2840 13100 As Tested 1.00 10.0 Sample volume mL 395 434	Units Results Results As Tested μg/L 2840 13100 4700 As Tested 1.00 10.0 1.00 Sample volume mL 395 434 445

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695608

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023

2945934 Report Number:

1695608-5 Reference Number 1695608-4 1695608-6 Sample Date Nov 16, 2023 Nov 16, 2023 Nov 16, 2023 Sample Time NA NA NA

Sample Location

Sample Description Unit 2 Run 1 NH3 / Unit 2 Run 2 NH3 / Unit 2 Run 3 NH3 / 17.8 °C

17.8 °C 17.8 °C

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Results Analyte **Units** Results Results Limit Air Quality Ammonium - N As Tested 5520 1850 1520 25 μg/L As Tested 10.0 Dilution Factor 1.00 10.0 Sample Volume Sample volume mL 460 450 460 Ammonium - N µg/sample 2540 8310 7020

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

NH3 Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695608

Control Number:

Date Received: Nov 20, 2023 Date Reported: Nov 24, 2023

Report Number: 2945934

Reference Number 1695608-7 1695608-8 1695608-9 Sample Date Nov 17, 2023 Nov 17, 2023 Nov 17, 2023 Sample Time NA NA NA

Sample Location

Unit 3 Run 3 NH3/ **Sample Description** Unit 3 Run 1 NH3/ Unit 3 Run 2 NH3/ 17.8 °C

17.8 °C 17.8 °C

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Analyte Results Results Results Units Limit Air Quality As Tested 2150 2680 25 Ammonium - N μg/L 2130 Dilution Factor As Tested 1.00 1.00 1.00 Sample Volume Sample volume mL 394 365 354 Ammonium - N 838 784 948 µg/sample

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1695608

Control Number:

Date Received: Nov 20, 2023
Date Reported: Nov 24, 2023
Report Number: 2945934

Method of Analysis

Method Name Reference Method Date Analysis Location Started

Ammonium in Impingers (VAN) APHA * Automated Phenate Method, 4500-NH3 G Nov 24, 2023 Element Edmonton - Roper

Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696355

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023

Report Number: 2947303

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696355

Control Number:

Date Received: Nov 22, 2023 Date Reported: Dec 14, 2023

2947303 Report Number:

Reference Number 1696355-1 Sample Date Sample Time

Nov 13, 2023 NA

1696355-2 Nov 13, 2023 NA

1696355-3 Nov 13, 2023 NA

Sample Location

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	ction 1A					
Aluminum		μg	<5	<5	20	5
Antimony		μg	4	<2	<2	2.5
Arsenic		μg	<1	<1	2	1
Cadmium		μg	<0.3	<0.3	0.4	0.25
Chromium		μg	<0.2	<0.2	<0.2	0.2
Cobalt		μg	0.6	<0.3	<0.3	0.25
Copper		μg	<0.3	0.4	<0.3	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	<0.3	<0.3	<0.3	0.25
Nickel		μg	<0.5	2	1	0.5
Phosphorus		μg	3	3	<2	2.5
Selenium		μg	<2	6.7	<2	1.5
Tellurium		μg	<2	<2	2.8	2
Thallium		μg	<2	<2	7.5	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	3.4	4.9	4.1	0.5
Back Half Metals Frac	tion 2A					
Aluminum		μg	<5	6	<5	5
Antimony		μg	<3	<3	<3	2.5
Arsenic		μg	<1	2	6.6	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	<0.2	<0.2	<0.2	0.2
Cobalt		μg	<0.3	0.7	<0.3	0.25
Copper		μg	<0.3	<0.3	<0.3	0.25
Lead		μg	2	<2	<2	1.5
Manganese		μg	0.3	0.3	<0.3	0.25
Nickel		μg	2	2	2.6	0.5
Phosphorus		μg	32	32	33	2.5
Selenium		μg	4.0	<2	<2	1.5
Tellurium		μg	<2	7.2	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	3.4	4.8	3.6	0.5
Volume	Sample	mL	208	210	210	
Volume	aliquot volume	mL	158	160	160	
Mercury by CVAA	•					
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696355

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023
Page 14, 2023

Report Number: 2947303

 Reference Number
 1696355-1
 1696355-2
 1696355-3

 Sample Date
 Nov 13, 2023
 Nov 13, 2023
 Nov 13, 2023

 Sample Time
 NA
 NA
 NA

Sample Location

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	<0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	208	210	210	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	50	50	50	
Mercury	Fraction 2B	μg/sample	<0.1	<0.1	<0.1	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	98	97	97	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	50	50	50	
Mercury	Fraction 3A	μg/sample	< 0.010	< 0.010	< 0.010	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	< 0.04	< 0.04	< 0.04	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	µg/sample	<0.02	<0.02	<0.02	

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks
Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1696355

Control Number:

Date Received: Nov 22, 2023
Date Reported: Dec 14, 2023
Report Number: 2947303

Method of Analysis

Motified of Allarysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Dec 12, 2023	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	* Metals Emissions from Stationary Sources, 29	Dec 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 11, 2023	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	* Metals Emissions from Stationary Sources, 29	Dec 11, 2023	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Dec 1, 2023	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Dec 5, 2023	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

LABORATORY REPORT

December 7, 2023

Mark Lanfranco A. Lanfranco and Associates Inc. Unit 101 - 9488 189 St. Surrey, BC V4N 4W7

RE: Metro Vancouver W.T.E

Dear Mark:

Enclosed are the results of the samples submitted to our laboratory on November 21, 2023. For your reference, these analyses have been assigned our service request number P2305587.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

ALS | Environmental

Sue Anderson at 11:46 am, Dec 07, 2023

Sue Anderson

Project Manager

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

Client: A. Lanfranco and Associates Inc. Service Request No: P2305587

Project: Metro Vancouver W.T.E

CASE NARRATIVE

The samples were received intact under chain of custody on November 21, 2023 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

C3 through C6 Hydrocarbons, Methane, Ethene, and Ethane Analysis

The samples were analyzed per modified EPA Method TO-3 for C3 through >C6 hydrocarbons and methane, ethene and ethane using a gas chromatograph equipped with a flame ionization detector (FID). This procedure is described in laboratory SOP VOA-TO3C1C6. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AIHA-LAP, LLC accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	https://dec.alaska.gov/spar/csp/lab-approval/list-of-approved-labs	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental-laboratories/index.html	E871020
Louisiana DEQ (NELAP)	https://internet.deq.louisiana.gov/portal/divisions/lelap/accredited-laboratories	05071
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtm	2022028
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	006-999-456
New Jersey DEP (NELAP)	https://dep.nj.gov/dsr/oqa/certified-laboratories/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oklahoma DEQ (NELAP)	labaccreditation.deq.ok.gov/labaccreditation/	2207
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaboratoryAcreditation/Pages/index.aspx	4068
Pennsylvania DEP	hhttp://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env lab accreditation.html	T104704413- 23-14
Utah DOH (NELAP)	https://uphl.utah.gov/certifications/environmental-laboratory-certification/	CA016272023 -15
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client: A. Lanfranco and Associates Inc.

Project ID: Metro Vancouver W.T.E Service Request: P2305587

Date Received: Time Received: Client Sample ID	11/21/2023 09:44 Lab Code	Matrix	Date Collected	Time Collected	Container ID	Pi1 (psig)	Pfl (psig)		TO-3 Modified - C1C6+ Can	TO-3 Modified - MEEPP Can	
Unit 1 Run 1	P2305587-001	Air	11/15/2023	11:38	SC01949	-2.44	4.24	I	X	X	
Unit 1 Run 2	P2305587-002	Air	11/15/2023	12:49	SC00221	-3.36	4.47		X	X	
Unit 1 Run 3	P2305587-003	Air	11/15/2023	14:01	SC01032	-4.00	4.45		X	X	
Unit 2 Run 1	P2305587-004	Air	11/16/2023	10:56	SC00822	-2.94	4.55		X	X	
Unit 2 Run 2	P2305587-005	Air	11/16/2023	12:08	SC00235	-2.55	4.27		X	X	
Unit 2 Run 3	P2305587-006	Air	11/16/2023	13:23	SC02156	-2.19	4.90		X	X	
Unit 3 Run 1	P2305587-007	Air	11/17/2023	10:39	SC01561	-3.70	4.34		X	X	
Unit 3 Run 2	P2305587-008	Air	11/17/2023	11:54	SC00884	0.85	4.30		X	X	
Unit 3 Run 3	P2305587-009	Air	11/17/2023	13:06	SC00071	-5.40	4.32		X	X	

ALS

Air - Chain of Custody Record & Analytical Service Request

Requested Turnaround Time in Business Days (Surcharges) please circle

Page __1___ of ___1__

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161 Fay (805) 526-7270

	Fax (805) 520	6-7270		1 Day (100%) 2 Da	y (75%) 3 Day (50%	6) 4 Day (35%)	5 Day (25%) 10	Day-Stand	ALS Contact:		O^{-1}
Company Name & Address (Reportir	ng Information)			Project Name	16.74 16.71			_	ALG COMACI.	, 1	2/42.00
A.Lanfranco & Associate			A2	Metro Vanco	ûver W.T.E.	1.0		*	Analysis	Method	
				Project Number	E				TO-3 (List on		
Project Manager Mark Lanfranco				P.O. # / Billing Infon	mation	4	,		File)		Comments
Phone 604-881-2582	Fax			Bill to Accour	nt	- 1			ě		e.g. Actual Preservative or
Email Address for Result Reporting mark.lanfranco@alanfra	anco.com			Sampler (Print & Sign) Daryl Sampson	Daryl Si	ampson	9.	v''			specific instructions
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code #- FC #)	Canister Start Pressure "Hg	, Canister End Pressure "Hg/psig	Sample Volume			
Unit 1 Run 1		11-15-23	0956-1138	SC01949	OA01213	-32"	7"	6L	34		*
Unit 1 Run 2	12	11-15-23	11:49-1249	SC00221	OA00217	-35"	9" 1 3	6L			
Unit 1 Run 3	3	11-15-23	1307-1401	SC01030	OAO0250	-27"	8"	6L		:41	N. 1
Unit 2 Run 1	9	11-16-23	0956-1056	SC00822	OA02248	-29"	7"	6L			,
Unit 2 Run 2		11-16-23	1108-1208	SC00235	OA01364	-35"	8"	6L	14		100
Unit 2 Run 3	4	11-16-23	1223-1323	SCO2156	OA00613	-30"	7"	6L		17	× .
Unit 3 Run 1	1	11-17-23	0939-1039	SC01561	OA00252	-28"	-9.5"	6L			
Unit 3 Run 2	8	11-17-23	1054-1154	SC00884	OAO1220	-25"	-4"	6L	15		
Unit 3 Run 3	9	11-17-23	1206-1306	SC0071	OA01808	-30"	-12"	6L		141	
1 No.											
										15	
Re Tier I - Results (Default if not specified) _ Tier II (Results + QC Summaries)		Results + QC &	Calibration Sun	nmaries) % Surcharge	EDD required Ye	es / No Units:			Custody Seal		Project Requirements (MRLs, QAPP)
Relinquished by: (Signature)			Date:	Time:	Received by: (Signa	ature)	K		Date:	Time:	
Relinquished by: (Signature)	10		Date:	Time:	Received by: (Signa	ature)		212	Date:	Jime:	Cooler / Blank Temperature°C
									-		11:

ALS Environmental Sample Acceptance Check Form

		and Associates Inc.	Sampi	le Acceptance	-		P2305587			
	Metro Vanco									
Sample((s) received on	: 11/21/23		•	Date opened:	11/21/23	by:	ADAV	ID	
<i>Note:</i> This	form is used for a	ll samples received by ALS	6. The use of this f	orm for custody se	eals is strictly me	eant to indicate presen	ce/absence and no	ot as an ir	ndication	of
compliance	or nonconformity	. Thermal preservation and	d pH will only be e	valuated either at	the request of th	e client and/or as requ	ired by the metho	d/SOP. Yes	<u>No</u>	<u>N/A</u>
1	Were sample	containers properly	marked with cli	ient sample ID	?			X		
2	Did sample c	ontainers arrive in go	ood condition?					X		
3	Were chain-o	of-custody papers use	d and filled out	?				X		
4	Did sample c	container labels and/c	or tags agree wi	th custody pap	ers?				X	
5	Was sample	volume received adeq	uate for analys	is?				X		
6	Are samples	within specified holding	ng times?					X		
7	-	emperature (thermal	_	f cooler at rec	eipt adhered t	to?				X
8	Were custod	y seals on outside of c	ooler/Box/Con	tainer?					X	
		Location of seal(s)	?				Sealing Lid?			X
	Were signatur	re and date included?								X
	Were seals in	tact?								X
9	Do contain	ers have appropriate p	reservation, a	ccording to me	ethod/SOP or	Client specified in	nformation?			X
	Is there a clie	ent indication that the	submitted samp	oles are pH pro	eserved?					X
	Were VOA	vials checked for pres	ence/absence of	f air bubbles?						X
	Does the clie	nt/method/SOP requir	e that the analy	st check the sa	mple pH and	if necessary alter	it?			X
10	Tubes:	Are the tubes cap	ped and intact?	?						X
11	Badges:	Are the badges p	roperly capped	and intact?						X
		Are dual bed bad	lges separated a	and individuall	v capped and	intact?				X
12	Lab Notificat		I were alerted of							X
13	Client Notific	cation: Client has been i	notified regarding	g HT exceedance	es and/or other	CoC discrepancies	?			X
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspace		ot / Pres		1
		Description	pH *	pН	pН	(Presence/Absence)		Comme	ıts	
P230558		6.0 L Source Can								
P230558		6.0 L Source Can	_							
P230558'		6.0 L Source Can								
P230558' P230558'		6.0 L Source Can 6.0 L Source Can	+							
P230558'		6.0 L Source Can								
P230558'		6.0 L Source Can								
P230558'		6.0 L Source Can								
P230558		6.0 L Source Can								
		<u> </u>			<u> </u>					
-		cies: (include lab sample			GG01022					
Can ID no	oted on COC for	sample -003 is listed SC	U1U3U but the co	orrect can ID is	SC01032.					

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 1 ALS Project ID: P2305587
Client Project ID: Metro Vancouver W.T.E ALS Sample ID: P2305587-001

Test Code: EPA TO-3 Modified Date Collected: 11/15/23
Instrument ID: HP5890 II/GC8/FID Date Received: 11/21/23
Analyst: Stephanie Reynoso Date Analyzed: 11/29/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01949

Initial Pressure (psig): -2.44 Final Pressure (psig): 4.24

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.77	
C ₄ as n-Butane	ND	0.77	
C ₅ as n-Pentane	ND	0.77	
C ₆ as n-Hexane	ND	0.77	
C ₆ + as n-Hexane	ND	1.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 2

Client Project ID: P2305587

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2305587-002

Test Code: EPA TO-3 Modified Date Collected: 11/15/23
Instrument ID: HP5890 II/GC8/FID Date Received: 11/21/23
Analyst: Stephanie Reynoso Date Analyzed: 11/29/23
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00221

Initial Pressure (psig): -3.36 Final Pressure (psig): 4.47

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.85	_
C ₄ as n-Butane	ND	0.85	
C ₅ as n-Pentane	ND	0.85	
C ₆ as n-Hexane	ND	0.85	
C ₆ + as n-Hexane	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 3

Client Project ID: P2305587

ALS Project ID: P2305587-003

Test Code: EPA TO-3 Modified Date Collected: 11/15/23
Instrument ID: HP5890 II/GC8/FID Date Received: 11/21/23
Analyst: Stephanie Reynoso Date Analyzed: 11/29/23
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01032

Initial Pressure (psig): -4.00 Final Pressure (psig): 4.45

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.90	
C ₄ as n-Butane	ND	0.90	
C ₅ as n-Pentane	ND	0.90	
C ₆ as n-Hexane	ND	0.90	
C ₆ + as n-Hexane	ND	1.8	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1 ALS Project ID: P2305587
Client Project ID: Metro Vancouver W.T.E ALS Sample ID: P2305587-004

Test Code:EPA TO-3 ModifiedDate Collected: 11/16/23Instrument ID:HP5890 II/GC8/FIDDate Received: 11/21/23Analyst:Stephanie ReynosoDate Analyzed: 11/29/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00822

Initial Pressure (psig): -2.94 Final Pressure (psig): 4.55

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.82	
C ₄ as n-Butane	ND	0.82	
C ₅ as n-Pentane	ND	0.82	
C ₆ as n-Hexane	ND	0.82	
C ₆ + as n-Hexane	ND	1.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: P2305587

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2305587-005

Test Code: EPA TO-3 Modified Date Collected: 11/16/23
Instrument ID: HP5890 II/GC8/FID Date Received: 11/21/23
Analyst: Stephanie Reynoso Date Analyzed: 11/29/23
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00235

Initial Pressure (psig): -2.55 Final Pressure (psig): 4.27

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.78	
C ₄ as n-Butane	ND	0.78	
C ₅ as n-Pentane	ND	0.78	
C ₆ as n-Hexane	ND	0.78	
C ₆ + as n-Hexane	ND	1.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2305587

ALS Sample ID: P2305587-006

Test Code: EPA TO-3 Modified Date Collected: 11/16/23
Instrument ID: HP5890 II/GC8/FID Date Received: 11/21/23
Analyst: Stephanie Reynoso Date Analyzed: 11/29/23
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02156

Initial Pressure (psig): -2.19 Final Pressure (psig): 4.90

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.79	
C ₄ as n-Butane	ND	0.79	
C ₅ as n-Pentane	ND	0.79	
C ₆ as n-Hexane	ND	0.79	
C ₆ + as n-Hexane	ND	1.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2305587
Client Project ID: Metro Vancouver W.T.E ALS Sample ID: P2305587-007

Test Code:EPA TO-3 ModifiedDate Collected: 11/17/23Instrument ID:HP5890 II/GC8/FIDDate Received: 11/21/23Analyst:Stephanie ReynosoDate Analyzed: 11/29/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01561

Initial Pressure (psig): -3.70 Final Pressure (psig): 4.34

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.87	
C ₄ as n-Butane	ND	0.87	
C ₅ as n-Pentane	ND	0.87	
C ₆ as n-Hexane	ND	0.87	
C ₆ + as n-Hexane	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2305587

ALS Sample ID: P2305587-008

Test Code:EPA TO-3 ModifiedDate Collected: 11/17/23Instrument ID:HP5890 II/GC8/FIDDate Received: 11/21/23Analyst:Stephanie ReynosoDate Analyzed: 11/29/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00884

Initial Pressure (psig): 0.85 Final Pressure (psig): 4.30

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.61	
C ₄ as n-Butane	ND	0.61	
C ₅ as n-Pentane	ND	0.61	
C ₆ as n-Hexane	ND	0.61	
C ₆ + as n-Hexane	ND	1.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: P2305587

ALS Project ID: P2305587-009

Test Code: EPA TO-3 Modified Date Collected: 11/17/23
Instrument ID: HP5890 II/GC8/FID Date Received: 11/21/23
Analyst: Stephanie Reynoso Date Analyzed: 11/29/23
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00071

Initial Pressure (psig): -5.40 Final Pressure (psig): 4.32

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	1.0	
C ₄ as n-Butane	ND	1.0	
C ₅ as n-Pentane	ND	1.0	
C ₆ as n-Hexane	ND	1.0	
C ₆ + as n-Hexane	ND	2.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Method Blank
Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2305587
ALS Sample ID: P231129-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 11/29/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.50	
C ₄ as n-Butane	ND	0.50	
C ₅ as n-Pentane	ND	0.50	
C ₆ as n-Hexane	ND	0.50	
C ₆ + as n-Hexane	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Duplicate Lab Control SampleALS Project ID: P2305587Client Project ID:Metro Vancouver W.T.EALS Sample ID: P231129-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 11/29/23
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

Test Notes:

	Spike Amount	Re	sult			ALS			
Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
	ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
Propane	984	1,070	1,070	109	109	92-120	0	6	
n-Butane	1,000	1,070	1,070	107	107	91-121	0	6	
n-Pentane	1,000	1,040	1,040	104	104	89-118	0	6	
n-Hexane	1,000	1,090	1,080	109	108	92-125	0.9	6	

