

WASTE-TO-ENERGY FACILITY

Appendices of Emissions Testing Report
May 2023 Survey
Second Quarter 2023

Table of Contents

<u>Appendix</u>

- A Quality Assurance / Quality Control Results
- B Calculations
- C Laboratory Results
- D Computer Generated Results
- E Field Data Sheets
- F Calibration Sheets and Technician Certificates

APPENDIX - A

QUALITY ASSURANCE / QUALITY CONTROL RESULTS

Quality assurance / quality control (QA/QC) is divided into four categories: administration, preparation, testing, and analysis. The following sections detail results found for the above four categories.

Administration:

- All field, process, and analytical data was reviewed to ensure data integrity and accuracy.
- Duplicate proof of draft and final report, including data entry, conducted.

Preparation:

- All glassware cleaned
- Blank samples of reagents collected.

Testing:

- Stack diameter and absence of cyclonic flow confirmed
- Calibrated magnehelic used for all velocity measurements
- All trains past pre- and post- leak checks.
- Isokinetics all within 100% ± 10%.

Analysis:

- Trace Metals and Mercury analysis conducted at Element Labs, Surrey, B.C.
- Fluoride (HF) analysis conducted at Element Labs in Surrey, B.C.
- Nitrous Oxide (N₂O) analysis conducted with portable analyzer by A. Lanfranco and Associates.
- Volatile Organic Compounds (VOC) analysis conducted at ALS Environmental in Simi Valley, CA.
- Particulate analysis conducted at A. Lanfranco and Associates Inc., Surrey, BC.
- Chain of Custody protocols followed for all samples.
- Acceptable blank values for all sample types. All samples blank corrected.

Sample Type				
Second Quarter 2023	Unit 1		Unit 2	Unit 3
Filter	0.2	mg	0.2 mg	0.3 mg
Front Half Washings	-0.5	mg	0.9 mg	0.3 mg
Mercury Front	<0.05	ug	<0.05 ug	<0.05 ug
Mercury Back	<0.203	ug	<0.20 ug	<0.209 ug
Trace Metals Front *	<14.9	ug	<17.0 ug	<22.2 ug
Trace Metals Back*	<44.6	ug	<44.6 ug	<25.2 ug
Ammonia	7.3	ug	<5.6 ug	23 ug
Fluoride	<8	ug	<7 ug	<7 ug

Sum of all reported elements except Hg*

APPENDIX - B CALCULATIONS

Equation 11

Equation 12

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-12 were used to calculate particulate concentration at standard conditions on a dry basis. Equations 13-27 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 28-30 were used to calculate the volumetric flowrate of the stack flue gas.

A2.1 Contaminant Concentration Calculations

Contaminant Concentration Calculations
$$c = \frac{m}{V_{std}}$$
 Equation 1
$$m_{part} = m_{filter} + m_{pw}$$
 Equation 2
$$m_i = m_{ana,i} - m_{blank}$$
 Equation 3
$$V_{std} = \frac{V_{std(imp)}}{35.315}$$
 Equation 4
$$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$$
 Equation 5
$$V_{samp} = V_{final} - V_{init}$$
 Equation 6
$$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$$
 Equation 7
$$\Delta H_{ave} = \frac{1}{n} \sum_{l=1}^{n} \Delta H_{l(act)}, where \ n = the \ number \ of \ points$$
 Equation 8
$$OC = \frac{20.9 - \% O_{2c}}{20.9 - \% O_{2m}}$$
 Equation 9
$$CO2C = \frac{\% CO_{2c}}{\% CO_{2m}}$$
 Equation 10
$$\% O_{2m} = \frac{1}{n} \sum_{l=1}^{n} \% O_{2l}, where \ n = the \ number \ of \ O_{2} \ measurements$$
 Equation 11

 $\%CO_{2m} = \frac{1}{n} \sum_{i=1}^{n} \%CO_{2i}$, where n =the number of CO_{2} measurements

Where,

c = Contaminant concentration

m = Contaminant mass

 m_i = Net analytical mass (mg, ng, or μ g) $m_{ana,i}$ = Analytical mass (mg, ng, or μ g) m_{blank} = Blank analytical mass (mg, ng, or μ g)

 m_{part} = Total particulate mass (mg)

 m_{filter} = Net particulate gain from filter (mg)

 m_{pw} = Net particulate gain from probe wash (mg) $V_{std(imp)}$ = Sample volume at standard conditions (ft³) V_{std} = Sample volume at standard conditions (m³) V_{samp} = Sample volume at actual conditions (ft³)