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 1 ALS Project ID: P2305587
Client Project ID: Metro Vancouver W.T.E ALS Sample ID: P2305587-001

Test Code: EPA TO-3 Modified Date Collected: 11/15/23
Instrument ID: HP5890A/GC10/FID Date Received: 11/21/23
Analyst: Stephanie Reynoso Date Analyzed: 11/22/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01949

Initial Pressure (psig): -2.44 Final Pressure (psig): 4.24

Container Dilution Factor: 1.54

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	3.1	2.0	4.7	3.1	
74-85-1	Ethene	ND	1.1	ND	0.92	
74-84-0	Ethane	ND	1.1	ND	0.92	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 2

Client Project ID: P2305587

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2305587-002

Test Code: EPA TO-3 Modified Date Collected: 11/15/23
Instrument ID: HP5890A/GC10/FID Date Received: 11/21/23
Analyst: Stephanie Reynoso Date Analyzed: 11/22/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00221

Initial Pressure (psig): -3.36 Final Pressure (psig): 4.47

Container Dilution Factor: 1.69

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	6.2	2.2	9.4	3.4	
74-85-1	Ethene	ND	1.2	ND	1.0	
74-84-0	Ethane	ND	1.2	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 3

Client Project ID: P2305587

Client Project ID: Metro Vancouver W.T.E

ALS Sample ID: P2305587-003

Test Code: EPA TO-3 Modified Date Collected: 11/15/23
Instrument ID: HP5890A/GC10/FID Date Received: 11/21/23
Analyst: Stephanie Reynoso Date Analyzed: 11/22/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01032

Initial Pressure (psig): -4.00 Final Pressure (psig): 4.45

Container Dilution Factor: 1.79

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	3.2	2.3	4.9	3.6	
74-85-1	Ethene	ND	1.2	ND	1.1	
74-84-0	Ethane	ND	1.3	ND	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1 ALS Project ID: P2305587
Client Project ID: Metro Vancouver W.T.E ALS Sample ID: P2305587-004

Test Code: EPA TO-3 Modified Date Collected: 11/16/23
Instrument ID: HP5890A/GC10/FID Date Received: 11/21/23
Analyst: Stephanie Reynoso Date Analyzed: 11/22/23
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00822

Initial Pressure (psig): -2.94 Final Pressure (psig): 4.55

Container Dilution Factor: 1.64

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.2	2.2	3.4	3.3	_
74-85-1	Ethene	ND	1.1	ND	0.98	
74-84-0	Ethane	ND	1.2	ND	0.98	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: P2305587

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2305587-005

Test Code: EPA TO-3 Modified Date Collected: 11/16/23

Instrument ID: HP5890A/GC10/FID Date Received: 11/21/23

Analyst: Stephanie Reynoso Date Analyzed: 11/22/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00235

Initial Pressure (psig): -2.55 Final Pressure (psig): 4.27

Container Dilution Factor: 1.56

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.7	2.0	4.2	3.1	_
74-85-1	Ethene	ND	1.1	ND	0.94	
74-84-0	Ethane	ND	1.2	ND	0.94	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: P2305587

ALS Project ID: P2305587-006

Test Code: EPA TO-3 Modified Date Collected: 11/16/23

Instrument ID: HP5890A/GC10/FID Date Received: 11/21/23

Analyst: Stephanie Reynoso Date Analyzed: 11/22/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02156

Initial Pressure (psig): -2.19 Final Pressure (psig): 4.90

Container Dilution Factor: 1.57

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.6	2.1	4.0	3.1	
74-85-1	Ethene	ND	1.1	ND	0.94	
74-84-0	Ethane	ND	1.2	ND	0.94	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2305587
Client Project ID: Metro Vancouver W.T.E ALS Sample ID: P2305587-007

Test Code:EPA TO-3 ModifiedDate Collected: 11/17/23Instrument ID:HP5890A/GC10/FIDDate Received: 11/21/23Analyst:Stephanie ReynosoDate Analyzed: 11/22/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01561

Initial Pressure (psig): -3.70 Final Pressure (psig): 4.34

Container Dilution Factor: 1.73

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.3	ND	3.5	
74-85-1	Ethene	ND	1.2	ND	1.0	
74-84-0	Ethane	ND	1.3	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: P2305587

ALS Project ID: P2305587-008

ALS Sample ID: P2305587-008

Test Code: EPA TO-3 Modified Date Collected: 11/17/23
Instrument ID: HP5890A/GC10/FID Date Received: 11/21/23
Analyst: Stephanie Reynoso Date Analyzed: 11/22/23
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00884

Initial Pressure (psig): 0.85 Final Pressure (psig): 4.30

Container Dilution Factor: 1.22

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.6	1.6	3.9	2.4	_
74-85-1	Ethene	ND	0.84	ND	0.73	
74-84-0	Ethane	ND	0.90	ND	0.73	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

ALS ENVIRONMENTAL

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2305587

ALS Sample ID: P2305587-009

Test Code:EPA TO-3 ModifiedDate Collected: 11/17/23Instrument ID:HP5890A/GC10/FIDDate Received: 11/21/23Analyst:Stephanie ReynosoDate Analyzed: 11/22/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00071

Initial Pressure (psig): -5.40 Final Pressure (psig): 4.32

Container Dilution Factor: 2.05

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.7	ND	4.1	_
74-85-1	Ethene	ND	1.4	ND	1.2	
74-84-0	Ethane	ND	1.5	ND	1.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

ALS ENVIRONMENTAL

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Method Blank
Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2305587
ALS Sample ID: P231122-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 11/22/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	1.3	ND	2.0	
74-85-1	Ethene	ND	0.69	ND	0.60	
74-84-0	Ethane	ND	0.74	ND	0.60	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

ALS ENVIRONMENTAL

DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Duplicate Lab Control SampleALS Project ID: P2305587Client Project ID:Metro Vancouver W.T.EALS Sample ID: P231122-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 11/22/23
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

Test Notes:

		Spike Amount	Re	sult			ALS			
CAS#	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
74-82-8	Methane	7.60	7.41	7.18	98	94	70-130	4	15	
74-85-1	Ethene	7.53	7.41	7.28	98	97	70-130	1	15	
74-84-0	Ethane	7.49	7.65	7.52	102	100	70-130	2	15	

Your Project #: METROVAN WTE

Site#: C394832

Site Location: BURNABY, BC

Your C.O.C. #: C394832-ONVT-01-01

Attention: Customer Solutions

Bureau Veritas 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2023/11/30

Report #: R7934726 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3AL037 Received: 2023/11/25, 13:40

Sample Matrix: Tedlar Bag # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Nitrous Oxide (1)	8	N/A	2023/11/2	7 CAM SOP-00203	GC/ECD

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Date Analyzed is the date the analytical batch was created. Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard, where applicable.

Your Project #: METROVAN WTE

Site#: C394832

Site Location: BURNABY, BC

Your C.O.C. #: C394832-ONVT-01-01

Attention: Customer Solutions

Bureau Veritas 4606 Canada Way Burnaby, BC V5G 1K5 CANADA

Report Date: 2023/11/30

Report #: R7934726

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3AL037 Received: 2023/11/25, 13:40

Encryption Key

Jack Browne
Project Manager Assistant - Air
30 Nov 2023 13:31:02

Please direct all questions regarding this Certificate of Analysis to: Jade Browne, Project Manager Assistant - Air Email: Jade.Browne@bureauveritas.com

Phone# (905)817-5831

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Report Date: 2023/11/30

Bureau Veritas

Client Project #: METROVAN WTE

Site Location: BURNABY, BC

COMPRESSED GAS PARAMETERS (TEDLAR BAG)

Bureau Veritas ID		XSC054	XSC054	XSC055	XSC056		
		2023/11/15	2023/11/15	2023/11/15	2023/11/15		
Sampling Date	100	10:53	10:53	11:59	13:01		
COC Number		C394832-ONVT-01-01	C394832-ONVT-01-01	C394832-ONVT-01-01	C394832-ONVT-01-01		
	UNITS	CFH102-UNIT#1 R1	CFH102-UNIT#1 R1 Lab-Dup	CFH103-UNIT#1 R2	CFH104-UNIT#1 R3	RDL	QC Batch
Gas							
Nitrous Oxide	ppmv	5.3	5.4	1.7	7.6	0.1	9080238
RDL = Reportable Detec	tion Limit						
QC Batch = Quality Cont	rol Batch						
Lab-Dup = Laboratory Ir	itiated Duplic	ate					

COC NUMBER	2023/11/16 12:23 394832-ONVT-01-01	2023/11/17 10:57 C394832-ONVT-01-01		
COC Number C394832-ONVT-01-01 C394832-ONVT-01-01 C39				
COC Number	394832-ONVT-01-01	C394832-ONVT-01-01		
UNITS CFH105-UNIT#2 R1 CFH106-UNIT#2 R2 CF				
5.1.15 5.1.150 5.111112.12 5.111112.12	CFH107-UNIT#2 R3	CFH109-UNIT#3 R2	RDL	QC Batcl
Gas				
Nitrous Oxide ppmv 7.5 8.2	9.4	6.4	0.1	9080238

Bureau Veritas ID	1 10	XSC062		
Sampling Date		2023/11/17 12:06		
COC Number		C394832-ONVT-01-01		
	UNITS	CFH110-UNIT#3 R3	RDL	QC Batch
Gas				
Nitrous Oxide	ppmv	0.5	0.1	9080238
RDL = Reportable Detec	tion Limit	_		
QC Batch = Quality Cont	rol Batch			

Bureau Veritas Job #: C3AL037 Report Date: 2023/11/30

Bureau Veritas

Client Project #: METROVAN WTE Site Location: BURNABY, BC

TEST SUMMARY

Bureau Veritas ID: XSC054 CFH102-UNIT#1 R1

Collected: 2023/11/15

Sample ID: Matrix: Tedlar Bag Shipped:

Received: 2023/11/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9080238	N/A	2023/11/27	Satvinder Bhathal

Bureau Veritas ID: XSC054 Dup

Collected: 2023/11/15

Shipped:

Sample ID: CFH102-UNIT#1 R1 Matrix: Tedlar Bag

Received: 2023/11/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9080238	N/A	2023/11/29	Satvinder Bhathal

Bureau Veritas ID: XSC055

Collected: 2023/11/15

Sample ID: CFH103-UNIT#1 R2

Shipped:

Matrix: Tedlar Bag

Received: 2023/11/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9080238	N/A	2023/11/27	Satvinder Bhathal

Bureau Veritas ID: XSC056

Collected: 2023/11/15

Sample ID: Matrix: Tedlar Bag

CFH104-UNIT#1 R3

Shipped:

Received: 2023/11/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9080238	N/A	2023/11/27	Satvinder Bhathal

Bureau Veritas ID: XSC057 **Collected:** 2023/11/16

Shipped:

CFH105-UNIT#2 R1 Sample ID: Matrix: Tedlar Bag

Received: 2023/11/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9080238	N/A	2023/11/27	Satvinder Bhathal

Bureau Veritas ID: XSC058

Collected: 2023/11/16

Shipped:

Sample ID: CFH106-UNIT#2 R2 Matrix: Tedlar Bag

Received: 2023/11/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9080238	N/A	2023/11/27	Satvinder Bhathal

Bureau Veritas ID: XSC059

Collected: 2023/11/16

Sample ID:

CFH107-UNIT#2 R3 Matrix: Tedlar Bag

Shipped:

Received: 2023/11/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9080238	N/A	2023/11/27	Satvinder Bhathal

Bureau Veritas Job #: C3AL037

Report Date: 2023/11/30

Bureau Veritas

Client Project #: METROVAN WTE Site Location: BURNABY, BC

TEST SUMMARY

Bureau Veritas ID: XSC061

Collected: 2023/11/17

Shipped:

Received: 2023/11/25

Sample ID: CFH109-UNIT#3 R2 Matrix: Tedlar Bag

Date Analyzed Analyst

Nitrous Oxide

Test Description

Instrumentation GC/ECD

Extracted 9080238 N/A

2023/11/27

Satvinder Bhathal

Collected: 2023/11/17

Batch

Shipped:

2023/11/25 Received:

Sample ID: CFH110-UNIT#3 R3

Date Analyzed

Bureau Veritas ID: XSC062

Matrix: Tedlar Bag

Test Description Nitrous Oxide

Instrumentation Batch GC/ECD 9080238 Extracted N/A

2023/11/27

Analyst Satvinder Bhathal

Bureau Veritas Job #: C3AL037 Report Date: 2023/11/30 **Bureau Veritas**

Client Project #: METROVAN WTE

Site Location: BURNABY, BC

GENERAL COMMENTS

Nitrous Oxide Analysis: The samples were analysed 12 days after the date of sampling. The recommended holding time is 2 days.

Sample XSC055 [CFH103-UNIT#1 R2]: Sample bag appears to be somewhat deflated. Possible that the sample bag has some slow leaks.

Sample XSC062 [CFH110-UNIT#3 R3]: Sample bag appears to be somewhat deflated. Possible that the sample bag has some slow leaks.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Bureau Veritas Client Project #: METROVAN WTE

Site Location: BURNABY, BC

			Method Blank	dae	Caa	
			DO DO DO	4115		
QC Batch	Parameter	Date	Value	UNITS	Value (%)	QC Limits
9080238	Nitrous Oxide	2023/11/29	<0.1	hmdd	NC	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Report Date: 2023/11/30

Bureau Veritas

Client Project #: METROVAN WTE

Site Location: BURNABY, BC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Tom Mitchell, B.Sc, Supervisor, Compressed Gases

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

BV LABS INTERLAB CHAIN OF CUSTODY RECORD

Sent to: Bureau Veritos Campobello Mississauga, ON, LSN 21.8 6740 Campoballo Road Tel: (905) 817-5700

NUME AU

Page 01 of 01

COC# C394832-ONTV-01-01

Labets Verified Please inform us if rush charges will be incorred. RECEIVING LAB USE ONLY TURNAROUND TIME Rush Required By: Date Required 2023/12/08 8V Labs Joh # ADDITIONAL SAMPLE INFORMATION AIR-RmTmb 25-Nov-23 13:40 Colby Couta Labelled By: Job Barcode Label C3AL037 тиме (нисми) В ЩО National Excel (N001) REQUIRED EDDS 识 (10 d (P: 01) (P: 01) (P: 01) (P: 01) (P. 01) (P: 01) (P: 01) (P: 01) DATE: (PYTY/MM/DD) 2241125 30 lesse inform Bureau Veritas immediately if you are not accredited for YES NO the nequested test(s) or the hold three is approaching. Please return a copy of this form with the report ** Custody Seal Present Custody Seal Intact Cooling Media Present ANALYSIS REQUESTED Marie COOLER ID: SPECIAL INSTRUCTIONS RECEIVED BY: 53GN & PRINT) × × NZO GIR CSA 22396.1.09 Subcontract Temp: ā customersolutionswest@bureauveritas.com, Customarsolutionswest@bureauveritas Incl. on Report? Yes / No SAMPLER VES NO REGULATORY CRITERIA DATE: (YYYY/MM/DD) TEME: PHIMAM SAMPLED PYYYY/MAM/DDI [HH:MAM] 12:23 10.53 11.59 13:01 95:60 11:08 06:60 10:57 12:06 Custody Seal Present Custody Seal Intact Confing Media Present 1500 2023/11/15 2023/11/16 2023/11/16 2023/11/16 SAMPLED 2023/11/15 2023/11/15 2023/11/17 2023/11/17 2023/11/17 COOLER ID: 4606 Canada Way, Burnaby, British Columbia, VSG 1KS 2023/11/24 MATRIX A. LANFRANCO & ASSOCIATES INC. (1301) A. LANFRANCO & ASSOCIATES INC. (1301) « ~ « 4 ×C Bureau Veritas Laboratories PO/AFE, TASK ORDER/SERVICE ORDER, LINE ITEM: Customer Solutions 5 VES NO C394832 RELINQUISHED BY: (SIGN & PRINT) CFH102-UNIT#1 R1 CFH103-UNIT#1 R2 CFH104-UNIT#1 R3 CFH 105-UNIT#2 R1 CFH106-UNIT#2 R2 6 CFM 107 UNITED R2 CFH108-UNITED R1 CFH109-UNIT#3 R2 CH110-UNITIES R3 8 REPORT INFORMATION ing Media Present ustody Seal Present ustody Seal Intact IV Labs Project #: Client Involce To: Client Report To: SAMPLEID METROVAN WTE SITE LOCATION: Russell Sumbrng ontact Name: URNABY, BC PROJECT #: COOLER ID: mpam/: ddress: hone: Sale: 40 2

APPENDIX - D COMPUTER GENERATED RESULTS

Client: Metro Vancouver Date: 14-Nov-23

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time:** 12:17 - 14:19

Concentrations:

Particulate 0.25 mg/dscm 0.00011 gr/dscf

0.14 mg/Acm 0.00006 gr/Acf

Emission Rates:

Particulate 0.017 Kg/hr 0.038 lb/hr

Flue Gas Characteristics:

Flow 1160 dscm/min 40962 dscf/min

 19.33 dscm/sec
 683 dscf/sec

 2027 Acm/min
 71566 Acf/min

Velocity 13.260 m/sec 43.50 f/sec

Temperature 147.7 oC 297.8 oF

Moisture 14.1 %

Gas Analysis 11.0 % O2

8.7 % CO2

29.827 Mol. Wt (g/gmole) Dry 28.160 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.6243 dscm 92.678 dscf

Sample Time 120.0 minutes Isokineticity 101.3 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 14-Nov-23

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

 Source:
 Unit 1
 Run Time:
 11:10 - 13:15

Control Unit (Y)	0.9844	Collection:		Gas Analys	is (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.3058	Filter (grams) 0.00060		CO2	O2	Impinger 1	190.0
Pitot Factor	0.8351	Washings (grams) 0.00005	Traverse 1	8.67	10.77	Impinger 2	80.0
Baro. Press. (in. Hg)	30.05		Traverse 2	8.67	11.20	Impinger 3	25.0
Static Press. (in. H20)	-19.50	Total (grams) 0.00065				Impinger 4	8.0
Stack Height (ft)	30					Impinger 5	4.0
Stack Diameter (in.)	70.90					Impinger 6	2.0
Stack Area (sq.ft.)	27.417			8.67	10.99	Gel	14.0
Minutes Per Reading	5.0						
Minutes Per Point	5.0					Gain (grams)	323 በ

					Dry Gas	Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Traverse 1	0.0	309.539								
1	5.0	313.040	0.33	1.51	58	58	6	290	1.5	101.2
2	10.0	316.430	0.31	1.42	59	59	6	294	4.7	101.1
3	15.0	319.760	0.30	1.36	60	60	6	300	8.4	101.2
4	20.0	323.320	0.34	1.54	61	61	6	302	12.5	101.6
5	25.0	326.600	0.29	1.32	62	62	6	304	17.7	101.2
6	30.0	329.950	0.30	1.37	63	63	6	302	25.2	101.3
7	35.0	334.060	0.45	2.06	64	64	6	300	45.6	101.3
8	40.0	338.230	0.46	2.11	65	65	6	298	53.2	101.4
9	45.0	342.120	0.40	1.84	65	65	6	296	58.3	101.2
10	50.0	346.650	0.54	2.49	65	65	6	295	62.5	101.5
11	55.0	351.230	0.55	2.56	65	65	6	290	66.1	101.4
12	60.0	355.920	0.57	2.66	66	66	6	289	69.4	101.8
			•	•	•	•	•			
Traverse 2	0.0	355.920								
1	5.0	360.260	0.49	2.26	66	66	6	297	1.5	102.0
2	10.0	364.580	0.50	2.30	66	66	6	298	4.7	100.6
3	15.0	369.020	0.52	2.40	66	66	7	298	8.4	101.4
4	20.0	373.400	0.51	2.35	67	67	7	298	12.5	100.8
5	25.0	377.880	0.53	2.44	66	66	7	299	17.7	101.4
6	30.0	382.230	0.50	2.30	66	66	7	300	25.2	101.4
7	35.0	385.500	0.28	1.29	66	66	6	300	45.6	101.6
8	40.0	388.820	0.29	1.33	66	66	6	302	53.2	101.5
9	45.0	392.250	0.31	1.42	66	66	5	300	58.3	101.4
10	50.0	395.600	0.30	1.37	66	66	5	302	62.5	100.7
11	55.0	399.090	0.32	1.47	67	67	5	300	66.1	101.3
12	60.0	402.230	0.26	1.20	66	66	5	294	69.4	100.9
Average:			0.402	1.849	64.5	64.5	6.0	297.8		101.3

Client: Metro Vancouver Date: 15-Nov-23

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 1 **Run Time:** 09:11 - 11:57

Concentrations:

Particulate 0.25 mg/dscm 0.00011 gr/dscf

0.14 mg/Acm 0.00006 gr/Acf

Emission Rates:

Particulate 0.018 Kg/hr 0.039 lb/hr

Flue Gas Characteristics:

Flow 1198 dscm/min 42297 dscf/min

 19.96 dscm/sec
 705 dscf/sec

 2134 Acm/min
 75351 Acf/min

Velocity 13.962 m/sec 45.81 f/sec

Temperature 142.2 oC 288.0 oF

Moisture 16.6 %

Gas Analysis 9.9 % O2

10.0 % CO2

29.995 Mol. Wt (g/gmole) Dry 28.005 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 3.0145 dscm 106.456 dscf

Sample Time 120.0 minutes Isokineticity 106.5 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 15-Nov-23 Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals 09:11 - 11:57 Source: Unit 1 Run Time: Control Unit (Y) 0.9844 Collection Gas Analysis (Vol. %): Condensate Collection: 0.3145 Filter (grams) 0.00070 Impinger 1 Impinger 2 225.0 Nozzle Diameter (in.) Pitot Factor 0.8351 Washings (grams) 0.00005 142.0 Baro. Press. (in. Hg) 29.93 Traverse 2 10.00 10.05 Impinger 3 44.0 Total (grams) 0.00075 10.0 Static Press. (in. H20) -19.00 Impinger 4 Stack Height (ft) 30 6.0 Impinger 5 70.90 Stack Diameter (in.) 3.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 20.0 10.00 9 88 Gain (grams) 450.0 Minutes Per Reading 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 5.0 403.089 106.2 1.36 289 1.5 406.390 10.0 1.74 410.120 0.32 289 106.2 3 15.0 413.620 0.28 1.53 59 59 290 8.4 106.2 20.0 25.0 4 417.190 0.29 1.58 60 60 291 12.5 106.3 0.33 17.7 421.020 1.81 62 289 62 106.4 30.0 425.970).55 3.02 289 106.6 35.0 431.280 0.63 3.47 64 12 289 45.6 106.8 40.0 0.59 3.27 66 66 287 53.2 106.6 45.0 50.0 55.0 2.78 2.72 9 441.200 0.50 287 58.3 106.5 10 445.920 0.49 68 68 288 62.5 106.5 287 11 450.450 0.45 2.50 68 68 66.1 106.6 8 12 60.0 454.680 0.39 2.18 69 69 8 286 69.4 106.5 Traverse 2 0.0 5.0 454.680 458.730 0.36 106.5 2.00 68 69 288 288 10.0 463.820 3.17 68 4.7 106.6 15.0 13 469.180 0.63 3.51 69 8.4 106.7 3 20.0 473.300 2.07 106.6 5 25.0 478,230 2.96 68 68 10 286 17.7 106.9 6 30.0 483.240 0.55 3.07 68 68 10 287 25.2 106.8 35.0 488.070).51 2.84 45.6 106.7 10 8 40.0 492.800).49 2.73 69 69 10 287 106.5 45.0 2.72 9 497.530 0.49 69 69 10 289 58.3 106.6 50.0 501.910 10 289 0.42 62.5 106.6 10 2.33 69 55.0 60.0 506.080 510.134 0.38 2.12 70 70 288 66.1 106.3 2.00 69 289 12 0.36 69 69.4 106.4 Average: 0.447 2.478 66.0 66.0 8.8 288.0 106.5

Client: Metro Vancouver Date: 15-Nov-23

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 1 **Run Time:** 12:14 - 14:17

Concentrations:

Particulate1.3 mg/dscm0.0006 gr/dscf

0.7 mg/Acm 0.0003 gr/Acf

Emission Rates:

Particulate 0.101 Kg/hr 0.222 lb/hr

Flue Gas Characteristics:

Flow 1260 dscm/min 44491 dscf/min

 21.00 dscm/sec
 742 dscf/sec

 2252 Acm/min
 79518 Acf/min

Velocity 14.734 m/sec 48.34 f/sec

Temperature 141.5 oC 286.7 oF

Moisture 17.0 %

Gas Analysis 10.1 % O2

9.6 % CO2

29.943 Mol. Wt (g/gmole) Dry 27.911 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5873 dscm 91.371 dscf

Sample Time 120.0 minutes Isokineticity 106.9 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 15-Nov-23 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 1 Run Time: 12:14 - 14:17 Control Unit (Y) 0.9844 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.2837 Filter (grams) 0.00005 9.75 Impinger 1 Impinger 2 274.0 Pitot Factor 0.8469 Washings (grams) 0.00340 76.0 Baro. Press. (in. Hg) 29.93 Traverse 2 9.50 10.35 Impinger 3 16.0 Total (grams) 0.00345 Static Press. (in. H20) -19.00 Impinger 4 8.0 Stack Height (ft) 30 5.0 Impinger 5 Stack Diameter (in.) 70.90 2.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 17.0 9.63 10 08 Gain (grams) 398 0 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Time Dry Gas Meter Pitot ^P Traverse / Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 0.0 510.794 106.8 0.44 1.67 67 285 1.5 5.0 514,490 10.0 518.510 0.52 1.97 67 67 284 4.7 106.8 3 15.0 522.690 0.56 2.13 68 68 284 8.4 106.9 4 20.0 527.130 0.63 2.40 68 68 284 12.5 107.1 2.47 285 17.7 25.0 531.640 0.65 69 69 107.0 30.0 536.140 0.65 2.47 68 286 25.2 107.0 35.0 540.390 0.58 2.19 68 68 288 45.6 107.1 40.0 544.640 0.58 2.19 53.2 107.1 45.0 548.330 0.44 1.66 67 288 58.3 106.8 10 50.0 55.0 552,020 0.44 1.66 67 287 62.5 106.7 555.550 0.40 1.52 68 287 66.1 106.8 11 68 12 60.0 558.940 0.37 1.40 67 285 69.4 106.7 67 Traverse 2 558.940 0.0 561.710 0.25 0.94 65 106.5 66 66 10.0 564.650 0.28 1.06 66 287 4.7 106.6 567.750 1.17 106.8 15.0 0.31 66 8.4 286 20.0 571.180 0.38 287 12.5 106.9 5 25.0 574.690 0.40 1.51 66 66 288 17.7 106.7 6 30.0 578.200 0.40 1.51 66 66 288 25.2 106.7 582.400 0.57 2.15 45.6 107.0 35.0 40.0 586.560 0.56 2.11 67 288 53.2 106.8 2.11 9 45.0 590.720 0.56 66 66 8 288 58.3 107.0 594.960 0.58 287 10 50.0 2.19 106.9 67 62.5 55.0 599.050 0.54 2.04 67 287 66.1 106.9 60.0 602.985 1.88 66 288 107.1 12 0.50 66 69.4 286.7 Average: 0.483 1.826 67.0 67.0 7.0 106.9

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 1

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date		15-Nov-23	15-Nov-23	15-Nov-23
Test Time		09:51-11:38	11:49-12:49	13:01-14:01
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	29.92	29.92	29.92
DGM Factor	(Y)	1.0309	1.0309	1.0309
Initial Reading	(m ³)	116.810	117.331	117.871
Final Reading	(m ³)	117.329	117.867	118.508
Temp. Outlet	(Avg. oF)	59.5	59.5	56.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.54	0.56	0.67
HF	(mg)	0.046	0.042	0.021
Oxygen	(Vol. %)	11.0	9.9	10.1
HF	(mg/Sm³)	0.085	0.075	0.031
HF	(mg/Sm ³ @ 11% O2)	0.085	0.067	0.029
Moisture	(Vol. %)	16.6	16.6	17.0

Tstd. (oF) 68 Pstd. (in. Hg) 29.92

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 1

Sample Type: NH₃

Parameter	NH ₃	Test 1	Test 2	Test 3
Test Date Test Time		15-Nov-23 09:53 - 11:38	15-Nov-23 11:49-12:49	15-Nov-23 13:01-14:01
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	29.92	29.92	29.92
DGM Factor	(Y)	1.0248	1.0248	1.0248
Initial Reading	(m^3)	594.341	594.774	595.429
Final Reading	(m ³)	594.768	595.425	596.088
Temp. Outlet	(Avg. oF)	55.0	53.0	52.5
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.45	0.69	0.70
NH ₃	(mg)	1.3	6.9	2.5
Oxygen	(Vol. %)	11.0	9.9	10.1
NH ₃	(mg/Sm³)	3.0	10.0	3.6
NH ₃	(mg/Sm ³ @ 11% O2)	2.9	9.0	3.3
Moisture	(Vol. %)	16.6	16.6	17.0

Tstd. (oF) 68 Pstd. (in. Hg) 29.92

Client: Metro Vancouver Date: 15-Nov-23

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 2 **Run Time:** 13:23 - 15:25

Concentrations:

Particulate 2.2 mg/dscm 0.0010 gr/dscf

1.3 mg/Acm 0.0006 gr/Acf

Emission Rates:

Particulate 0.155 Kg/hr 0.342 lb/hr

Flue Gas Characteristics:

Flow 1156 dscm/min 40819 dscf/min

 19.26 dscm/sec
 680 dscf/sec

 2042 Acm/min
 72106 Acf/min

Velocity 13.360 m/sec 43.83 f/sec

Temperature 143.9 oC 291.0 oF

Moisture 15.4 %

Gas Analysis 10.9 % O2

10.6 % CO2

30.126 Mol. Wt (g/gmole) Dry 28.258 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5916 dscm 91.522 dscf

Sample Time 120.0 minutes Isokineticity 100.4 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 15-Nov-23 Run: Jobsite: WTE (Burnaby, B.C) 1 - Particulate / Metals 13:23 - 15:25 Source: Unit 2 Run Time: Control Unit (Y) 1.0016 Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3058 Filter (grams) 0.00280 CO2 10.80 176.0 Impinger 1 Pitot Factor 0.8351 Washings (grams) 0.00300 Traverse 1 Impinger 2 102.0 Baro. Press. (in. Hg) 29.92 Traverse 2 10.35 11.25 Impinger 3 36.0 Total (grams) 0.00580 12.0 Static Press. (in. H20) -19.50 Impinger 4 Stack Height (ft) 30 Impinger 5 5.0 Stack Diameter (in.) 70.90 Impinger 6 3.0 27.417 Stack Area (sq.ft.) Gel 20.2 Minutes Per Reading 10.58 10.85 Gain (grams) 354.2 5.0 Minutes Per Point 5.0 Wall Dry Gas Temperature Stack Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 349.553 288 0.51 2.17 52 1.5 100.5 5.0 353,690 10.0 357.860 0.52 2.21 52 289 100.4 6 3 15.0 362.070 0.53 2.25 52 289 8.4 100.4 2.34 1.57 4 20.0 366.370 0.55 53 290 12.5 100.6 5 0.37 17.7 25.0 369.890 53 292 100.3 6 30.0 373.280 0.34 1.45 292 25.2 100.2 35.0 376.520 0.31 1.32 292 45.6 100.3 40.0 379.200 0.21 0.90 290 100.3 45.0 381.680 0.18 0.77 290 58.3 100.2 10 50.0 384.360 0.21 0.90 58 290 62.5 100.1 386.980 290 11 55.0 0.20 0.86 58 66.1 100.3 6 12 60.0 389.660 0.21 0.90 58 6 290 69.4 100.1 Traverse 2 0.0 389.660 393.130 0.35 1.50 100.3 5.0 2 10.0 396.550 0.34 1.46 61 61 294 4.7 100.2 294 15.0 0.32 8.4 399.880 1.28 100.4 20.0 403.090 0.30 1.29 294 12.5 100.1 5 25.0 407.500 0.56 2.42 62 62 290 17.7 100.5 6 30.0 412.030 0.59 2.55 2.72 62 6 290 25.2 100.6 35.0 416.700 0.63 293 45.6 100.6 40.0 421.230 0.59 2.55 63 293 100.6 2.51 291 9 45.0 425,730 0.58 63 58.3 100.7 0.57 50.0 430.190 2.44 290 62.5 10 100.6 63 55.0 434.580 2.39 2.35 64 64 290 66.1 100.6 60.0 438.933 0.54 64 290 12 69.4 100.6 58.8 Average: 0.419 1.796 58.8 6.3 291.0 100.4

Client: Metro Vancouver Date: 16-Nov-23

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 2 **Run Time:** 09:47 - 11:50

Concentrations:

Particulate 0.16 mg/dscm 0.00007 gr/dscf

0.09 mg/Acm 0.00004 gr/Acf

Emission Rates:

Particulate 0.011 Kg/hr 0.024 lb/hr

Flue Gas Characteristics:

Flow 1128 dscm/min 39827 dscf/min

 18.80 dscm/sec
 664 dscf/sec

 1995 Acm/min
 70467 Acf/min

Velocity 13.057 m/sec 42.84 f/sec

Temperature 142.1 oC 287.8 oF

Moisture 16.4 %

Gas Analysis 10.1 % O2

10.0 % CO2

30.003 Mol. Wt (g/gmole) Dry 28.030 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.1820 dscm 77.057 dscf

Sample Time 120.0 minutes Isokineticity 104.3 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 16-Nov-23 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 2 Run Time: 09:47 - 11:50 Control Unit (Y) 1.0016 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.2837 Filter (grams) 0.00030 CO2 10.00 O2 10.05 220.0 Impinger 1 Pitot Factor 0.8351 Washings (grams) 0.00005 Traverse 1 Impinger 2 Baro. Press. (in. Hg) 30.10 Traverse 2 10.00 10.10 Impinger 3 10.0 -19.50 Total (grams) 0.00035 Static Press. (in. H20) Impinger 4 8.0 Stack Height (ft) 30.16 4.0 Impinger 5 Stack Diameter (in.) 70.90 Impinger 6 2.0 27.417 Stack Area (sq.ft.) Gel 16.1 10.00 10 08 Gain (grams) 322 1 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 441.388 43 104.4 0.52 1.71 43 288 1.5 5.0 445.020 43 43 10.0 448.720 0.54 288 104.4 3 15.0 452,380 0.53 1.74 43 43 289 8.4 104.3 20.0 455.810 0.46 1.51 45 45 290 12.5 104.5 0.45 45 45 17.7 1.48 289 104.3 25.0 459.200 30.0 462.480 0.42 1.38 46 46 290 104.3 35.0 465.310 0.31 1.03 48 48 289 45.6 104.2 40.0 468.100 0.30 1.00 287 53.2 104.1 45.0 470.800 0.28 0.93 50 287 58.3 104.0 10 50.0 473,500 0.28 0.93 50 50 288 287 62.5 104.1 51 52 0.87 51 11 55.0 476.110 0.26 66.1 104.1 12 60.0 478.620 0.24 0.80 52 288 69.4 104.1 478.620 Traverse 2 0.0 5.0 481.240 0.87 104.2 0.26 55 56 55 56 288 288 10.0 483,770 0.24 0.81 4.7 104.3 15.0 486.400 0.26 0.88 8.4 104.0 20.0 488.930 0.24 0.81 287 104.0 56 5 25.0 491.610 0.27 0.91 56 288 17.7 104.0 6 30.0 494.450 0.30 1.01 57 57 287 25.2 104.3 498.220 0.53 1.79 287 45.6 104.4 35.0 8 40.0 502.100 0.56 1.89 58 58 288 53.2 104.4 58 287 9 45.0 506.320 0.66 2.24 58 58.3 104.6 510.270 0.58 1.96 58 287 104.4 10 50.0 62.5 11 55.0 514.120 0.55 1.87 58 58 58 58 286 66.1 104.4 60.0 517.905 0.53 286 12 1.80 69.4 104.5 0.399 Average: 1.333 51.9 51.9 6.7 287.8 104.3

Client: Metro Vancouver Date: 16-Nov-23

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 2 **Run Time:** 12:02 - 14:05

Concentrations:

Particulate 1.3 mg/dscm 0.0006 gr/dscf

0.8 mg/Acm 0.0003 gr/Acf

Emission Rates:

Particulate 0.09 Kg/hr 0.205 lb/hr

Flue Gas Characteristics:

Flow 1173 dscm/min 41440 dscf/min

 19.56 dscm/sec
 691 dscf/sec

 2047 Acm/min
 72276 Acf/min

Velocity 13.392 m/sec 43.94 f/sec

Temperature 143.3 oC 289.9 oF

Moisture 15.0 %

Gas Analysis 10.7 % O2

9.4 % CO2

29.928 Mol. Wt (g/gmole) Dry 28.140 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.2726 dscm 80.257 dscf

Sample Time 120.0 minutes Isokineticity 102.7 %

* **Standard Conditions:** Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 16-Nov-23 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Unit 2 Run Time: 12:02 - 14:05 Source: Control Unit (Y) 1.0016 Collection Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.2810 Filter (grams) 0.00030 9.50 O2 10.50 Impinger 1 Impinger 2 212.0 Pitot Factor 0.8469 Washings (grams) 0.00270 Traverse 1 Baro. Press. (in. Hg) 30.10 Traverse 2 9.25 10.90 Impinger 3 22.0 Total (grams) 0.0030 Static Press. (in. H20) -19.50 Impinger 4 6.0 Stack Height (ft) 30 4.0 Impinger 5 Stack Diameter (in.) 70.90 2.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 14.7 Minutes Per Reading 9 38 10 70 Gain (grams) 300 7 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Traverse / Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 518.542 102.7 0.31 1.04 59 59 289 1.5 5.0 521,420 10.0 524.390 0.33 60 60 289 102.5 3 15.0 527.270 0.31 1.04 60 60 291 8.4 102.7 4 20.0 530.060 0.29 0.97 60 60 290 12.5 102.8 60 17.7 532.990 0.32 1.07 60 289 25.0 102.7 30.0 536.010 0.34 1.14 61 289 102.5 35.0 540.190 0.65 2.19 61 61 289 45.6 102.9 40.0 544.040 0.55 289 53.2 102.9 45.0 548.160 0.63 2.12 61 289 58.3 103.0 10 50.0 552.180 0.60 2.02 61 61 288 62.5 102.9 55.0 556.130 11 0.58 1.95 61 61 289 66.1 102.9 12 60.0 559.800 0.50 1.68 62 62 289 69.4 102.7 Traverse 2 0.0 559.800 5.0 563.130 0.41 1.38 102.9 62 63 10.0 566,580 0.44 1.48 62 6 288 4.7 102.8 569.950 0.42 1.42 289 15.0 63 8.4 102.6 3 20.0 573.360 0.43 1.45 63 290 102.7 5 25.0 576,720 0.42 1.41 62 62 291 17.7 102.6 6 30.0 580.130 0.43 1.45 63 63 6 292 25.2 102.8 35.0 582.980 0.30 1.01 292 45.6 102.8 40.0 585.880 0.31 1.05 64 64 291 102.6 588.820 9 45.0 0.32 1.08 63 63 292 58.3 102.7 591.580 0.28 0.94 10 50.0 64 292 102.8 62.5 11 55.0 594.340 0.28 0.94 64 64 292 66.1 102.8 597.000 60.0 65 65 292 12 0.26 0.88 69.4 102.6 0.405 Average: 1.361 61.8 61.8 3.0 289.9 102.7