 V_{final} = Final gas meter reading (ft³) V_{init} = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) T_m = Gas meter temperature (°F)

 $T_{m(ave)}$ = Average gas meter temperature (°F) P_m = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg)

 ΔH_{ave} = Average of individual point orifice pressures (inches of H_2O) $\Delta H_{i(act)}$ = Individual recorded point orifice pressures (inches of H_2O)

OC = Oxygen correction factor (dimensionless)

CO2C = Carbon dioxide correction factor (dimensionless) $\%O_{2c}$ = Oxygen concentration to correct to (% dry basis)

 $\%O_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

 $%CO_{2c}$ = Carbon dioxide concentration to correct to (% dry basis)

 $%CO_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant. For particulate, m is the sum of the mass contributed from probe washing and filter particulate.

Equation 24

Isokinetic Variation Calculations

$$P_{stk} = P_B + \frac{P_g}{13.6}$$
 Equation 25

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
 , where $n =$ the number of points

Equation 26

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
, where $n =$ the number of points

Equation 27

Where,

 $A_n = Nozzle area (ft^2)$

 d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H₂O)

 P_g = Stack Static pressure (inches of H_2O) P_{stk} = Absolute stack pressure (inches of H_B) M_W = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

*%CO*₂ = Stack gas carbon dioxide concentration (% dry basis)

 $\%O_2$ = Stack gas oxygen concentration (% dry basis) B_{wo} = Stack gas water vapour, proportion by volume

V_{cond} = Total volume of water vapor collected, corrected to standard conditions

 (ft^3)

 V_{gain} = Condensate gain of impinger contents (mL) P_{std} = Standard pressure (29.92 inches of Hg)

 v_{stk} = Average flue gas velocity (ft/sec)

 v_i = Individual point flue gas velocity (ft/sec)

 v_{nz} = Average velocity at nozzle(ft/sec)

 v_{nzi} = Individual point velocity at nozzle(ft/sec) Iso_i = Individual point isokinetic variation (%)

Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (ft³/min)

A2.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$

$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
Equation 29
$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
Equation 30

Where,

 $Q_A = Actual flowrate (Am^3/min)$

 $Qs = Flowrate (m^3/min)$ at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)

d = Diameter of stack (inches)

APPENDIX - C LABORATORY RESULTS

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653254

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 14, 2023

2876520 Report Number:

Contact	Company	Address				
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street				
		Surrey, BC V4N 4W7				
		Phone: (604) 881-2582 Fax	c: (6	604) 881-2581		
		Email: mark.lanfranco@alanfranco.com				
Delivery	<u>Format</u>	<u>Deliverables</u>				
Email	PDF	COA / COC				
Email	PDF	COC / Test Report				
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street		-		
		Surrey, BC V4N 4W7				
		Phone: (604) 881-2582 Fax	c: (6	604) 881-2581		
		Email: missy@alanfranco.com				
Delivery	<u>Format</u>	<u>Deliverables</u>				
Email	PDF	Invoice				

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Field Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653254

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 14, 2023

2876520 Report Number:

Reference Number Sample Date Sample Time **Sample Location**

Sample Description

1653254-1 May 16, 2023 NA

(MV Unit 1 BLK + 4

Bottles)

1653254-2 May 17, 2023

1653254-3 May 18, 2023

NA NA

Field Blank Unit 1

Field Blank Unit 2 (MV Unit 2 BLK + 4 Bottles)

Field Blank Unit 3 (MV Unit 3 BLK + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals F	raction 1A					
Aluminum		μg	<5	7	<5	5
Antimony		μg	<2	<2	4	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	<0.2	<0.2	1.1	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	<0.3	<0.3	<0.3	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	<0.3	<0.3	0.3	0.25
Nickel		μg	0.9	1	1	0.5
Phosphorus		μg	10	7	9	2.5
Selenium		μg	2	<2	<2	1.5
Tellurium		μg	<2	<2	4.8	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	2	2	2	0.5
Back Half Metals Fr	action 2A	, 0				
Aluminum		μg	7	6	<5	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1.0	<0.9	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	1.4	0.86	0.86	0.2
Cobalt		μg	<0.2	0.7	<0.2	0.25
Copper		μg	1	<0.2	1	0.25
Lead		μg	<1	<1	<1	1.5
Manganese		μg	0.3	0.4	0.3	0.25
Nickel		μg	2	<0.5	1	0.5
Phosphorus		μg	25	20	20	2.5
Selenium		μg	<1	2.7	<1	1.5
Tellurium		μg	5.9	<2	<2	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<1.0	<0.9	<0.9	1
Zinc		μg	2	2.7	2	0.5
Volume	Sample	mL	302	324	319	
Volume	aliquot volume	mL	252	274	269	
Mercury by CVAA	4		-	•		
Mercury	As Tested	μg/L	<0.05	<0.05	< 0.05	0.05
<i>,</i>		r- <i>3</i> -				