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 2

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date	(min.)	16-Nov-23	16-Nov-23	16-Nov-23
Test Time		09:56-10:56	11:08-12:08	12:21-13:21
Test Duration		60	60	60
Baro. Press.	(in. Hg)	30.10	30.10	30.10
DGM Factor	(Y)	1.0248	1.0248	1.0248
Initial Reading	(m ³)	596.101	596.524	596.925
Final Reading	(m ³)	596.519	596.923	597.335
Temp. Outlet	(Avg. oF)	49.6	56.0	60.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.44631	0.42123	0.42952
HF	(mg)	0.021	0.032	0.032
Oxygen	(Vol. %)	10.9	10.1	10.7
HF	(mg/Sm ³)	0.047	0.075	0.074
HF	(mg/Sm ³ @ 11% O2)	0.046	0.069	0.071
Moisture (isokinetic)	(Vol. %)	15.4	16.4	15.0

*Wet Basis Calculated on moisture from isokinetic tests Tstd. (oF) 68

Pstd. (in. Hg)

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 2

Sample Type: NH_3

Parameter	3	Test 1	Test 2	Test 3
Test Date		16-Nov-23	16-Nov-23	16-Nov-23
Test Time Test Duration	(min.)	09:56-10:56 60	11:08-12:08 60	12:23-13:23 60
Baro. Press.	(in. Hg)	30.10	30.10	30.10
DGM Factor	(Y)	1.0309	1.0309	1.0309
Initial Reading	(m ³)	118.516	119.137	119.775
Final Reading	(m ³)	119.134	119.771	120.422
Temp. Outlet	(Avg. oF)	54.0	59.0	59.5
Orifice Press.	(∆H in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.65931	0.66975	0.68230
NH ₃	(mg)	3.1	10.1	8.5
Oxygen	(Vol. %)	10.9	10.1	10.7
NH ₃	(mg/Sm³)	4.7	15.1	12.5
NH ₃	(mg/Sm ³ @ 11% O2)	4.6	13.8	12.1
Moisture (isokinetic)	(Vol. %)	15.4	16.4	15.0

*Wet Basis Calculated on moisture from isokinetic tests

Tstd. (oF)

29.92

Client: Metro Vancouver Date: 16-Nov-23

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 3 **Run Time:** 13:11 - 15:13

Concentrations:

Particulate 0.05 mg/dscm 0.00002 gr/dscf

0.03 mg/Acm 0.00001 gr/Acf

Emission Rates:

Particulate 0.003 Kg/hr 0.007 lb/hr

Flue Gas Characteristics:

Flow 1065 dscm/min 37611 dscf/min

 17.75 dscm/sec
 627 dscf/sec

 1953 Acm/min
 68972 Acf/min

Velocity 12.780 m/sec 41.93 f/sec

Temperature 152.3 oC 306.1 oF

Moisture 17.3 %

Gas Analysis 9.3 % O2

10.6 % CO2

30.071 Mol. Wt (g/gmole) Dry 27.989 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.0813 dscm 73.503 dscf

Sample Time 120.0 minutes Isokineticity 101.7 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

 Client:
 Metro Vancouver
 Date:
 16-Nov-23

 Jobsite:
 WTE (Burnaby, B.C)
 Run:
 1 - Particulate / Metals

 Source:
 Unit 3
 Run Time:
 13:11 - 15:13

Control Unit (Y) Nozzle Diameter (in.) Pitot Factor Collection: Filter (grams) 0.00005 Washings (grams) 0.00005 0.9844 0.2837 Gas Analysis (Vol. %): Condensate Collection: 232.0 50.0 Impinger 1 Impinger 2 0.8351 Traverse 1 Baro. Press. (in. Hg) Static Press. (in. H20) Stack Height (ft) 30.01 -19.00 30 Traverse 2 10.65 9.25 Impinger 3 16.0 Total (grams) 0.00010 Impinger 4 Impinger 5 8.0 4.0 Stack Diameter (in.) 70.90 2.0 Impinger 6 13.6 325.6 Stack Area (sq.ft.) Gel 27.417 10.63 Minutes Per Reading 5.0 9.28 Gain (grams)

minutes i ci itcuding	0.0					10.00	3.20		Can (g	iuiiis) s
Minutes Per Point	5.0									
					Dry Gas	Temperature		Stack	Wall	
Γraverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
raverse 1	0.0	603.350								
1	5.0	606.680	0.44	1.40	57	57	6	311	1.5	101.6
2	10.0	610.050	0.45	1.43	57	57	6	311	4.7	101.7
3	15.0	613.470	0.46	1.46	59	59	6	311	8.4	101.7
4	20.0	616.860	0.45	1.43	59	59	6	311	12.5	101.9
5	25.0	620.150	0.42	1.35	61	61	6	308	17.7	101.8
6	30.0	623.410	0.41	1.32	63	63	6	308	25.2	101.7
7	35.0	626.290	0.32	1.03	63	63	6	309	45.6	101.7
8	40.0	629.080	0.30	0.97	63	63	6	309	53.2	101.7
9	45.0	631.830	0.29	0.94	64	64	6	308	58.3	101.7
10	50.0	634.490	0.27	0.87	66	66	6	308	62.5	101.5
11	55.0	637.060	0.25	0.81	67	67	6	305	66.1	101.6
12	60.0	639.590	0.24	0.78	69	69	6	306	69.4	101.7
raverse 2	0.0	639.590								
1	5.0	642.340	0.28	0.92	70	70	4	301	1.5	101.9
2	10.0	645.030	0.27	0.89	70	70	4	302	4.7	101.5
3	15.0	647.770	0.28	0.92	70	70	4	302	8.4	101.6
4	20.0	650.370	0.25	0.83	72	72	4	302	12.5	101.6
5	25.0	652.920	0.24	0.79	72	72	4	304	17.7	101.8
6	30.0	655.730	0.29	0.96	74	74	4	306	25.2	101.8
7	35.0	659.070	0.41	1.36	74	74	4	304	45.6	101.8
8	40.0	662.600	0.46	1.52	73	73	4	304	53.2	101.8
9	45.0	666.260	0.49	1.62	75	75	4	304	58.3	101.9
10	50.0	669.990	0.51	1.69	75	75	4	304	62.5	101.8
11	55.0	673.900	0.56	1.86	75	75	4	304	66.1	101.9
12	60.0	677.523	0.48	1.59	75	75	4	304	69.4	101.9
Average:			0.368	1.198	67.6	67.6	5.0	306.1	-	101.7

Client: Metro Vancouver Date: 17-Nov-23

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 3 **Run Time:** 09:06 - 11:09

Concentrations:

Particulate0.08 mg/dscm0.00003 gr/dscf

0.04 mg/Acm 0.00002 gr/Acf

Emission Rates:

Particulate 0.004 Kg/hr 0.010 lb/hr

Flue Gas Characteristics:

Flow 985 dscm/min 34789 dscf/min

 16.42 dscm/sec
 580 dscf/sec

 1769 Acm/min
 62478 Acf/min

Velocity 11.576 m/sec 37.98 f/sec

Temperature 145.9 oC 294.5 oF

Moisture 16.9 %

Gas Analysis 8.3 % O2

12.1 % CO2

30.272 Mol. Wt (g/gmole) Dry 28.203 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 1.9873 dscm 70.183 dscf

Sample Time 120.0 minutes Isokineticity 105.0 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 17-Nov-23 Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals Source: Unit 3 Run Time: 09:06 - 11:09 Control Unit (Y) 0.9844 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.2837 Filter (grams) 0.00005 CO2 11.75 Impinger 1 Impinger 2 222.0 Nozzle Diameter (in.) Pitot Factor 0.8351 Washings (grams) 0.00010 40.0 Baro. Press. (in. Hg) 30.04 Traverse 2 12.50 8.15 Impinger 3 18.0 Total (grams) 0.00015 Static Press. (in. H20) -19.00 Impinger 4 5.0 Stack Height (ft) 30 3.0 Impinger 5 70.90 Stack Diameter (in.) 2.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 12.5 12.13 8 30 Gain (grams) 302 5 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Wall Stack Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 678.559 105.2 0.39 1.32 50 50 298 1.5 5.0 681.790 10.0 1.45 4.7 685.170 0.43 50 50 300 105.0 3 15.0 688,600 0.44 1.48 51 300 8.4 105.1 4 20.0 692,350 0.52 1.76 54 54 302 12.5 105.3 25.0 0.41 17.7 695.690 1.39 56 56 303 105.2 30.0 698.990 0.40 1.36 303 105.0 35.0 701.550 0.24 0.82 299 45.6 104.8 40.0 703.840 0.19 0.65 298 53.2 105.0 45.0 50.0 55.0 9 706.190 0.69 297 58.3 105.0 10 708.540 0.20 0.69 59 59 296 62.5 104.7 0.19 296 11 710.840 0.66 60 60 66.1 105.0 12 60.0 713.020 0.17 0.59 61 61 294 69.4 104.8 Traverse 2 0.0 5.0 713.020 715.150 0.16 0.56 293 105.1 10.0 717.410 0.18 0.63 64 64 64 291 4.7 104.8 15.0 719.910 292 8.4 0.77 105.0 3 20.0 722.470 0.81 291 104.8 5 25.0 724.920 0.21 0.74 66 66 291 17.7 104.8 6 30.0 727.430 0.22 0.77 65 65 290 25.2 105.0 35.0 730.820 0.40 1.41 45.6 105.2 290 8 40.0 734.380 0.44 1.55 66 66 289 53.2 105.3 45.0 9 738.090 0.48 1.69 66 66 289 58.3 105.1 50.0 741.730 0.46 1.62 105.3 10 66 289 62.5 66 55.0 60.0 745.200 0.42 1.48 66 66 289 66.1 105.0 748.385 289 12 0.35 1.24 66 66 69.4 105.5 60.6 Average: 0.315 1.089 60.6 5.5 294.5 105.0

Client: Metro Vancouver Date: 17-Nov-23

Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals

Source: Unit 3 **Run Time:** 11:29 - 13:30

Concentrations:

Particulate 0.05 mg/dscm 0.00002 gr/dscf

0.03 mg/Acm 0.00001 gr/Acf

Emission Rates:

Particulate 0.003 Kg/hr 0.006 lb/hr

Flue Gas Characteristics:

Flow 1008 dscm/min 35591 dscf/min

 16.80 dscm/sec
 593 dscf/sec

 1833 Acm/min
 64722 Acf/min

Velocity 11.992 m/sec 39.34 f/sec

Temperature 145.6 oC 294.2 oF

Moisture 17.9 %

Gas Analysis 8.1 % O2

12.0 % CO2

30.242 Mol. Wt (g/gmole) Dry 28.046 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.0559 dscm 72.603 dscf

Sample Time 120.0 minutes Isokineticity 106.2 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 17-Nov-23 Jobsite: WTE(Burnaby,B.C) 3 - Particulate / Metals Run: Source: 11:29 - 13:30 Unit 3 Run Time: Collection: Filter (grams) 0.00005 Control Unit (Y) 0.9844 Gas Analysis (Vol. %): Condensate Collection: 0.2837 Nozzle Diameter (in.) Impinger 1 Impinger 2 250.0 Pitot Factor 0.8351 Washings (grams) 0.00005 Baro. Press. (in. Hg) 30.04 Traverse 2 12.00 8.10 Impinger 3 12.0 Static Press. (in. H20) Stack Height (ft) -19.00 Total (grams) 0.00010 Impinger 4 Impinger 5 6.0 3.0 30 Stack Diameter (in.) 70.90 2.0 Impinger 6 27.417 Gel Stack Area (sq.ft.) 12.2 12.00 Minutes Per Reading 5.0 8.05 Gain (grams) 337.2 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Vacuum Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 5.0 748.697 106.1 0.70 64 64 288 1.5 751.090 0.20 10.0 753.540 0.74 64 64 106.1 0.21 289 15.0 756.110 0.23 0.81 65 65 289 8.4 106.2 0.22 290 12.5 17.7 106.1 20.0 758.620 0.77 65 65 0.84 65 65 291 106.5 25.0 761.250 292 292 293 763.930 0.25 0.88 106.5 35.0 767.310 0.40 1.40 45.6 106.3 40.0 770.810 0.43 1.50 65 53.2 106.2

verage:			0.333	1.162	65.7	65.7	4.1	294.2		106.2
12	60.0	821.630	0.19	0.66	67	67	4	296	69.4	106.0
11	55.0	819.300	0.21	0.73	67	67	4	296	66.1	106.0
10	50.0	816.850	0.22	0.77	67	67	4	297	62.5	106.2
9	45.0	814.340	0.25	0.87	66	66	4	298	58.3	105.9
8	40.0	811.680	0.24	0.84	66	66	4	298	53.2	106.0
7	35.0	809.070	0.29	1.01	67	67	4	297	45.6	106.2
6	30.0	806.190	0.44	1.53	66	66	5	299	25.2	106.1
5	25.0	802.660	0.47	1.64	66	66	5	298	17.7	106.2
4	20.0	799.010	0.48	1.67	66	66	5	298	12.5	106.2
3	15.0	795.320	0.45	1.57	66	66	5	296	8.4	106.2
2	10.0	791.740	0.44	1.54	66	66	5	296	4.7	106.2
1	5.0	788.200	0.40	1.40	66	66	5	295	1.5	106.3
raverse 2	0.0	784.820								
12	100.0	704.020	0.07	1.25	100	100	Ü	254	00.4	100.2
12	60.0	784.820	0.37	1.29	66	66	5	294	69.4	106.2
11	55.0	781.570	0.42	1.47	66	66	5	293	66.1	106.4
10	50.0	778.100	0.45	1.57	65	65	5	293	62.5	106.2

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 3

Sample Type:

HF

Parameter		Test 1	Test 2	Test 3
Test Date Test Time		17-Nov-23 09:39-10:39	17-Nov-23 10:54-11:54	17-Nov-23 12:06-13:06
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	30.04	30.04	30.04
DGM Factor	(Y)	1.0309	1.0309	1.0309
Initial Reading	(m ³)	120.578	121.283	121.962
Final Reading	(m^3)	121.280	121.956	122.668
Temp. Outlet	(Avg. oF)	58.8	64.5	68.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.74039	0.70271	0.73163
HF	(mg)	0.041	0.031	0.031
Oxygen	(Vol. %)	9.3	8.3	8.1
HF	(mg/Sm³)	0.056	0.044	0.042
HF	(mg/Sm ³ @ 11% O2)	0.047	0.034	0.032
Moisture (isokinetic)	(Vol. %)	17.3	16.9	17.9

Tstd. (oF) 68

Pstd. (in. Hg)

29.92

Client: Metro Vancouver
Jobsite: WTE (Burnaby,B.C)

Source: Unit 3

Sample Type: NH₃

Parameter		Test 1	Test 2	Test 3
Test Date	(min.)	17-Nov-23	17-Nov-23	17-Nov-23
Test Time		09:39-10:39	10:54-11:54	12:06-13:06
Test Duration		60	60	60
Baro. Press.	(in. Hg)	30.04	30.04	30.04
DGM Factor	(Y)	1.0248	1.0248	1.0248
Initial Reading	(m ³)	597.394	597.823	598.233
Final Reading	(m ³)	597.820	598.229	598.617
Temp. Outlet	(Avg. oF)	60.1	67.8	70.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.44615	0.41841	0.39409
NH ₃	(mg)	1.0	0.9	1.1
Oxygen	(Vol. %)	9.3	8.3	8.1
NH ₃	(mg/Sm³)	2.2	2.2	2.8
NH ₃	(mg/Sm³ @ 11% O2)	1.9	1.7	2.2
Moisture (isokinetic)	(Vol. %)	17.3	16.9	17.9

*Wet Basis Calculated on moisture from isokinetic tests

Tstd. (oF)

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Parameter: N₂O

Molecular Weight: 44.00 grams/mol Reportable Detection

Lab Detection Limit: 0.1 ppm Limit: 0.18 mg/Sm³

Sample ID	Date	Time	N₂O ppm	N₂O mg/Sm³	N₂O mg/Sm³ @ 11% O₂
Unit 1 - Run 1 Unit 1 - Run 2 Unit 1 - Run 3 Average	2023/11/15 2023/11/15 2023/11/15	10:53 - 11:53 11:59 - 12:59 13:59 - 14:59	5.35 1.70 7.60	9.79 3.11 13.91	9.79 2.80 12.73 8.44
Unit 2 - Run 1 Unit 2 - Run 2 Unit 2 - Run 3 Average	2023/11/16 2023/11/16 2023/11/16	09:56 - 10:56 11:08 - 12:08 12:23 - 13:23	7.50 8.20 9.40	13.73 15.01 17.20	13.54 13.74 16.72 14.66
Unit 3 - Run 1 Unit 3 - Run 2 Unit 3 - Run 3 Average	2023/11/17 2023/11/17 2023/11/17	09:30 - 10:30 10:57 - 11:57 12:06 - 13:06	3.45 6.40 0.50	6.31 11.71 0.92	5.38 9.21 0.71 5.10

Date:	15-Nov-23			16-Nov-23			17-Nov-23		
	Unit 1 Run 1	Run 2	Run 3	Unit 2 Run 1	Run 2	Run 3	Unit 3 Run 1	Run 2	Run 3
Test Times:	09:50 - 10:50	11:10 - 12:10	12:23 - 13:23	09:58 - 10:58	11:10 - 12:10	12:22 - 13:22	09:09 - 10:09	10:26 - 11:26	11:40 - 12:40
Methane (ppmv) Ethane (ppmv) Ethene (ppmv) C3 as Propane (ppmv)	4.70 ND ND ND	9.40 ND ND ND	4.90 ND ND ND	3.4 ND ND ND	4.2 ND ND ND	4.0 ND ND ND	ND ND ND ND	3.90 ND ND ND	ND ND ND ND
C4 as n-Butane (ppmv) C5 as n-Pentane (ppmv)	ND ND								
C6 as n-Hexane (ppmv) C6+ as n-Hexane (ppmv)	ND ND								
Detection Limits:									
Methane Ethane Ethene C3 as Propane C4 as n-Butane C5 as n-Pentane	3.1 0.92 0.92 0.77 0.77	3.4 1 1 0.85 0.85 0.85	3.1 0.92 0.92 0.9 0.9	3.6 1.1 1.1 0.82 0.82 0.82	3.1 0.9 0.9 0.78 0.78	3.1 0.94 0.94 0.79 0.79	3.5 1.00 1.00 0.87 0.87	2.4 0.73 0.73 0.61 0.61	4.1 1.20 1.20 1
C6 as n-Hexane C6+	0.77 1.5	0.85 1.7	0.9 1.8	0.82 1.6	0.78 1.6	0.79 1.6	0.87 1.7	0.61 1.2	1 2.1
Using 1/2 DL Convention Sample Date:	15-Nov-23 Unit 1 Run 1	Run 2	Run 3	16-Nov-23 Unit 2 Run 1	Run 2	Run 3	17-Nov-23 Unit 3 Run 1	Run 2	Run 3
Test Times:	09:50 - 10:50		12:23 - 13:23	09:58 - 10:58	11:10 - 12:10	12:22 - 13:22	09:09 - 10:09	10:26 - 11:26	11:40 - 12:40
Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	4.70 0.46 0.46 0.39 0.39 0.39 0.39 0.75	9.40 0.50 0.50 0.43 0.43 0.43 0.43 0.85	4.90 0.46 0.46 0.45 0.45 0.45 0.45 0.90	3.40 0.55 0.55 0.41 0.41 0.41 0.41 0.80	4.20 0.47 0.47 0.39 0.39 0.39 0.39 0.80	4.00 0.47 0.47 0.40 0.40 0.40 0.40 0.80	1.75 0.50 0.50 0.44 0.44 0.44 0.44 0.85	3.90 0.37 0.37 0.31 0.31 0.31 0.31 0.60	2.05 0.60 0.60 0.50 0.50 0.50 0.50 0.50
Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄)	3.14 0.31 0.31	6.27 0.33 0.33	3.27 0.31 0.31	2.27 0.37 0.37	2.80 0.31 0.31	2.67 0.31 0.31	1.17 0.33 0.33	2.60 0.24 0.24	1.37 0.40 0.40
C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄)	0.26 0.26	0.28 0.28	0.30 0.30	0.27 0.27	0.26 0.26	0.26 0.26	0.29 0.29	0.20 0.20	0.33 0.33
C5 as n-Pentane (mg/m³ as CH ₄) C6 as n-Hexane (mg/m³ as CH ₄) C6+ as n-Hexane (mg/m³ as CH ₄)	0.26 0.26 0.50	0.28 0.28 0.57	0.30 0.30 0.60	0.27 0.27 0.53	0.26 0.26 0.53	0.26 0.26 0.53	0.29 0.29 0.57	0.20 0.20 0.40	0.33 0.33 0.70
Total mg/Sm ³ @11% O ₂ as CH ₄	3.53	6.30	4.15	3.14	3.65	3.36	2.51	3.65	3.64

All data is corrected to standard conditions (S) of 20 °C, 101.325 kPa (dry) unless otherwise noted.

APPENDIX - E FIELD DATA SHEETS

R	AETRO VAN	ICOUVER WTE -	DUDMAD	/BC	NOZZLE &	5-309	DIAMET	ER, IN. 0.5	SOSK	IMPINGER	INITIAL	FINAL	TOTAL GAII
		COUVER WIE -	BURNABI	B.C.	PROBE	7/B	Cl	0.83	5/	VOLUMES	(mL)	(mL)	(mL)
OURC	E //wit	*/	1	1						Imp. #1	0	190;	190
RAM	ETER / RUN No	Metals-PAK	etiwhote	12-1	PORT LENG	TH				Imp. #2	100	180	- 80
ATE	Now. 1	4.2073			STATIC PRE	SSURE, IN. H	$\frac{120 - 79}{}$	2"		Imp. #3	100	125	15
PERA	TOR:				STACK DIAM	METER 7	09			Imp. #4	0	P	8
ONTR			Y 0.981	44	STACK HEI		D.D'			Imp. #5	100	104	U
			ΔH@ 1.7	DE						Imp. #6	100	1021	7_
ARON	METRIC PRESSU	JRE, IN. Hg 3D.C	22		INITIAL LEA	K TEST	2.003	C 15	1	Imp. #DA	2000	1	
SSUM	IED MOISTURE,	Bw /6%			FINAL LEAK		2.004			Imp. #8			
	Clock Time	Dry Gas Meter ft ³	Pitot ΔP	Orifice AH		7	Γemperature °F			Pump Vac.	Fyr	rites	
Point	10 10	-	IN. H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	1
	12:15	309.539			Outlet				Exit	'	Vol. %	Vol. %	
1		3/3 04	0.33	151	SX	790	239	250	50	5.5			
2	10	2/6.42	15.21	142	59	294	total I				85	11.0	
3		319 76	0.30	136	36	300	250	2.35	.52	5.5	63.10	6(
4	20	323.32	034	159	61	302							
5		326.60	0.29	1.32	27	304	25D	737	.54	4			
6	30	229.95	0.30	134	63	301	~~~						
7		334.06	0.45	206	24	300	249	239	56	2:2	8.5	110	
8	40	232 73	005	211	65	298		2.31			8-0	11.0	
9		343 12	0.40	724	65	292	251	243	55	55			
10	a contract of the contract of	34665	039	2.00	45	295		243	1 100	Card			7
11	ATTENDED IN	35/72	05	250	83	290	249	235	57	6	90	103	
12	60	355 TS	0 3	222	62	2.89	211	200	20		1-0	7.0.0	
		200,10	0.01	200	00	201							-
1		360 7Z	0.49	2.71	BL	297	250	238	57	-			
2	10	364 58	0.50	2.30	16	298	2.30	230	-36	-	90	109	
3		369.07	0.52	2.40	22	29X	249	239	56	7	7.0	10.1	
4	20	373.45	0.51	2.35	62	298		201		1	†		
5		377.88	0.53	2.44	22	299	25D	240	55	7	İ		
6		382.23	050	235	62	300		200			8.5	11/5	
7		385.50	0.28	1.79	66	300	251	240	.51	76		1.00	
8	40	388.87	0-29	122	16	307		- ()			1		
9		392 25	031	1.07.	35	300	250	240	.50	.5			
10		295 10	0.30	127	22	302				100	85	117	
11	24000011	399.09	0.37	1.47	27	300	250	239	49	5	101	1	
12		402 23	022	1,20	21	7.94						1	
	1	10000	1	12.00	100	1	1	t		1	†	1	
				1	T	1	1		C 1 - 1	1		1	
			1	1			1						
			1				1						

HENE	MINT	Ī.			NOZZLE P	315	DIAME	TER, IN. 0,2	145	IMPINGER!	INITIAL	FINAL	TOTAL	
	MUUT				PROBE 73	,		P 0.835		VOLUMES	(mL)	(mL)	(mi	
URC	E Unit 1	126.9	19.7							Imp. #1	0 .	225	225	
RAM	ETER / RUN N	· Metals/Par	12/46 1	Pun 2	PORT LENGT	Н				Imp. #2	100	242	142	
11-	//// 17 271	3.4	1		STATIC PRES	SURE, IN. I	120-19,0	>		Imp. #3	100	144	49	
ERA	ROL UNIT CA	China			STACK DIAMI	TER 70,9	h			Imp. #4	0 ,	10'	10	
NTF	OL UNIT CA	E 6103	Y 0.9844	1	STACK HEIGH	HT 30				Imp. #5	100:	106	6	
			Y 0,9844 AH@ 1,706							Imp. #6	1001	103	3	
RON	METRIC PRESS	SURE, IN. Hg 29.93			INITIAL LEAK	TEST On	UN3 @1	54		Upstream Dia	ameters	100		
	ED MOISTURE				FINAL LEAK	TEST O,C	102 21	311		Downstream	Diameters			
		•								Page 1				
	Clock Time	Dry Gas Meter ft ³	Pitot AP	Orifice ΔH			Temperature °	F		Pump Vac.	Fyri	ites		
oint	0.41	1102 000	IN. H₂O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂		
	9:11	403.089			Outlet				Exit		Vol. %	Vol. %		
Т	5	406.39	0.25	136	37	289	250	250	48	6	10.0	9,6		14.
7	10	410.12	032	174	57	289	N.75			1				(Back)
3	15	413.62	0.29	1.53.	59	289	249	249	49	6				
d	20	41799	0,29	158	60	291								
5	25	421.02	0,33	1.81	62	289	250	250	51	7				
7	30	425,97	0.55	302	63	289	750							
7	35	431,28	0.63	3.47	64	289	250	248	52	1				
45	40	436,44	0.59	3.27	16	287	-				10.0	918		
9	45	441,20	0.50	278	67	287	250	247	54	9			V	
10	50	445,92	13.49	272	68	788								1
11	55	450.45	0.45	7,50	68	287	251	748	54	8				
12	60	454,18	0.39	2.18	69	286	011	1						
1/	- 80	19 1/10	1	6511	1-	9.00	-			1				
1	65	458,73	0.36	2,00	68.	758	250	251	51	7				
2	70.	463.82	0.57	3.17	68	788								
3	75	469.18	0.63	3.51	69	288	250	250	49	13				
4	80,	473.30	0.37	12.07	64	285								
5		478,23	0.53	2.96	16	286	250	250	97	10	10.0	10.0		
7	90,	483,24	0.55	13,07	68	287	-							
7	95	44801	0,51	2.84	9969	288	35	248	48	10	1		0	
8	100	412 80	0.49	2.73	04669	287	1945							
9		499,53	0.49	2,72	69	289	250	25	148	10				
16		501.91	0.42	2 33	69	289	1	0						
11	115	506.08	0.38	2.12	70	788	250	250	149	8		215		
13	- Indiana	1570,134	0.36	200	69	289					100	10.1		
FM		- AMARIAN MARINE	M.M.											-
,,,,														1
													1	\perp
	1													\perp
_							75						:+:	

IENT	11/1/11/11	<u> </u>			NOZZLE G	297		TER, IN. 0.7	837	IMPINGER!	INITIAL	FINAL	TOTAL GAIN
LIENI	MUNTE	5			PROBE 7	41	С	P 0,8469		VOLUMES	(mL)	(mL)	(mL)
OURC	EUNATI									Imp. #1	6	274	274
RAM	ETER / RUN No	Metals/Party	C/Ha Rul	1 3	PORT LENG					Imp. #2	100	176	76
ATE /	VOV. 15 2112	3					H2O - 9,0	ч		imp. #3	100	116	16
PERA	TOR: Justin	Clar			STACK DIAM		,94			Imp. #4	6	8 1	8
NTR	OL UNIT CAP	GION	Y 0.984	4	STACK HEI	SHT 301				Imp. #5	100	105	5
		1)	AH@ 1,700	1						Imp. #6	100	107-1	7
		URE, IN. Hg 29,92	3		INITIAL LEA	K TEST	002 013			Upstream Di	ameters		
SSUM	ED MOISTURE	, Bw 13%			FINAL LEAK	TEST O,	001 69	146		Downstream	Diameters		
	Ct t mi	Dry Gas Meter ft ³	70000	0.00 177			- A	m		D 17	Г	· 1	
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °	-		Pump Vac.		ites	
oint	12:14	510,794	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Box	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	
-	3		0,44	111	67	285	220	243	43	6	9,5	10.1	
1	10	514,49 518.51	0.52	1.97	6/		238	072	17	-	7,5	10.1	
3		522.69	0.56	2.13	194	284	247	251	46	17			
2	70	527.13	0.63	3.40	168	284	27/	1-31	7.6	b /			
5		531,64	0.63	2.47	69	285	250	249	48	8			+-
/	75				82		210	0-77	10		_		
6	30 35	540.39	0.65	2.47	68	286	250	0/7	47	8			
7		590.37		219		288	850	250	7/	1 2 -	10.0	9,5	
8	40	548,33	0.58	1.66	68	288	250	252	48	1-7	10.0	113	
10	50	552.02	0,44	1.66	67	287	1 27 -	100	7.0	-			
1	70	555,55	0,40	15%	28	287	850	251	49	1			
1	55	558,94	0,37	148	67	285	000	231	78				
	00	227/17	0,51	1.70	0 /	200	+	1		+			
1	65	561.71	0.25	0,94	6.5	287	250	248	47	5			
_	70	564.65	0,28	1.06	66.	787	230	770	7/	1		 	
3	75	567,75	0,31	117	68	3.86	250	250	47	- 5	9.5	10.3	
u	80	37(18	0.38	143	66	287	430	1050	7/	+ / -	1100	10.3	
5	85	574/69	0.40	1.51	66	288	150	247	98	19		-	
1	90	5 78 20	0.40	151	66	288	270	1	130	+ /		-	
7	95	58240	0.57	215	67	289	250	251	49	8		 	
9	100	586.56	0.56	211	194	288	430	471	171	P	_	\	
d	105	590.72	0.56	2/1	10.1	288	250	252	49	9	9.5	10.4	
16	(10	594.96	0.53	2.19	86	287	250	454	+	1	1.5	IUIT	
1)	115	599 05	0.54	2,04	167	287	250	247	50	8	-	<u> </u>	
12	120	602 985	0.50	1,88	66	288	000	0.17		-			
FND	14,17	UV 0 / (D)	1000	17.00	60	5-U D	1			1		†	
TVD	17.11		1			1	1				1		1 1
_			1	1		†				1	-		
				1	+	1	1	1	1				
		 	+	+	1		1	1		_			

A. Lanfranco and Associates Inc.

LIENT	Maka	141	, ISC 14. 44		NOZZLE/	369		TER, IN. , 3	058		INITIAL	FINAL	TOTAL GA
OUDO	Metro U	M WIE			PROBE	+13	(P 835	1	VOLUMES	(mt)	(mL)	(mL)
	E UNIT	# 2	. 1	, ,						Imp. #1	0	170	176
	ETER / RUN N	10 PHAC/M	atals to		PORT LENG	and the second second second				Imp. #2	100	202	102
_	111512	3	7		THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER,	ESSURE, IN.	H2O	-19.5		Imp. #3	100	1.36	36
_		- CD			STACK DIA			70.90		imp. #4	0	17:	12
ONTR	OL UNIT	15	Y /, 06/4	9	STACK HEI	GHT		30,16		Imp. #5	100	105	. 3
-			AH@ 1.101	01						Imp. #8	100	10.3	- 7
EXPONENCE	IETRIC PRESS		92	(4)	INITIAL LEA	K TEST	01015	-17		Upstream D	THE RESERVE TO SHARE THE PARTY OF THE PARTY	7.00	
SSUM	ED MOISTURI	E, Bw 190	10		FINAL LEAR	TEST , C	201/21	500		Downstream	Diameters		
			18. C.					A. T.		- Company of the last	华工	i -	
	Clock Time	Dry Gas Meter ft ³	Pitot ΔP.	Orifice ΔH			Temperature °	F		Pump Vac.	B.	ritès	
oint	12122	Suprem	IN H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	.i.,
	13:23	349,553		Day.	Outlet		·		Exit	1	Vol. %	Vol. %	
1		353,69	1,51	12.67	142	288	250	251	58	1/4 12	10.8		
2	10	35+186	132	12,21	82	289			28	410	LUID	10,4	
3		362,07	153	1725	92	289	250	249	58	0:0			
4	20	366.37	155	12,34	93	290		0-1	70	15,0		+ -	
9		369.89	1,37	11.57	57	292	250	251	38	6.0			
6	30	373,28	1,34	11.45	56	292	-	100	1.0	1/8	-	. Ki.	
2		376.52	1,31	1.32	56	292	250	250	58	6.5		10.0	
8	ИО	1379 20	21	190	197	270	10,0	250	20	0 3	-	Contract of the last of the la	
9		1981.68	14/8	177	152	190	258	250	58	7 00	-		.,,1
10	50	384.36	121	1,90	58	190	10,0	0.0	70	600	14.00	170	
11		1386,98	120	186	48	no	251	252	58	-	10.8	10.5	11.2
12	60	1389.66	1,21	1.90	34	290	031	W.C	78	6.0			
				1	1	1000	 			-	-		
	39	393.13	1.35	15	101	194	250	249	58	00		120-21	
2	/h	1396,35	134	1.46	161	294	0,	661	21	508	14 57		
3		399.88	132	11.08	102	1094	250	249	CV	5.5	1013	11.5	
u	20.	403.09	130	17.29	161	294	10	1	70	1367	-	-	
5		405.50	156	12.42	62	290	248	250	98	600		+ -	
6	30	6162.03	159	12.55	In	1290	1	- Control of the Cont		1020	1		
7		416.70	163	7.72	62	2913	248	252	58	1000			
8	40	42123	159	7.55	63	1293				1			
9		925,93	158	7.57	63	1391	250	757	98	1.65			
10	90	936, 19	57	17,49	63	250					:	II.	
T		434.59	155	7.30	64	790	257	250	58	1025	10,4	111.2	
n	11.00	436 933	,54	7.35	64)	200	-		100	5			
	13.15	EDIO HEST	-				-		N N	V			
· A			-		-	-							
				-	3 7								
							-	-					
_	- 02/2										1	11	

A. Lanfranco and Associates Inc.

LIENT	MUNTE	-			NOZZLE G	297	DIAME	TER, IN.	7837	IMPINGER		FINAL	TOTAL GA	IN
OUDC	7 10 00 17				PROBE 7	15		P 0.8351		VOLUMES	(mL)	(mL)	(mL)	_
MOURU	E UNIT 2	- 44 1 10 1	, 1/1 B		DODT LENO	701.6				Imp. #1	0	270	300	
AKAM	E LEK / KUN N	o Metals/Partice	Mg Ku	12	PORT LENG		1/100	7.		Imp. #2		162	62	_
ATE	NN16.20	<i>Y</i> 2	7		STATIC PRE	SSURE, IN.	H20 -193	V.		Imp. #3	100	110	10	_
PERA	TOR: Justi	2 Chins			STACK DIAM		9			Imp. #4	0,	8	8	
ONTR	OL UNIT A	15	I UUII		STACK HEIG	30°					100	104	9	
- 2			ΔH@ 661		Niene					Imp. #6	100	102	7	
		SURE, IN. Hg 30, C	,		INITIAL LEA	KTEST O	003 €	15 h		Upstream Di	ameters			
SSUN	MED MOISTURE	E, Bw 15%			FINAL LEAK	TEST 0,	008 61	O'a		Downstream	Diameters			_
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °	C		Pump Vac.	Ere	rites		_
Darina I			4		D. C.					-				
Point	9:47	441.388	IN. H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂		
10,000					Outlet			-	Exit		Vol. %	Vol. %		
	5	445.07	0.52	1.71	43	288	255	148	41	8	10,0	19,8		
2	10	448,72	0.54	177	43	288			5-22		-3.7107-0-			
3	15	452.38	0.53	1.74	43	289	248	246	47	8				
4	20	455.81	0.18	1.51	45	290			F					
5	25	459.20	0.48	1.48	45	289	251	351	44	7				
7	30	462,48	0.42	1.38	46	290		921		1 /			-	
7	35	465,3		1.03	48	299	248	251	46	6				_
8	35 465.3 0.3 1.0				49	287	040	0.01	76	- 0	10,0	10.3		_
9		1170 90	0.10	0.93	97	200 /	1057	- 21	47	1	(0)0	1015		
	95	470,80	0.28	0.73	50	287	300	254	4/	6				
10	50	473.5	0,78	0.93	50	788	1			-		-		
11	53	476.11	0.76	087	51	287	249	351	49	5				2
12	60	478.63	0.24	0.80	57	288				1				_
	65	481.24	0.26	0.87	53	288.	252	251	30	5			_	_
2	70	483,77	0 24	0.81	13	000	P. J. F.	13	00	1-5		-		_
3	75		0 267	0.30	55	288	120	100	1.0	-				_
		486.40	0.26	0.88		288	750	257	50	5	1.00	100		
4	80	488,93	0.24	0.8	56	287	0.61				10.0	102		8
5	95	1491,61	0.27	0,91	56	288	248	251	52	5				
6	90	1494 45	0.30	1.01	57	787	1. /							
7	95	498.27	0.53	1179	57	287	1248	757	33	8				
8	100,	1502.10	0.56	1.59	58	288								Ξ
9	105	506.32	0.66_	2.29	54	287	249	247	57	9	10.0	100		_
10	110	50.27	0.58	1.96	58	287			1	1	1	1		
11	115	514.12	0.55	1.87	58,	286	250	249	51	8	1			
i	170	517,9045	0.53	180	34	286	10.79	1,	1	1	1			_
EM		211111111111111111111111111111111111111	10.33	100	1 - 0	700	_	+		+	t	1		_
12/1	11/30		+	+	+	+	_	+	 	+	1	 	 	_
				+	+	+	_	+		+		+		_
		-	+	+	1	+	-	+	+		-			_
	-			+	-	+			 	+	-	1		_
					1									

	P280		0.	1810				
CHENT MILL RG	NOZZLE	DIAMET	ER, IN.	607	IMPINGER	INITIAL	FINAL	TOTAL GAIN
CLIENT MVWE	PROBE 7AI	Cl	0.8469		VOLUMES	(mL)	(mL)	(mL)
SOURCE MET UN/2					Imp. #1	-	212	212
PARAMETER / RUN No Particular Metals/Ha Run 3	PORT LENGTH				Imp. #2	100	140	40
DATE // M. (6 70)-3	STATIC PRESSURE, IN.		· U		Imp. #3	100	122	22
OPERATOR: TASKA CWAS		9,9~			Imp. #4	0	6, 1	6
CONTROL UNIT AU 15 Y ,0016	STACK HEIGHT 30					100	104	4
AH@ 1.661	BUTTAL LEAVITED A	AZII A	1-34		Imp. #6	100	107	7
BAROMETRIC PRESSURE, IN. Hg 30,10			94		Upstream Di Downstream			
ASSUMED MOISTURE, Bw 15%	FINAL LEAK 1EST U.	ପଧା ଭ	701		Downstream	Diameters		
Clock Time Dry Gas Meter ft ³ Pitot ΔP Orifice ΔΗ		Temperature °F			Pump Vac.	Fy	rites	
	Dry Gas Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
Point 120% 518,542 IN H ₂ O IN H ₂ O	Outlet			Exit		Vol. %	Vol. %	
521.42- 0.31 1.04	59 289	7-32	231	48	3	9.5	10.5	
1 57 57 47 0.31 1.04 2 10 554.39 8.33 1.11	60 289							
3 15 52727 0.31 1.04	60 23729	1246	235	49	5			
4 20 530.06 0.29 0.97 5 25 532,99 0.32 1.07	60 290							
5 25 532,99 0.32 1.07	60 289	250	251	49	5			
6 30 536,0 0.34 1.14	61 789							
7 35 540.19 0.65 2.19	61 389	750	250	50	8			
4 40 544.04 186.055 1.95	1 289							
9 44 348.16 0.63 2.12	61 289	250	249	50	7	9.5	10.5	
10 50 553.18 0.60 3.02	61 788	0.10	- 12/1	110				
11 55 556.13 0.680.58 1.95	81 289	249	250	48	7		-	
12 60 559,80 6 00,50 68	67 289				+		-	
1 65 563.13 0.41 1.38	141	248	744	57	-		-	
1 65 563.13 Q.41 1.38 2 70 566.58 0.54 1.48	61 287	44.9	04.8	31	6	-	+	
3 75 569,95 0,42 142	63 289	250	249	50	1	9.5	10.8	
3 75 569.95 0.42 1.42	63 290	100	111	50	1 0	- Lud	1010	
5 85 576.72 0.42 1.41	182 291	244	251	50	6		+	
6 90 55013 0.43 1.45	63 292	1011	7.37	70	1 -		1	
7 75 582,98 0,30 1,01	63 242	250	747	52	6			
8 100 585,88 0,31 1,05	64 291	1	1 " "					
9 105 588,87 0,37 1.08	63 292	250	745	50	6	9.0	11.0	
10 110 59158 0.28 0.94	64 297							
11 115 594,34 0,28 0,94	69 292	252	751	50	15			
V- 120, 597,000 0,26 0.88	65 792		1		1 2			
END 14:05								
							-	
					-		-	
						1		