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By:

Company:

Attn: Missy

Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653254

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 14, 2023

Report Number: 2876520

Reference Number 1653254-1 1653254-2 1653254-3 Sample Date May 16, 2023 May 17, 2023 May 18, 2023 Sample Time NA NA NA

Sample Location

Sample Description Field Blank Unit 1 (MV Unit 1 BLK + 4

Bottles)

Field Blank Unit 2 (MV Unit 2 BLK + 4 Bottles)

Field Blank Unit 3 (MV Unit 3 BLK + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	<0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	302	324	319	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.1	<0.1	<0.1	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	151	128	145	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.01	<0.01	<0.01	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	1000	500	1000	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.08	< 0.04	<0.08	
Mercury	As Tested	μg/L	0.09	< 0.05	0.18	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.03	<0.02	0.059	

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Field Blanks

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653254

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 14, 2023 Report Number: 2876520

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Jun 12, 2023	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	May 25, 2023	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	May 25, 2023	Element Vancouver
		* Potoronco Mothod Modified		

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653268

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 14, 2023 Report Number: 2876512

Contact	Company	Address				
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street				
		Surrey, BC V4N 4W7				
		Phone: (604) 881-2582 Fax: (604) 881-2581				
		Email: mark.lanfranco@alanfranco.com				
Delivery	<u>Format</u>	<u>Deliverables</u>				
Email	PDF	COA / COC				
Email	PDF	COC / Test Report				
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street				
		Surrey, BC V4N 4W7				
		Phone: (604) 881-2582 Fax: (604) 881-2581				
		Email: missy@alanfranco.com				
Delivery	<u>Format</u>	<u>Deliverables</u>				
Email	PDF	Invoice				

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE Filter Reagent Blanks

Project Name: **Project Location:**

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653268

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 14, 2023

Report Number: 2876512

Reference Number Sample Date Sample Time

1653268-1 May 15, 2023 NA

1653268-2 May 15, 2023

1653268-3 May 15, 2023

NA NA

Sample Location

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3 Container 1 (filter) Container 1 (filter) Container 1 (filter)

Stack Samples Stack Samples Stack Samples

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	ction 1A					
Aluminum		μg	6	180	<5	5
Antimony		μg	<2	7	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	0.84	<0.2	<0.2	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	<0.3	<0.3	<0.3	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	0.3	0.4	0.3	0.25
Nickel		μg	<0.5	<0.5	0.6	0.5
Phosphorus		μg	10	26	10	2.5
Selenium		μg	7.3	<2	<2	1.5
Tellurium		μg	9.2	<2	6.5	2
Thallium		μg	5.3	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	2	13	2	0.5
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	µg/sample	<0.02	<0.02	<0.02	

Approved by:

Max Hewitt

Metro Vancouver WTE

Filter Reagent Blanks

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7 Attn: Missy

Sampled By:

Company:

Project Name:

Project ID:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653268

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 14, 2023 Report Number: 2876512

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Jun 12, 2023	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	May 25, 2023	Element Vancouver

* Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

Appendix B - Particulate Analysis

Client:Metro VancouverSample Date:May 15-18, 2023Source:Units 1, 2, and 3Location:WTE (Burnaby, B.C)