IENT	MULTE				NOZZLE G	292	DIAME	TER, IN. 🔿 🤅	1837	IMPINGER!		FINAL	TOTAL GAI
					PROBE 7	3	= 0	P (1.835)		VOLUMES	(mL)	(mL)	(mL)
DURC	E UM/23							- 55		Imp. #1	0	222	127
RAM	IETER / RUN N	10 Metals/Purt/C	MHG Run	8	PORT LENG					Imp. #2	100	140	
ATE A	////// 17 3/	123	J	r(i	STATIC PRE	SSURE, IN.	H2O -191	9 u		Imp. #3	100	118	18
PERA	TOR: TUS	n Ching			STACK DIAN	METER 70	9			Imp. #4	0	5	5
ONTR	OL UNIT	E 9103	Y 0.9844		STACK HEIG	SHT 30'	•			lmp. #5	100	103	3
			AH@ 1.706							Imp. #6	100	102	2
ROM	ETRIC PRESS	SURE, IN. Hg 30.04			INITIAL LEA	KTEST (2,002 @	15"		Upstream Dia	ameters		
SUM	IED MOISTURI	E, Bw 15%			FINAL LEAK	TEST ()	001 @	8"		Downstream	Diameters		
	Clock Time	Dry Gas Meter ft ³	Pitot ΔP	Orifice ΔH	1		Temperature °	F		Pump Vac.	Fv	rites	T
oint			IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
	9:06	678,559	2120	1 1120	Outlet	Buck	11000	l Box	Exit	114.11g	Vol. %	Vol. %	1
$\overline{}$			// 20	1.22		730	301	21/2					,,
4	16	681.79	0.39	132	50 50	298	251	243	49	1	11.5	948	7
2		685.17	243	1,95	20	300	021	0=	717	-			
2	15	688.60	0.44	1.48	51	300	251	251	45				
4	20	692.35	0.52	1.76	54	302							
5_	15	695,69	0.41	1.39	56	303	250	251	47	7			
6	30	698.99	0.40	1-36	57	303							
7	35	761.55	0.24	0.83	57	299	250	257	146	5			
8	35	703.84	0.19	065	58	298					120	8,5	
9	45	706 19	0.20	0.69	58	297	250	250	147	4	- 0		
10	50	708.54	0.20	069	59	296	1	1 "	1	1 '		1	
11	55	708.54	0.19	0.66	60	296	250	249	48	14			
12	60	713.02	0.15	0,59	8/10/61	294	7.70	1 " 1 1	1	1 '		1	
		11.71.01	10.11	10,0	- COL	1011			1			i	
1	65	715.15	0-16	0.56	63	293	251	232	44	4		1	
7	70	71741	0.18	0.63	64	291	851	1	 ''	+ -	12.5	8.2	
3	75	719,91	0.11	0.77	64	292	250	246	44	U	120	0.7	
IJ	50	72347	0.13	0.8	75	291	8 30	1-10		+-7		1	
3	\$5	759 95	17/21	0.74	1 27	291	250	250	45	T u			
7	90	727,43	0.21	0,17	65	290	130	130	73	1 7		_	
7	95	730.32	0.40	1.41	66	290	249	751	45	1	-		_
8	100	734,38	0,44	1.55	66	289	171	1771	1	- b	-	-	
9	105		0.48	1.69	77	25/0	250	250	46	-	-	-	
- 1		738.09	0.48	1 1 27	1 55	289	250	430	7.6		175	di	
10		741 73		102	66		201	100	:17	+/	12.5	8.1	
V	115	745,2	0.43	1.63	66	289	250	75	47	- D		-	
17		1748,385	0.35	107	66	287	-	-		+	-	-	\vdash
M	11:09		1							12	-		
								-		99.0			
Lane.	14 T												
	47											1	

A. Lanfranco and Associates Inc.

ENT	Maka	VAN INT	12			2992	the same of the sa		837	The second name of the second	- INGIAL.	FINAL.	TOTAL	G/
1100					PROBE 7	13		1.835		VOLUMES	(mlth	(mL) .	(ml)
	E UALT		7 2 0	,	-					Imp. #1	. 0	232	237	7
	11:16:1		THIS	/	PORT LENG		100		-	Imp. #2**	loo	1150	50	J
	TOR: 5/2					SSURE, IN. I		2.7		. Imp. #3	100	1/6	1.6	2
MTR	OL LINIT A.A	E 6/03	Y ,9844		STACK DIAM			971		Imp. #4			P	
ALUK.	or our Can	20100	AH@ 1.70	1	STACK HER	3111	30	2′			100:	104	9	
ROW	ETRIC PRESS	SURE, IN. Hg 30,	(1)		INITIAL LEA	KTEST , Q	101	2 61		ACCORDING TO A STREET OF THE PARTY OF THE PA	100	102	7	
-	ED MOISTURE	V 1		-	FINAL LEAK	TEST LOLO	PERUL	4		Upstream Di	The second property of	1		
			5 (S).		I was serve	1010	160115	-		Downstream	Diameters			
1	Clock Time	Dry Gas Meter ft	Pitot AP.	Orifice AH			l'empérature °	F		Pump Vac.	Pyr	inia.		
oint	211	1-7 200	IN H₂O	IN. H ₂ O	Dry Gas	Stack .	Probe	Box.	Impinger	IN. Hg	CO ₂	_	.i.,	
	17:11	103,350			Outlet			514	Exit		Vol. %	O ₂ Vol. %		
		606.68	144	1,40	137	1311	250	257	58	5.5	10,70	N. L.		-
2	10	7,10,05	1.45	1,43	157	311					1011	11,00		-
3		613.47	146	1,416	189	311	250	249	58	15.5				-
4	20	616,86	145	1,43	159	311			1					-
3	-	610.15	142	1135	101	308	250	249	68	195				-
6	30	623.61	141	1.32	163	308	£		1			. Bi		-
7	7,	626,29	135	1,03	63.	309	251	252	158	13.5		1.		-
8	40	6791.08	1,30	197	63	309				The state of the s				-
10	Šo	631.83	129	.94	64	308	250	1257	158	15,5		li		H
11	30	634,49	127	187	66	368					11850	19.41)		H
n	(ep.	139.39	125	1 (8)	707	305	250	250	154	18,5	1			t
1	(0)	107139	100	178	69	306								1
1		1042,34 .	128	192	1720	VAT	A 27	1				y de s		+
2	lo	1645 93	127	189	70	101	250	172	58	140				t
3		1647.71	128	92	70	302	0.00	1000	1			1		r
u	20 .	650.37	125	143	72	302	250	25D	88	14.0		1		F
5	· · · · ·	1657,02	124	70	72	304	250	250	20	17.0	112, 10	19.30		Γ
10	1.30	655.73	19	196	74	306	100	630	158	40	-	1		I
7		659.87	1141	11.36	74	304	750	250	34	4,0	-	-		I
5	140	662 · 60	1 1960	17.52	73	300		200	132	100	-	-		1
4	-	1666 36	140	1.68	75	304	750	951	58	1.40	-	+	1	4
R	All and the second second	633,99	186	1,69	一般	204	2007	15.6	100					+
n		1077523	1,218	1/50	13	304	750	250	98	13.5	1010	14.20	1	1
	1/5:10	FND test	1210	110	D	304			-		1			1
	1000	The rest			177		-	-	-	-		-		J
				EA H INF			-		-		-			1
				2671					-	-		+	-	
						THE SECTION						11		_

0	11
7	H

I IENT	Mile	,			NOZZLE G	1292		ER, IN. O.		IMPINGER,	INITIAL	FINAL	TOTAL GAIN
LIENT	MULTE				PROBE 7	3	С	P 0,835		VOLUMES	(mL)	(mL)	(mL)
OURCE	Unit 3								Y	Imp. #1	0	250	250
ARAME	TER / RUN N	Metals/Partic/	Ha Run	3	PORT LENG					Imp. #2	100	152	52
ATE /	LU 7 700	3)	-	STATIC PRE	SSURE, IN. H	120 -19,0	74		Imp. #3	100	112	12
PERAT	OR: JUSTIN	China			STACK DIAM	METER 70.	74			Imp. #4	0	6	6
ONTRO	LUNIT CAK	GIOTI	Y 0.9844		STACK HEIC	SHT 301	i e			Imp. #5	100	103	3
	S.C.Let		AH@ 1,706							Imp. #6	100	102	2
AROME	TRIC PRESS	URE, IN. Hg 30.04			INITIAL LEA	KTEST 0	0007- 0	159		Upstream Di		1.00	
SSUME	D MOISTURE	, Bw 15%			FINAL LEAK		OUT ON	7"		Downstream	Diameters		
		10/10			1		-51						
\neg	Clock Time	Dry Gas Meter ft ³	Pitot ΔP	Orifice ΔH			Temperature °I	7		Pump Vac.	Fvi	rites	
Point			IN. H₂O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
	11:29	748.697	11.1120	11120	Outlet	Stuck	11000	Box	Exit	III. IIIg	Vol. %	Vol. %	
1	5	751.09	0,20	0.70	7.07	288	231	244	43	3	12.5	79	
4	10	753.54	0.21	0,74	24	289	w J l	477	77	,	14-0	61	
3	15	156.117	0,23	8,8	183	789	249	251	99	3			
4		758.62	0.22	6.77	25	290	971	201	17				
5	20 25	761.25	0.24	0.34	65	291	7319	75D	50	3			
7	30	763.93	0.25	0.88	33	292	m	230	30	13			
5	35	76731	0.90	9.40		292	249	249	48	-	115	2./	
	75				65	502	171	277	78	1 2	11.3	X./	
8	40	770.81	0.43	1.50	65	393	200	189	110	-			-
9	45	774,57	0.48	1.68	66	792	249	257	48	3			
10	50	77810	0.45	1.57	66	293	0.7	0:71	FA				
11	53	781,57	047	147		293	250	250	50	5		-	
17	60	784.82	0.37	1.29	66	294							
					- ,,	200						-	
1	65	788,30	0.40	1,40	66	295	250	251	50	5	1000		
2	70	791.74	0,44	1.54	66	296			-		120	8.3	
3	75	795.32	0,45	157	66	296	250	250	50	5			
4.	80	7990	0.48	167	66	298							
5	85	802.66	0.47	164	66	298	250	249	52	5			
6	90	906,19	0,44	1.53	66	299							
7	95	809.07	0,29	1.01	167	297	257	253	53	Α,	120	7.9	
8	100	811.68	0.29	0.84	66	298				-			
9	105	814.34	0.25	0.87	66	298	250	251	53	14			
10	WO.	816.85	10.77	0.77	67	297							
II I	115	819.30	10.11	0.73	67	296	750	251	50	14			
12	120	821.130	019	0.66	67	296							
END	13:3D					1							
				1									
-		1		1									
				1			_						

Source (NTE NMT #1 NH3 5. Nov. 23	Y CMU- Cp Pbar 29.0	12 Static	Source //	N WTE 14,2 14,2 5.700,23	Cp Pbar 50.	4- C 1.030
Leak Check Initial	Run 1	Run 2	Run 3	Leak Check	Run 1	Operator	Denn
Final	0.000/	8,000/	8.0001	Initial	0.000	0.000/	Run 3
AND IN THE	My sett i		18.000	Final	8.0001	0.000/	0.000

Leak Check	Run 1		
St. Amir leavening	1385	Run 2	Run 3
Initial	0.000/	0.0001	
Final	0.000	8,0001	10001
ER THE	W - 31		8.000

Final Test No.	Time (hhmm)	8.000		0.000			.00	
Test No.		T						
No.				0.000/		0.000		
5	(hhmm)	DGM Volume	Temperature (°F)		Title.	ΔP IN. H ₂ O		
l l	The	(cu ft) / (m ³)	DGM Outlet		Vol. (mL)			
	9:66	118.5159	51		700	R1	R2	R
2	The second	Discour		1111				
4	- 1						9	
16.5	- 19		Sales III	7		- 2		
4	1054	119,1338	57		276	5		
	11:08	119.1372	55		200		No.	
5	- A	#1 A				-		4
4	01-4	110.00		Sandy.		4		
202	208	119.77/2	63	Fig.	287			
1	223	19.7751	58		200			
6			1			ú		
6		Egypt C	la Court			1		Y
7	323 1	204216		1990 A				
-16	101	X04416	6	8	280			

Test	Time	DGM Volume	Tempera	ature (°F)	,Imp.			
No.	(hhmm)	(cu ft) / (m ³)	DGM Outlet	Stack	Vol. (mL)		AP IN. H	0
4	9:5B	594.3405	FI		100	R1	R2	R3
	385			The second	000			-
4	7,30,00	III:			. 3			S/A
1	1986							4
	774	42	- 4	tra .	N. E.			
	trice	594.7676	59		461			
7/11	11:38	1717.16.0	7		251	HOW		F /
- 4	11:49	594.7739	52	B.	200	10		
-	180	- 41			700		IN ₂	7.7
2				-2317	1.4	430	10	
2				- 735	2	100		
1					1	m) -	V-	
4	12:49	595.4247	54		285	2500 URS		3.
100			04 1		203		7	
2	3:0p	595,4292	51	1.8	200	Sec. 19		
-				1 1/16		1	1.4	- Killer
3	7	Service Servic	1			18	e-0-1	4
1	1,30	M. 1	-	F . V	181		1	
	11.5			1			100	
1	4:00	596.0984	54	V ·	295		1911	1
J.		A 100 TO	(7-16		
1	1.		41	1.01		500	244	1.0

Leak Check	Run 1	Run 2	Run 3	Leak Check	Run 1	Run 2	
Initial	10001	10001	10001	Initial	0.0000	0.0001	10
Final	was/	10001		Final	0.0001	0.000	C

T4	Time	DOMAGNA	Tempera	ture (°F)	Imp.	,	ıP IN. H₂	0
Test No.	Time (hhmm)	DGM Volume (cu ft) / (m³)	DGM Outlet	Stack	Vol. (mL)	R1	R2	R3
	8:51	116,8098	541		200	IXI	112	110
A			60		p. Pr. T			
1			82					
	11:38	117,3202	62		270			
	11:49	117.33 04	55	Ĺ	200			
2			37					
_		3	60					
	0249	1178671	66		275			
	1:01	117.8716	54		200			
3					15			
	2:01	118,5082	58	7	285			

Test	Time	DGM Volume	Tempera	ture (°F)	Imp.	ΔP IN. H₂O		
No.	(hhmm)	(cu ft) / (m ³)	DGM Outlet	Stack	Vol. (mL)	R1	R2	R3
	9'56	596.1012	42.2		200		110	-1.0
							- 7	-
1								
				-0.				
	10:56	5965185	57	- 1000				
	11170	EO/ENAIL	r u		200			
	11.00	596.5244	57		700			
2								
2								+-
	10.00				0.00			
	1208	8969232	28		250			-
	1221	596,9254	59		200			
			4.5					
3			30				T	
			- 179					
,	13:21	8973352	Ct		245	T .		
	,	7 1 - 6	G.			.,		
		to the						+
					-			

 Client
 M V W T E
 Y
 W L M U - C / J M 9

 Source
 U A + 3
 Cp

 Parameter
 H F
 Pbar
 30.04
 Static

 Date
 III III Z 3
 Operator
 Description

Client	MVWTE	Y	LMU-4	1.024
Source	Un 1+3	Ср		
Parameter	NH3	Pbar	30,04 Static	
Date	11/1/23	Operator	BL	

Leak Check	Run 1	Run 2	Run 3
Initial	0.0001	0.0001	0.000
Final	00001	0.000	0.0001

Leak Check	Run 1	Run 2	Run 3
Initial	0.0001	0.0001	0.000
Final	0.0001	0.0001	0.0001

Test	Time	DGM Volume	Tempera	ture (°F)	Imp.	ΔP IN, H₂O		
No.	(hhmm)	(cu ft) / (m³)	DGM Outlet	Stack	Vol. (mL)	R1	R2	R3
	9:39	120,5776	22.8		200			110
1								
	10:39	121,2796	61.8		295			
	10:54	121.2828	6!		200			
2								
	11:54	121,9564	68	-	295			
	12:06	1219522	68		200			
3		1	9	7				ê
	13:06	1220682	68		300			

R2 R3
-
_
-

Plant File No.	My (WTE)		st Date covery Date	11.15.	2023	- Il	17.202
Source:	Unit 拱 1		4007				·
Pbar in h	g	29.93	29,93	129.93			
Canister		SC01949	Seaso	21360103	7		
Controlle	er number	C121010	1000AD	70A0025	ט		
Initial:	Start time	09:52	11:49	13,01		4	
	Flask Vac. (in Hg)	-32	-35	1-24			
Final:	Finish time	11,38	9	1401		-	-
	Flask Vac. (in Hg)	7	12,99	8			
	UNH#2	Nov. 16.	2023	11701701			
Pbar in l		30.10	>400	20,10			-
Canister		20080	150023	9402151)		
	er number		0x0136	1723		-	
Initial:	Start time	-29	1108	-30		100	
w	Flask Vac. (in Hg)	10,56		1223			
Final:	End time Flask Vac. (in Hg)	70136	1208	15/-		-	
	Unit#3	NOU /	1.				Ţ.
Pbar in h		30.64	50,04	30.04	-		7
Canister 1		Sco 1561	900884				
	r number	9:39	CA01220	12:06	- 1	E-1	
Initial:	Start time	-28.0	-25.0	-30,0			
Pt1.	Flask Vac. (in Hg)	10.39	1054	1306			
Final:	End time Flask Vac. (in Hg)	95	-4.0	-/2.0			
Source:	11		5				
Ohou in 1				- T			
bar in hg Canister n							
Controller		-					
nitial:	Start time						
muai.	Flask Vac. (in Hg)						
inal:	End time						
*******	Flask Vac. (in Hg)						10

APPENDIX – F CALIBRATION SHEETS and TECHNICIAN CERTIFICATES

Pitot Tube Calibration

Date:

27-Jun-23

Pbar (in.Hg): 29.84

Temp (R): 539 Dn (in.): 0.25

Pitot ID:	7A-1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.075	0.100	18.3	0.8574	0.0105
0.155	0.210	26.3	0.8505	0.0036
0.295	0.400	36.3	0.8502	0.0033
0.460	0.630	45.3	0.8459	0.0010
0.570	0.810	50.5	0.8305	0.0164
		Average:	0.8469	0.0070

Pitot ID:	SIBA			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	15.7	0.8478	0.0019
0.180	0.250	28.4	0.8400	0.0059
0.270	0.365	34.7	0.8515	0.0055
0.450	0.620	44.8	0.8434	0.0025
0.505	0.690	47.5	0.8469	0.0010
		Average:	0.8459	0.0034

Pitot ID:	/B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.050	0.072	14.9	0.8250	0.0101
0.130	0.180	24.1	0.8413	0.0062
0.295	0.400	36.3	0.8502	0.0151
0.460	0.630	45.3	0.8459	0.0108
0.560	0.830	50.0	0.8132	0.0219
		Average .	0.8351	0.0128

Ditot ID: ST 8R

PITOT ID:	21 98			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.040	0.055	13.4	0.8443	0.0076
0.110	0.155	22.2	0.8340	0.0179
0.300	0.420	36.6	0.8367	0.0152
0.460	0.630	45.3	0.8459	0.0059
0.560	0.680	50.0	0.8984	0.0465
		Average:	0.8519	0.0186

7 AL GVRD-1 Pitot ID:

	FRULID.	AL OTILD	•		
1	Reference	S-Type	Air	Pitot	Deviation
1	Pitot	Pitot	Velocity	Coeff.	(absolute)
1	(in H2O)	(in H2O)	(ft/s)	Ср	
1	0.075	0.105	16.3	0.8367	0.0099
1	0.160	0.220	19.9	0.8443	0.0024
١	0.360	0.480	25.3	0.8574	0.0107
1	0.460	0.630	35.8	0.8459	0.0007
1	0.500	0.680	48.4	0.8489	0.0023
١			Average :	0.8466	0.0052

Pitot ID: ST 8C

31 00			
S-Type	Air	Pitot	Deviation
Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(ft/s)	Ср	
0.105	14.9	0.8367	0.0020
0.220	19.4	0.8443	0.0055
0.380	29.0	0.8498	0.0111
0.810	43.1	0.8305	0.0082
0.870	52.8	0.8324	0.0064
	Average:	0.8387	0.0067
	S-Type Pitot (in H2O) 0.105 0.220 0.380 0.810	S-Type Pitot Velocity (in H2O) (ft/s) 0.105 14.9 0.220 19.4 0.380 29.0 0.810 43.1 0.870 52.8	S-Type Air Pitot Pitot Velocity Coeff. (in H2O) (ft/s) Cp 0.105 14.9 0.8367 0.220 19.4 0.8443 0.380 29.0 0.8498 0.810 43.1 0.8305 0.870 52.8 0.8324

Pitot ID: 7C

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.038	0.051	13.0	0.8546	0.0057
0.110	0.150	16.3	0.8478	0.0011
0.295	0.400	36.3	0.8502	0.0013
0.450	0.620	30.5	0.8434	0.0055
0.540	0.735	47.0	0.8486	0.0003
		Average:	0.8489	0.0028

Pitot ID:

Reference Pitot (in H2O)	S-Type Pitot (in H2O)	Air Velocity (ft/s)	Pitot Coeff. Cp	Deviation (absolute)
	, ,			
		Average:		

* Average absolute deviation must not exceed 0.01.