A. Lanfranco & Associates Standard Operating Procedure:

SOP 1.2.1 Gravimetric determination of total particulate matter

Test #	Initial	Final	Net Diference	Blank Adjusted	
_	(grams)	(grams)	(grams)	(grams)	
Unit 1 Blank	0.4656	0.4658	0.0002		
Unit 1 Run 1	0.4670	0.4669	-0.0001	ND	
Unit 1 Run 2	0.4669	0.4674	0.0005	0.0003	
Unit 1 Run 3	0.4662	0.4662	0.0000	ND	
Unit 2 Blank	0.4673	0.4675	0.0002		
Unit 2 Run 1	0.4675	0.4669	-0.0006	ND	
Unit 2 Run 2	0.4656	0.4673	0.0017	0.0015	
Unit 2 Run 3	0.4654	0.4657	0.0003	0.0001	
Unit 3 Blank	0.4649	0.4652	0.0003		
Unit 3 Run 1	0.4674	0.4724	0.0050	0.0047	
Unit 3 Run 2	0.4679	0.4766	0.0087	0.0084	
Unit 3 Run 3	0.4635	0.4700	0.0065	0.0062	
Front Half Washings:					
Test #	Initia	Final	Net	Blank	
			Diference	Adjusted	
	(grams)	(grams)	(grams)	(grams)	
Unit 1 Blank	121.3313	121.3308	-0.0005		
Unit 1 Run 1	102.5383	102.5400	0.0017	0.0022	
Unit 1 Run 2	119.7613			0.0014	
Unit 1 Run 3	97.5817	97.5820	0.0003	0.0008	
Unit 2 Blank	114.3618	114.3627	0.0009		
Unit 2 Run 1	119.9495			ND	
Unit 2 Run 2	92.7512		0.0009	ND	
Unit 2 Run 3	117.7447	117.7450	0.0003	ND	
Unit 3 Blank	121.7991				
Unit 3 Run 1	87.9210		0.0013	0.0010	
Unit 3 Run 2	95.9973		0.0018	0.0015	
Unit 3 Run 3	123.7625	123.7645	0.0020	0.0017	
Task	Unit	Personnel	Date	Quality Control	Y/N
Fiter Recovery:	Unit 1	S.Harrington	15-16-May-23	Adequate PW volume:	Y
	Unit 2	S.Harrington	16-17-May-23	No sample leakage:	Y
	Unit 3	S.Harrington	17-18-May-23	Filter not compromised:	Y
PW Initial Analysis:	Unit 1	J. Ching	19-May-23		
-	Unit 2	J. Ching	19-May-23		
	Unit 3	J. Ching	19-May-23		
PW, FilterFinal Analysis:	Unit 1	D. Sampson	24-May-23		
2 , 1 11011 mai / mai y 515.	Unit 2	D. Sampson	24-May-23		
	Unit 3	•	•		
D 1.		D. Sampson	24-May-23		
Data entered to computer:	All	S. Harrington	26-May-23		

Comments:

No problems encountered in sample analysis.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652737

Control Number:

Date Received: May 23, 2023
Date Reported: May 25, 2023

Report Number: 2875824

Contact	Company	Address					
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street					
		Surrey, BC V4N 4W7					
		Phone: (604) 881-2582 Fax: (604) 881-2581					
		Email: mark.lanfranco@alanfranco.com					
Delivery	<u>Format</u>	<u>Deliverables</u>					
Email	PDF	COA / COC					
Email	PDF	COC / Test Report					
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street					
		Surrey, BC V4N 4W7					
		Phone: (604) 881-2582 Fax: (604) 881-2581					
		Email: missy@alanfranco.com					
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>					
Email	PDF	Invoice					

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF Blanks

LSD: P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1652737

Control Number:

Date Received: May 23, 2023
Date Reported: May 25, 2023

Report Number: 2875824

Reference Number Sample Date Sample Time 1652737-1 May 16, 2023 NA 1652737-2 May 17, 2023 NA 1652737-3 May 18, 2023

NA

Sample Location
Sample Description

Unit #1 HF Blank / 19.8 °C Unit #2 HF Blank / 19.8 °C Unit #3 HF Blank / 19.8 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Volume	Sample	mL	255	247	247	
Dilution Factor	fluoride		1.00000000	1.00000000	1.0000000	0
Fluoride	As Tested	mg/L	< 0.03	< 0.03	< 0.03	0.03
Fluoride	Water Soluble	μg/sample	<8	<7	<7	

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7 Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

HF Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652737

Control Number:

Date Received: May 23, 2023 Date Reported: May 25, 2023

2875824 Report Number:

Method of Analysis

Method Name Method Reference Date Analysis Location Started Anions by IEC in air (VAN) **EMC** * Determination of Hydrogen Halide & May 24, 2023 Element Vancouver

> Sources (Isokinetic), 26A * Reference Method Modified

Halogen Emissions from Stationary

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652732

Control Number:

Date Received: May 23, 2023
Date Reported: May 25, 2023

Report Number: 2875817

Contact	Company	Address					
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street					
		Surrey, BC V4N 4W7					
		Phone: (604) 881-2582 Fax: (604) 881-2581					
		Email: mark.lanfranco@alanfranco.com					
Delivery	<u>Format</u>	<u>Deliverables</u>					
Email	PDF	COA / COC					
Email	PDF	COC / Test Report					
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street					
		Surrey, BC V4N 4W7					
		Phone: (604) 881-2582 Fax: (604) 881-2581					
		Email: missy@alanfranco.com					
Delivery	<u>Format</u>	<u>Deliverables</u>					
Email	PDF	Invoice					

Notes To Clients:

May 24, 2023 - Reduction of analytical volume was necessary for anion analysis due to matrix effects in lot 1652732. Detection limits are adjusted
accordingly.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: **HF Samples**

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652732

Control Number:

Date Received: May 23, 2023 Date Reported: May 25, 2023

2875817 Report Number:

Reference Number Sample Date Sample Time

Sample Location

Matrix

1652732-1 May 16, 2023 NA

1652732-2 May 16, 2023

1652732-3 May 16, 2023

NA

NA

Sample Description Unit #1 HF Run 1 / 19.8 °C

Unit #1 HF Run 2 / 19.8 °C

Unit #1 HF Run 3 / 19.8 °C

Stack Samples Stack Samples Stack Samples Nominal Detection Units Results Results Results Analyte Air Quality Volume Sample mL 308 340 413 fluoride Dilution Factor 1.00000000 10.00 10.00 Fluoride As Tested < 0.03 < 0.3 <0.3 0.03 mg/L Fluoride Water Soluble µg/sample <10 <9 <10

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: **HF Samples**

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652732

Control Number:

Date Received: May 23, 2023 Date Reported: May 25, 2023

2875817 Report Number:

1652732-4 1652732-5 Reference Number 1652732-6 Sample Date May 17, 2023 May 17, 2023 May 17, 2023 Sample Time NA NA NA

Sample Location

Unit #2 HF Run 2 / **Sample Description** Unit #2 HF Run 1 / Unit #2 HF Run 3 / 19.8 °C 19.8 °C 19.8 °C

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Analyte **Units** Results Results Results Limit Air Quality

373 Volume Sample 366 350 mL Dilution Factor fluoride 10.00 10.00 10.00 Fluoride As Tested mg/L < 0.3 < 0.3 < 0.3 0.03 Fluoride Water Soluble µg/sample <10 <10 <10

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

HF Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652732

Control Number:

Date Received: May 23, 2023 Date Reported: May 25, 2023

Report Number: 2875817

Reference Number 1652732-7 1652732-8 1652732-9 Sample Date May 18, 2023 May 18, 2023 May 18, 2023 Sample Time NA NA NA

Sample Location

Unit #3 HF Run 1 / Unit #3 HF Run 2 / Unit #3 HF Run 3 / **Sample Description** 19.8 °C

19.8 °C 19.8 °C

Matrix Stack Samples Stack Samples Stack Samples

Units	Results	Results	Results	Nominal Detection Limit
mL	360	306	358	
	10.00	10.00	10.00	
mg/L	<0.3	<0.3	<0.3	0.03
μg/sample	<10	<9	<10	
•	mL mg/L	mL 360 10.00 mg/L <0.3	mL 360 306 10.00 10.00 mg/L <0.3 <0.3	mL 360 306 358 10.00 10.00 10.00 mg/L <0.3 <0.3 <0.3

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7 Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: **HF Samples**

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652732

Control Number:

Date Received: May 23, 2023 May 25, 2023 Date Reported:

Report Number: 2875817

Method of Analysis

Method Name Method Reference Date Analysis Location Started Anions by IEC in air (VAN) **EMC** * Determination of Hydrogen Halide & May 24, 2023 Element Vancouver Halogen Emissions from Stationary

Sources (Isokinetic), 26A

* Reference Method Modified

References

EMC Emission Measurement Center of EPA

Comments:

• May 24, 2023 - Reduction of analytical volume was necessary for anion analysis due to matrix effects in lot 1652732. Detection limits are adjusted accordingly.