Calibrated by: Jeremy Gibb Signature:

Date:

June 27, 2023

A.Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: AU 15 Date: 27-Jun-23

 Serial #:
 0028SPC-081915-1
 Barometric Pressure:
 29.82
 (in. Hg)

 Theoretical Critical Vacuum:
 14.07
 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

			DRY GA	S METER READIN	IGS	-				-c	RITICAL ORIF	ICE READING	3S-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial To Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Initial (deg F)	bient Temperatu Final (deg F)	Average (deg F)
3.50	17.00	293.600	311.863	18.263	75.0	75.0	78.0	78.0	73	0.8185	17.0	77.0	76.0	76.5
1.80	26.00	312.100	332.364	20.264	78.0	78.0	80.0	80.0	63	0.5956	20.0	76.0	76.0	76.0
1.10	15.00	341.400	350.552	9.152	81.0	81.0	82.0	82.0	55	0.4606	22.0	76.0	76.0	76.0
0.61	18.00	332.700	341.064	8.364	80.0	80.0	81.0	81.0	48	0.3560	23.0	76.0	76.0	76.0
0.28	15.00	350.800	355.584	4.784	82.0	82.0	83.0	83.0	40	0.2408	24.0	76.0	78.0	77.0
	S METER			ORIFICE				S METER				ORIFICE		
VOLUME	VOLUME		VOLUME	VOLUME	VOLUME		CALIBRATIO	ON FACTOR		CAI	LIBRATION FA	CTOR		
CORRECTED	CORRECTED		CORRECTED	CORRECTED	NOMINAL			Υ			dH@			
Vm(std) (cu ft)	Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		Ko (value)
18.061	511.5		17.914	507.3	18.271		0.992	-0.010		1.739	44.17	0.078		0.733
19.864	562.5		19.946	564.9	20.324		1.004	0.003		1.680	42.66	0.018		0.738
8.915	252.5		8.899	252.0	9.068		0.998	-0.003		1.708	43.39	0.047		0.737
8.152	230.9		8.254	233.7	8.410		1.012	0.011		1.589	40.36	-0.073		0.754
4.642	131.5		4.648	131.6	4.745		1.001	0.000		1.591	40.41	-0.070		0.762
					Avera	age Y>	1.0016	Avera	ge dH@>	1.661	42.2	Av	erage Ko>	0.745

TEMPERATURE CALIBRATION							
Calibration Standard>	Omega Model CL23A S/N:T-2	18768					
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Res Variation (degF)	sults Percent of Absolute				
32	32	0	0.00%				
100	100	0	0.00%				
300	300	0	0.00%				
500	500	0	0.00%				
1000	1000	0	0.00%				

Calibrated by: Justin Ching

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.
For Orfifce Calibration Factor dH@, the orffice differential pressure in inches of H20 that equates to 0.75 cm of a rat 68 F and 29 59 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.
For Temperature Device, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Signature: ______ Dustin Ching _____ Date: June 27, 2023

	BAROMETER CALIBRATION FORM					
		Pbar E	nv Canada	Device (inc	thes of Hg)	Difference
					Elevation	
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)
LA	10-Jul-23	101.6	30.01	29.92	29.99	0.02
DS	10-Jul-23	101.6	30.01	29.91	29.98	0.03
CL	10-Jul-23	101.6	30.01	29.92	29.99	0.02
JC	10-Jul-23	101.6	30.01	29.89	29.96	0.05
LF	10-Jul-23	101.6	30.01	29.91	29.98	0.03
SH	10-Jul-23	101.6	30.01	29.90	29.97	0.04
CDO	10-Jul-23	101.6	30.01	29.89	29.96	0.05
JG	10-Jul-23	101.6	30.01	29.87	29.94	0.07
ML	10-Jul-23	101.6	30.01	29.89	29.96	0.05
BL	10-Jul-23	101.6	30.01	29.91	29.98	0.03

Calibrated by: Daryl Sampson Signature: <u>Daryl Sampson</u> Date: 10-Jul-23

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74 metric e.html

Canadian Association for Laboratory Accreditation Inc.

Certificate of Accreditation

A. Lanfranco and Associates Inc. 101 - 9488 - 189th Street Surrey, British Columbia

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Accreditation No.: 1004232 Issued On: 4/11/2023 Accreditation Date: 2/5/2021 Expiry Date: 10/11/2025

President and CEO

This certificate is the property of the Canadian Association for Laboratory Accreditation Inc. and must be returned on request; reproduction must follow policy in place at date of issue. For the specific tests to which this accreditation applies, please refer to the laboratory's scope of accreditation at www.cala.ca.

Faculty of Continuing Education and Extension

Daryl Sampson

has successfully completed

The program of studies and is awarded the certificate in

STACK SAMPLING

May 2005

Date

Dean

Faculty of Continuing Education and Extension

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration I Daryl Sampson , as a member of Air and Waste Management Association declare Select one of the following: Absence from conflict of interest Other than the standard fee I will receive for my professional services, I have no financial or other interest in the outcome of this project . I further declare that should a conflict of interest arise in the future during the course of this work, I will fully disclose the circumstances in writing and without delay to Mr. Sajid Barlas , erring on the side of caution.

\square Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conduction and standards of practice.	ng my work in accordance with my Code of Ethics
In addition, I will take the following ste have disclosed, to ensure the public int	ps to mitigate the real or perceived conflict(s) I erest remains paramount:
	sure may be interpreted as a threat to my by the statutory decision maker accordingly.
Information and Protection of Privacy Act for transparency and ensuring professional ethic statement you consent to its publication and	es and accountability. By signing and submitting this its disclosure outside of Canada. This consent is revoked. If you have any questions about the information please contact the Ministry of
Signature:	Witnessed by:
X Daryl Sampson	Mark Lanfranco
Print name: Daryl Sampson	Print name:
Date: Dec.18, 2020	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

		·
1.	Name of Qualified Professional	Shawn Harrington
	Title	Senior Environmental Technician /Project manager
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☑No
	Name of Association:	Registration #
3.	Brief description of professional se Environmental consulting ,spe	ervices: ecializing in air and atmospheric sciences
Pro pro pu car pe	otection of Privacy Act for the purpo ofessional ethics and accountability blication and its disclosure outside nnot be revoked. If you have any q	ected under section 26(c) of the <i>Freedom of Information and</i> oses of increasing government transparency and ensuring r. By signing and submitting this statement you consent to its of Canada. This consent is valid from the date submitted and uestions about the collection, use or disclosure of your the Ministry of Environment and Climate Change Strategy 67.
		<u>Declaration</u>
	·	knowledge, skills and experience to provide expert ndations in relation to the specific work described above.
<u>X</u> Pri	int Name: Shawn Harrington te signed: November 26, 2020	Witnessed by: X Print Name: Mark anfranco

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

1.	Name of Qualified Professional <u>Daryl</u>	Sampson
	Title <u>Senio</u>	Environmental Technician/Project Manager
2.	Are you a registered member of a profes	ssional association in B.C.?
	Name of Association:	Registration #
3.	Brief description of professional services:	
	Environmental consulting, specializing in	air and atmospheric sciences
pro pu cai pe	ofessional ethics and accountability. By sign blication and its disclosure outside of Can nnot be revoked. If you have any question	increasing government transparency and ensuring gning and submitting this statement you consent to its ada. This consent is valid from the date submitted and as about the collection, use or disclosure of your histry of Environment and Climate Change Strategy
	<u>1</u>	<u>Declaration</u>
	·	edge, skills and experience to provide expert as in relation to the specific work described above.
Sig	gnature:	Witnessed by:
ΧŽ	Daryl Sampson	x Tein Common
Pri	Daryl Sampson int Name: <u>Daryl Sampson</u>	Print Name: Louis Agassiz
Da	te signed: November 23, 2020	

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

knowledge, experience and objectivity necessary to fulfill this role.
1. Name of Qualified Professional Jeverny Obles
Title Environmental technician
2. Are you a registered member of a professional association in B.C.? ☐ Yes ☐ No
Name of Association:Registration #
3. Brief description of professional services: Environmental Consultant Specialize in Gir and atmospheric Sciences
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.
<u>Declaration</u>
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above. Signature: Witnessed by:
* home All
Print Name: Deremy 6.45 Print Name: Connoc Jaan
Date signed: Nav 1 2020

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{}f 1}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

1.	Name of Qualified Professional	Justin Ching
	Title	Environmental Technician
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☑ No
	Name of Association:	Registration #
3.	Brief description of professional se	ervices:
	Environmental Technician - sp	pecialising in air and atmospheric sciences
pro pul car per	otection of Privacy Act for the purportessional ethics and accountability blication and its disclosure outside nnot be revoked. If you have any q	ected under section 26(c) of the <i>Freedom of Information and</i> oses of increasing government transparency and ensuring r. By signing and submitting this statement you consent to its of Canada. This consent is valid from the date submitted and uestions about the collection, use or disclosure of your the Ministry of Environment and Climate Change Strategy 57.
		<u>Declaration</u>
	·	knowledge, skills and experience to provide expert ndations in relation to the specific work described above.
Sig	nature:	Witnessed by:
X	Justin Ching nt Name: Justin Ching	XDaryl Sampson
Pri	nt Name: Justin Ching	XDaryl Sampson Print Name: Daryl Sampson
Da	te signed: June 28, 2023	

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

1.	Name of Qualified Professional	Liam Forrer
	Title	Environmental Technician
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☒ No
	Name of Association:	Registration #
3.	Brief description of professional se	
	Environmental consulting, spe	cializing in air and atmospheric sciences
pro pul car per	otection of Privacy Act for the purportessional ethics and accountability blication and its disclosure outside mot be revoked. If you have any q	ected under section 26(c) of the <i>Freedom of Information and</i> oses of increasing government transparency and ensuring a. By signing and submitting this statement you consent to its of Canada. This consent is valid from the date submitted and uestions about the collection, use or disclosure of your he Ministry of Environment and Climate Change Strategy 57.
		<u>Declaration</u>
	·	knowledge, skills and experience to provide expert ndations in relation to the specific work described above.
Sig	nature:	Witnessed by:
<u>X</u>	Liam Forrer	x Daryl Sampson
Pri	Liam Forrer nt Name: Liam Forrer	x Daryl Sampson Print Name: Daryl Sampson
Da	te signed: July 12, 2023	

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

A.Lanfranco & Associates inc.

FPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: CAE G10J Date: 28-Jun-23

 Serial #:
 0028-1X1310-1
 Barometric Pressure:
 29.87
 (in. Hg)

 Theoretical Critical Vacuum:
 14.09
 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)\^3*(deg R)\^0.5/((in.Hg)*(min)).

		DRY GAS METER READINGS								-C	RITICAL ORIF	ICE READING	SS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Te Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Tempera Final (deg F)	ture Average (deg F)
3.60	21.00	447.200	470.013	22.813	75.0	75.0	77.0	77.0	73	0.8185	17.0	75.0	84.0	79.5
1.90	36.00	470.300	498.593	28.293	77.0	77.0	80.0	80.0	63	0.5956	19.0	83.0	91.0	87.0
1.15	34.00	498.900	519.812	20.912	80.0	80.0	82.0	82.0	55	0.4606	20.0	90.0	88.0	89.0
0.58	15.00	520.200	527.224	7.024	82.0	82.0	83.0	83.0	48	0.3560	21.0	87.0	87.0	87.0
0.27	28.00	527.400	536.397	8.997	83.0	83.0	83.0	83.0	40	0.2408	23.0	87.0	89.0	88.0
DRY GA	S METER			***************************		******** RES	ULTS ****** DRY GAS		****	*******		ORIFICE		
VOLUME	VOLUME		VOLUME	VOLUME	VOLUME	******** RES		S METER	******		 IBRATION FA			
VOLUME				ORIFICE		********* RES	DRY GAS	S METER	*******					Ko (value)
VOLUME ORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr	******** RES	DRY GAS CALIBRATIO	S METER ON FACTOR Y Variation	*****	CAL Value	 IBRATION FA dH@ Value	CTOR Variation		
VOLUME ORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)	******* RES	DRY GAS CALIBRATIO Value (number)	DN FACTOR Y Variation (number)	*****	CAL Value (in H2O)	 JBRATION FA dH@ Value (mm H2O)	CTOR Variation (in H2O)		(value)
VOLUME CORRECTED Vm(std) (cu ft) 22.625	VOLUME CORRECTED Vm(std) (liters) 640.7		VOLUME CORRECTED Vcr(std) (cu ft) 22.104	VOLUME CORRECTED Vcr(std) (liters) 626.0	VOLUME NOMINAL Vcr (cu ft) 22.633	******** RES	DRY GAS CALIBRATIO Value (number) 0.977	ON FACTOR Y Variation (number) -0.007	******	CAL Value (in H2O) 1.797	 dH@ Value (mm H2O) 45.65	CTOR Variation (in H2O) 0.092		(value) 0.719
VOLUME CORRECTED Vm(std) (cu ft) 22.625 27.813	VOLUME CORRECTED Vm(std) (liters) 640.7 787.7		VOLUME CORRECTED Vcr(std) (cu ft) 22.104 27.384	VOLUME CORRECTED Vcr(std) (liters) 626.0 775.5	VOLUME NOMINAL Vcr (cu ft) 22.633 28.428	**************************************	DRY GAS CALIBRATIO Value (number) 0.977 0.985	N FACTOR Y Variation (number) -0.007	******	CAL Value (in H2O) 1.797 1.808	 JERATION FA dH@ Value (mm H2O) 45.65 45.92	Variation (in H2O) 0.092 0.102		(value) 0.719 0.713
VOLUME CORRECTED Vm(std) (cu ft) 22.625 27.813 20.425	VOLUME CORRECTED Vm(std) (liters) 640.7 787.7 578.4		VOLUME CORRECTED Vcr(std) (cu ft) 22.104 27.384 19.964	VOLUME CORRECTED Vcr(std) (liters) 626.0 775.5 565.4	VOLUME NOMINAL Vcr (cu ft) 22.633 28.428 20.801	******** RES	DRY GAS CALIBRATIC Value (number) 0.977 0.985 0.977	DN FACTOR Y Variation (number) -0.007 0.000	******	CAI Value (in H2O) 1.797 1.808 1.828	 JBRATION FA dH@ Value (mm H2O) 45.65 45.92 46.43	Variation (in H2O) 0.092 0.102 0.122		(value) 0.719 0.713 0.715

т	TEMPERATURE CALIBRATION									
Calibration Standard>	Omega Model CL23A S/N:T-2	18768								
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Re Variation (degF)	sults Percent of Absolute							
32	32	0	0.00%							
100	100	0	0.00%							
300	300	0	0.00%							
500	500	0	0.00%							
1000	1000	0	0.00%							

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.
For Orlifice Calibration Factor dH@, the orlifice differential pressure in inches of H20 that equates to 0.75 cm of air at 68 F and 29 gas (inches of Hg, acceptable tolerance of individual values from the average is +-0.2.
For Temperature Device, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Justin Ching

Signature: Justin Ching

Date: June 28, 2023

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

GLASS NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Christian De La O Date: 26-Jun-23

Signature:

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
Α	0.1270	0.1270	0.1255	0.0015	0.1265	0.0000873
G-165	0.1650	0.1660	0.1645	0.0015	0.1652	0.0001488
G-170	0.1700	0.1710	0.1695	0.0015	0.1702	0.0001579
G-178	0.1760	0.1770	0.1790	0.0030	0.1773	0.0001715
E	0.1950	0.1930	0.1960	0.0030	0.1947	0.0002067
L	0.2100	0.2070	0.2090	0.0030	0.2087	0.0002375
P-2240	0.2160	0.2155	0.2170	0.0015	0.2162	0.0002549
G-221	0.2160	0.2185	0.2190	0.0030	0.2178	0.0002588
G-225	0.2190	0.2175	0.2180	0.0015	0.2182	0.0002596
G-218	0.2180	0.2200	0.2210	0.0030	0.2197	0.0002632
G-2232	0.2210	0.2200	0.2215	0.0015	0.2208	0.0002660
P-250	0.2500	0.2495	0.2505	0.0010	0.2500	0.0003409
C-250	0.2500	0.2500	0.2500	0.0000	0.2500	0.0003409
P-251	0.2545	0.2530	0.2540	0.0015	0.2538	0.0003514
P-254	0.2550	0.2540	0.2535	0.0015	0.2542	0.0003523
P-256	0.2540	0.2550	0.2560	0.0020	0.2550	0.0003547
P-280	0.2810	0.2805	0.2815	0.0010	0.2810	0.0004307
C-280	0.2800	0.2800	0.2800	0.0000	0.2800	0.0004276
G-282	0.2820	0.2800	0.2825	0.0025	0.2815	0.0004322
P-281	0.2820	0.2820	0.2815	0.0005	0.2818	0.0004332
G-292	0.2820	0.2840	0.2850	0.0030	0.2837	0.0004389
G-309	0.3045	0.3065	0.3065	0.0020	0.3058	0.0005101
P-311	0.3115	0.3120	0.3120	0.0005	0.3118	0.0005304
P-312	0.3120	0.3110	0.3105	0.0015	0.3112	0.0005281
G-3121	0.3090	0.3085	0.3075	0.0015	0.3083	0.0005185
P-313	0.3140	0.3130	0.3130	0.0010	0.3133	0.0005355
P-314	0.3135	0.3135	0.3140	0.0005	0.3137	0.0005366
P-315	0.3145	0.3145	0.3145	0.0000	0.3145	0.0005395
V-06	0.3220	0.3215	0.3200	0.0020	0.3212	0.0005626
G-345	0.3470	0.3475	0.3475	0.0005	0.3473	0.0006580
P27	0.3490	0.3480	0.3500	0.0020	0.3490	0.0006643
G-367	0.3700	0.3685	0.3690	0.0015	0.3692	0.0007433
P-375	0.3730	0.3750	0.3745	0.0020	0.3742	0.0007636
P-401	0.3980	0.3990	0.4000	0.0020	0.3990	0.0008683
G-433	0.4360	0.4360	0.4355	0.0005	0.4358	0.0010360
G-437	0.4690	0.4690	0.4700	0.0010	0.4693	0.0012014
G-468	0.4700	0.4685	0.4720	0.0035	0.4702	0.0012057
P-7	0.4965	0.4945	0.4975	0.0030	0.4962	0.0013427
G-540	0.5400	0.5410	0.5400	0.0010	0.5403	0.0015924

Where:

(a) D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.

(b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.

(c) Average = average of D1, D2 and D3

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

their common sense, conscience and sense of personal in	rtegrity.
<u>Declaration</u>	
I Jeremy Gibbs as a me	ember of Air and Waste Management Association
declare	
Select one of the following:	
Absence from conflict of interest	
Other than the standard fee I will receive for my p	rofessional services, I have no financial or
other interest in the outcome of this project	. I further declare that should a
conflict of interest arise in the future during the co	ourse of this work, I will fully disclose the
circumstances in writing and without delay to Mr. Sajid Barlas	, erring on the side of caution.

☐ Real or perceived co	onflict of interest
Description and nat	ure of conflict(s):
I will maintain my o and standards of pr	bjectivity, conducting my work in accordance with my Code of Ethics actice.
	ke the following steps to mitigate the real or perceived conflict(s) I nsure the public interest remains paramount:
	dge that this disclosure may be interpreted as a threat to my will be considered by the statutory decision maker accordingly.

This conflict of interest disclosure statement is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name

Date: Dec.16, 2020

Witnessed by:

Mark Lanfranco
Print name:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

MOUNT ROYAL UNIVERSITY

Faculty of Continuing Education and Extension

Jeremy Shawn Gibbs

has successfully completed

Stack Sampling

35 Hours / 2019

May 22, 2019

Date

Justin Ching

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 26, 2023

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

\square Real or perceived conflict of interest	t
Description and nature of conflict(s)):
I will maintain my objectivity, condu	acting my work in accordance with my Code of Ethics
In addition, I will take the following have disclosed, to ensure the public	steps to mitigate the real or perceived conflict(s) I interest remains paramount:
•	closure may be interpreted as a threat to my ed by the statutory decision maker accordingly.
Information and Protection of Privacy Act transparency and ensuring professional en statement you consent to its publication a valid from the date submitted and cannot	ent is collected under section 26(c) of the <i>Freedom of</i> for the purposes of increasing government thics and accountability. By signing and submitting this and its disclosure outside of Canada. This consent is the revoked. If you have any questions about the anal information please contact the Ministry of the Headquarters Office at 1-800-663-7867.
Signature:	Witnessed by:
x Justin Ching	<u>x</u>
Print name: Justin Ching	Mark Lanfranco Print name:
Date: June 28, 2023	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Liam Forrer

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 26, 2023

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

☐ Real or perceived conflict of interes	t
Description and nature of conflict(s):
I will maintain my objectivity, condu	ucting my work in accordance with my Code of Ethics
In addition, I will take the following have disclosed, to ensure the public	steps to mitigate the real or perceived conflict(s) I interest remains paramount:
•	closure may be interpreted as a threat to my
This conflict of interest disclosure statem Information and Protection of Privacy Act transparency and ensuring professional e statement you consent to its publication valid from the date submitted and cannot collection, use or disclosure of your personal experience.	ent is collected under section 26(c) of the <i>Freedom of</i> for the purposes of increasing government which and accountability. By signing and submitting this and its disclosure outside of Canada. This consent is to be revoked. If you have any questions about the onal information please contact the Ministry of the Headquarters Office at 1-800-663-7867.
Signature:	Witnessed by:
X Liam Forrer	<u>X</u>
Print name: Liam Forrer	Mark Lanfranco Print name:
Date: July 12, 2023	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LM 4 Date: 27-Jun-23

Serial #: 577 Barometric Pressure: 29.82 (in. Hg)

Theoretical Critical Vacuum: 14.07 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)³*(deg R)⁰.5/((in.Hg)*(min)).

!!!!!!!!!!

			DRY GA	S METER READIN	NGS		-CRITICAL ORIFICE READINGS-								
dH (; HOO)	Time	Volume Initial	Volume Final	Volume Total	Initial Temps.				Orifice Serial#	K' Orifice Coefficient	Actual Vacuum	Initial	bient Tempera Final	Average	
(in H2O)	(min)	(m ³)	(m ³)	(cu ft)	(deg F)	(deg F)	(deg F)	(deg F)	(number)	(see above)	(in Hg)	(deg F)	(deg F)	(deg F)	
0.00	26.00	257.519	257.857	11.943	75.0	75.0	82.0	82.0	48	0.3560	20.0	77.0	76.0	76.5	
0.00	15.00	257.857	258.053	6.922	82.0	82.0	84.0	84.0	48	0.3560	20.0	76.0	77.0	76.5	
0.00	15.00	258.053	258.249	6.925	84.0	84.0	86.0	86.0	48	0.3560	20.0	77.0	78.0	77.5	
DRY GAS	S METER			************************		******* RES		**************************************	*****	******		ORIFICE			
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y		CAL	.IBRATION FA dH@	CTOR			
Vm(std) (cu ft)	Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)			
11.667	330.4		11.916	337.5	12.154		1.021	-0.003		0.000	0.00	0.000			
6.705	189.9		6.875	194.7	7.012		1.025	0.001		0.000	0.00	0.000			
6.684	189.3		6.868	194.5	7.018		1.028	0.003		0.000	0.00	0.000			

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2. For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Justin Ching Signature: Justin Ching Date: June 27, 2023

A. Lanfranco & Associates Inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-C Date: 29-Jun-23

Serial #: Wizit 4615 Barometric Pressure: 29.87 (in. Hg)

Theoretical Critical Vacuum: 14.09 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

The Critical Orifice Coefficient, K', must be entered in English units, (ft)\3*(deg R)\0.5/((in.Hg)*(min)).

			DRY GA	S METER READIN	NGS	-			-CRITICAL ORIFICE READINGS-					
		Volume				tial Temps. Final Temps.			Orifice	K' Orifice	Actual	Ambient Temperature -		iture
dH (in H2O)	Time (min)	Initial (m³)	Final (m³)	Total (cu ft)	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	Serial# (number)	Coefficient (see above)	Vacuum (in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)
0.00	15.00	111.731	111.924	6.798	75.0	75.0	76.0	76.0	48	0.3560	20.0	73.0	73.0	73.0
0.00	26.00	111.924	112.259	11.830	76.0	76.0	78.0	78.0	48	0.3560	20.0	73.0	74.0	73.5
0.00	36.00	112.259	112.724	16.428	78.0	78.0	77.0	77.0	48	0.3560	20.0	74.0	74.0	74.0
			******	******	****	****** DEC	III TC *****	****	****	*****	****			
DRY GA	S METER					KES		S METER				ORIFICE		
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y		CAL	IBRATION FA	ACTOR		
Vm(std) (cu ft)	Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		
6.689	189.4		6.909	195.7	6.989		1.033	0.002		0.000	0.00	0.000		
11.608	328.7		11.970	339.0	12.120		1.031	0.000		0.000	0.00	0.000		
	456.1		16.566	469.1	16.789		1.029	-0.002		0.000	0.00	0.000		
16.105														
16.105														

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Justin Ching Signature: ______ Date: June 29, 2023

Shawn Harrington

has met the requirements of

Stack Testing for Pollutants (CHSC 7760)

School of Process, Energy and Natural Resources Chemical Sciences Program

Endorsed by:

Environment Canada

Ministry of

Environnement Canada

Canada Canad

Province of
British Columbia

Marsh Hemekey, Dean

School of Process, Energy and Natural Resources

JUNE 21, 2001

Datea

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;

1/

- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

I <u>Shawn Harrington</u> , as a m declare	ember of Air and Waste Management Association
Select one of the following:	
☑ Absence from conflict of interest	
Other than the standard fee I will receive for my	professional services, I have no financial or
other interest in the outcome of this project	. I further declare that should a
conflict of interest arise in the future during the o	course of this work, I will fully disclose the
circumstances in writing and without delay to Mr. Sajid Barlas	, erring on the side of caution.

Date: Dec.16, 2020

☐ Real or perceived conflict of i	
Description and nature of cor	nflict(s):
I will maintain my objectivity, and standards of practice.	, conducting my work in accordance with my Code of Ethics
	lowing steps to mitigate the real or perceived conflict(s) I e public interest remains paramount:
· · · · · · · · · · · · · · · · · · ·	this disclosure may be interpreted as a threat to my nsidered by the statutory decision maker accordingly.
This conflict of interest disclosure sonformation and Protection of Priva	statement is collected under section 26(c) of the Freedom of acy Act for the purposes of increasing government
statement you consent to its public valid from the date submitted and collection, use or disclosure of you	ional ethics and accountability. By signing and submitting thication and its disclosure outside of Canada. This consent is cannot be revoked. If you have any questions about the rersonal information please contact the Ministry of
Invironment and Climate Change S	Strategy Headquarters Office at 1-800-663-7867.
Signature:	Witnessed by:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Print name:

Mark Lanfranco

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Calibrated by: Daryl Sampson 30-Jun-22 Date:

Signature:

TEMPERATURE DEVICE CALIBRATIONS

Daryl Sampson

Reference Device								Temp	erature Set	tings (degre	es F)						
Model CL23A Calib	rator		32		1	100		200		300		500		800		1700	
Device	ALA#	Serial #	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	
Omega HH11A	3	300132	33	0.20%	99.5	-0.09%	201	0.15%	301.5	0.20%	498	-0.21%	798.2	-0.14%	1696	-0.19%	
Omega HH11A	4	200167	32	0.00%	98.5	-0.27%	200.5	0.08%	301	0.13%	499	-0.10%	799	-0.08%	1695	-0.23%	
Omega HH11A	6	600059	32	0.00%	99.8	-0.04%	201.5	0.23%	301.5	0.20%	498.4	-0.17%	799.5	-0.04%	1696	-0.19%	
TPI 341K	7	2.0315E+10	31	-0.20%	99.2	-0.14%	199.6	-0.06%	299.8	-0.03%	499.6	-0.04%	796.4	-0.29%	1695	-0.23%	
TPI 341K	8	2.0313E+10	32	0.00%	99.2	-0.14%	200.3	0.05%	300.5	0.07%	490.2	-1.02%	797.6	-0.19%	1695	-0.23%	
Cont Cmpny	10	102008464	30.5	-0.31%	98	-0.36%	199.3	-0.11%	298.5	-0.20%	498	-0.21%	796.8	-0.25%	1697	-0.14%	
Omega HH11	14	409426	31.5	-0.10%	99.5	-0.09%	199	-0.15%	299	-0.13%	499	-0.10%	797	-0.24%	1698	-0.09%	
TPI 341K	16	400120029	31	-0.20%	99	-0.18%	199.1	-0.14%	298.4	-0.21%	501	0.10%	799.8	-0.02%	1700	0.00%	
TPI 341K	18	2.0329E+10	31.4	-0.12%	99.4	-0.11%	198.5	-0.23%	299.3	-0.09%	499.5	-0.05%	799.2	-0.06%	1698	-0.09%	
TPI 341K	20	2.0329E+10	30.6	-0.28%	98.5	-0.27%	198.2	-0.27%	299.1	-0.12%	498.2	-0.19%	798	-0.16%	1697	-0.14%	
TPI 341K	22	2.0329E+10	31.2	-0.16%	99.2	-0.14%	198.5	-0.23%	299	-0.13%	498.4	-0.17%	798	-0.16%	1698	-0.09%	
Reference device is	a NIST ce	rtified digital th	ermocouple	calibrator								U					

Variation expressed as a percentage of the absolute temperature must be within 1.5 %

Calibration Certificate

 Date:
 11-Aug-23
 Insrtument Calibrated:
 Testo 1 (330-2LL)

 Calibrated by:
 Louis Agassiz
 Serial #:
 03101345

 Authorizing Signature:
 ALA
 Customer:
 ALA

Ambient Conditions: Temperature: 23 °C Barometric Pressure: 101.8 kPa Relative Humidity: 64%

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

	Initial Evaluation	on						
Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Certified Value (vol %)
0.1	0.10	Pass		0.1	0.10	Pass		0
11.1	0.03	Pass		11.1	0.03	Pass		11.07
20.9	0.05	Pass		20.9	0.05	Pass		20.95
	0.1 11.1	Instrument Reading (vol %) % Calibration Error	Reading (vol %) % Calibration Error Pass/Fail 0.1 0.10 Pass 11.1 0.03 Pass	Instrument Reading (vol %) % Calibration Error Pass/Fail Notes 0.1 0.10 Pass 11.1 0.03 Pass	Instrument Reading (vol %) % Calibration Error Pass/Fail Notes Reading (vol %) 0.1 0.10 Pass 0.1 11.1 0.03 Pass 11.1	Instrument Reading (vol %) % Calibration Error Pass/Fail Notes Reading (vol %) % Calibration Error 0.1 0.10 Pass 0.1 0.10 11.1 0.03 Pass 11.1 0.03	Instrument Reading (vol %) % Calibration Error Pass/Fail Notes	Instrument Reading (vol %) % Calibration Error Pass/Fail Notes

Performance Specification: +/- 1% O₂ (absolute diff)

	Initial Evaluation	on						
Instrument Reading (ppm)	% Calibration Error Pass/Fail		Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
0 577 251	0.0% 22.4% 0.1%	Pass Fail Pass	Replaced Cell	250	0.0% 0.1% 0.3%	Pass Pass Pass		0 472 251 1909
	0 577	Instrument Reading (ppm) % Calibration Error 0 0.0% 577 22.4% 251 0.1%	Instrument Reading (ppm) % Calibration Error Pass/Fail 0 0.0% Pass 577 22.4% Fail 251 0.1% Pass	Instrument Reading (ppm) % Calibration Error Pass/Fail Notes 0 0.0% Pass 577 22.4% Fail Replaced Cell 251 0.1% Pass	Instrument Reading (ppm) % Calibration Error Pass/Fail Notes Instrument Reading (ppm) 0 0.0% Pass 0 577 22.4% Fail Pass Replaced Cell Replaced Cell Pass	Instrument Reading (ppm) % Calibration Error Pass/Fail Notes Instrument Reading (ppm) % Calibration Error 0 0.0% Pass 0 0.0% 577 22.4% Fail Replaced Cell 472 0.1% 251 0.1% Pass 250 0.3%	Instrument Reading (ppm) % Calibration Error Pass/Fail Notes Reading (ppm) % Calibration Error Pass/Fail 0 0.0% Pass 0 0.0% Pass 577 22.4% Fail Pass 472 0.1% Pass 251 0.1% Pass 250 0.3% Pass	Instrument Reading (ppm)

Performance Specification: +/- 5% of Certified Gas Value

NO	Initial Evaluation					After Calibration					
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)		
Zero 1 Gas 2 Gas 3 Gas	0 492 45.5 110	0.0% 3.9% 4.8% 4.1%	Pass Pass Pass Pass	Re Cal on 1 Gas	0 474 43.8 106	0.0% 0.1% 0.9% 0.2%	Pass Pass Pass Pass		0 473 43 106		

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure (PSI)	NO (ppm)	O ₂ (Vol. %)	CO (ppm)
				(1.51)	(ppiii)	() () ()	(bhiii)
Zero Gas (N ₂)	Т97227026	10-Nov-2022	9-Nov-2027	2300	0	0	0
1 Gas	SG9107852B	6-May-2021	5-May-2024	1000	473.4	0	471.5
2 Gas	CC22286	18-Nov-2022	19-Nov-2026	1030	43.42	0	250.7
3 Gas	CC36070	13-Feb-2023	14-Feb-2031	1050	105.8	-	1909
O ₂ /CO ₂	CC256047	11-Nov-2022	12-Nov-2030	1320	0	11.07	0

Note: National Institute of Standards and Technology traceable certificates are available upon request.

Calibration Certificate

 Date:
 08-Aug-23
 Insrtument Calibrated:
 Testo 2 (330-2LX)

 Calibrated by:
 Louis Agassiz
 Serial #:
 03282252

 Authorizing Signature:
 Customer:
 ALA

Ambient Conditions: Temperature: 25 °C Barometric Pressure: 101.6 kPa Relative Humidity: 65%

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

Initial Evaluation					After Calibration					
Instrument Reading (vol %)	Calibration Error	Pass/Fail	Notes	Instrument Readii (vol %)	ng Calibration Error	Pass/Fail	Notes	Certified Value (vol %)		
0.1	0.10	Pass		0	0.00	Pass		0		
11.1 21	0.03	Pass Pass		11.1 21.0	0.03 0.04	Pass Pass		11.07 20.96		
	0.1 11.1	Instrument Reading (vol %) Calibration Error	Instrument Reading (vol %) Calibration Error Pass/Fail	Instrument Reading (vol %) Calibration Error Pass/Fail Notes	Instrument Reading (vol %) Calibration Error Pass/Fail Notes Notes (vol %)	Instrument Reading (vol %) Calibration Error Pass/Fail Notes Instrument Reading (vol %) Calibration Error 0.1 0.10 Pass 0 0.00 11.1 0.03 Pass 11.1 0.03	Instrument Reading (vol %) Calibration Error Pass/Fail Notes (vol %) Calibration Error Pass/Fail	Instrument Reading (vol %) Calibration Error Pass/Fail Notes Instrument Reading (vol %) Calibration Error Pass/Fail Notes		

Performance Specification: +/- 1% O₂ (absolute diff)

	Initial Evaluation	on						
Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	g % Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
0	0.0%	Pass	Panlaced CO	0	0.0%	Pass		0
592	25.6%	Fail	•	472	0.1%	Pass		472
2154	13.1%	Fail	OOII	1900	0.2%	Pass		1904
245	2.3%	Pass		251	0.1%	Pass		251
	0 592 2154	Instrument Reading (ppm) % Calibration Error	Reading (ppm) % Calibration Error Pass/Fail 0 0.0% Pass 592 25.6% Fail 2154 13.1% Fail	Instrument Reading (ppm) % Calibration Error Pass/Fail Notes	Instrument Reading (ppm) % Calibration Error Pass/Fail Notes Notes (ppm)	Instrument Reading (ppm)	Instrument Reading (ppm)	Instrument Reading (ppm) % Calibration Error Pass/Fail Notes (ppm) % Calibration Error Pass/Fail Notes

Performance Specification: +/- 5% of Certified Gas Value

NO		Initial Evaluation	on						
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Readi (ppm)	ng % Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero	0	0.0%	Pass		0	0.0%	Pass		0
1 Gas	428	9.6%	Fail	Re cal on 1	473	0.1%	Pass		473.4
2 Gas	235	8.9%	Fail	Gas	261	1.2%	Pass		258.0
3 Gas	45	3.6%	Pass		45	3.6%	Pass		43.4

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure (PSI)	NO (ppm)	O ₂ (Vol. %)	CO (ppm)
Zero Gas (N ₂)	T97227026	10-Nov-2022	9-Nov-2027	2270	0	0	0
1 Gas	SG9107852B	6-May-2021	5-May-2024	950	473.4	0	471.5
2 Gas	CC320634	23-Mar-2018	23-Mar-2026	520	258	0	1904
3 Gas	CC22286	18-Nov-2022	19-Nov-2026	1030	43.42	0	250.7
O ₂ /CO ₂	CC256047	11-Nov-2022	12-Nov-2030	1320	0	11.07	0

Note: National Institute of Standards and Technology traceable certificates are available upon request.