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653281

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 15, 2023

2876531 Report Number:

Contact	Company	Address			
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street			
		Surrey, BC V4N 4W7			
		Phone: (604) 881-2582 Fax: (604) 881-2581			
		Email: mark.lanfranco@alanfranco.com			
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>			
Email	PDF	COA / COC			
Email	PDF	COC / Test Report			
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street			
		Surrey, BC V4N 4W7			
		Phone: (604) 881-2582 Fax: (604) 881-2581			
		Email: missy@alanfranco.com			
Delivery	<u>Format</u>	<u>Deliverables</u>			
Email	PDF	Invoice			

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

1653281-1

May 15, 2023

NA

Unit 1 Run 1 + 4

Bottles)

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE Metals and Hg Samples

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Reference Number

Sample Date

Sample Time

Sample Location

Sample Description

Lot ID: 1653281

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 15, 2023 2876531 Report Number:

May 16, 2023 May 16, 2023 NA

NA

Unit 1 Run 1 (MV

Unit 1 Run 2 (MV Unit 1 Run 2 + 4 Bottles)

1653281-2

Unit 1 Run 3 (MV Unit 1 Run 3 + 4 Bottles)

1653281-3

			Dottics)	Dotties)	Dottics)	
		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection
Front Half Metals Fra	ection 1A					2
Aluminum		μg	26	20	20	5
Antimony		μg	<2	<2	5	2.5
Arsenic		μg	2.9	<1	<1	1
Cadmium		μg	<0.3	0.3	<0.3	0.25
Chromium		μg	2.81	1.6	12.6	0.2
Cobalt		μg	0.7	<0.3	0.4	0.25
Copper		μg	2	2.6	<0.3	0.25
Lead		μg	5.1	<2	<2	1.5
Manganese		μg	2	2	2.7	0.25
Nickel		μg	2.9	15	13	0.5
Phosphorus		μg	20	20	20	2.5
Selenium		μg	10	13	23	1.5
Tellurium		μg	6.2	6.2	<2	2
Thallium		μg	<2	7.9	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	13	25	19	0.5
Back Half Metals Fra	ction 2A					
Aluminum		μg	40	40	20	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	0.9	3.4	3.1	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	2.46	1.8	2.1	0.2
Cobalt		μg	<0.2	<0.2	<0.2	0.25
Copper		μg	3.1	1	2	0.25
Lead		μg	<1	<1	<1	1.5
Manganese		μg	1	1	1	0.25
Nickel		μg	2	1.0	1	0.5
Phosphorus		μg	24	24	22	2.5
Selenium		μg	<1	<1	2	1.5
Tellurium		μg	2.4	2.2	<2	2
Thallium		μg	2	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	4.4	3.9	3.7	0.5
Volume	Sample	mL	830	750	750	
Volume	aliquot volume	mL	780	700	700	
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653281

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 15, 2023

2876531 Report Number:

1653281-2 Reference Number 1653281-1 Sample Date May 15, 2023 May 16, 2023 Sample Time NA NA **Sample Location**

Sample Description Unit 1 Run 1 (MV Unit 1 Run 2 (MV

Unit 1 Run 1 + 4 Unit 1 Run 2 + 4 Bottles) Bottles)

Unit 1 Run 3 (MV Unit 1 Run 3 + 4 Bottles)

1653281-3

May 16, 2023

NA

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	<0.02	<0.02	<0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	830	750	750	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	152	144	155	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.01	<0.01	<0.01	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	1000	1000	1000	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.08	<0.08	<0.08	
Mercury	As Tested	μg/L	0.17	0.08	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	µg/sample	0.055	0.03	<0.02	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653281

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 15, 2023

2876531 Report Number:

Reference Number Sample Date Sample Time **Sample Location**

1653281-4 May 16, 2023 NA

1653281-5 May 17, 2023 NA

1653281-6 May 17, 2023

NA

Sample Description Unit 2 Run 1 (MV Unit 2 Run 1 + 4 Bottles)

Unit 2 Run 2 (Unit-2 Unit 2 Run 3 (Unit -2 Run 2 + 4 Bottles)

Run 3 + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	ction 1A					· · · · · · · · · · · · · · · · · · ·
Aluminum		μg	10	10	5	5
Antimony		μg	<2	<2	7	2.5
Arsenic		μg	<1	1	1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	3.40	4.70	2.67	0.2
Cobalt		μg	<0.3	0.6	<0.3	0.25
Copper		μg	<0.3	<0.3	<0.3	0.25
Lead		μg	2	<2	<2	1.5
Manganese		μg	1	2.6	1.0	0.25
Nickel		μg	2.6	13	11	0.5
Phosphorus		μg	10	10	10	2.5
Selenium		μg	12	<2	5.4	1.5
Tellurium		μg	4.6	2.6	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	5.9	6.2	4.8	0.5
Back Half Metals Frac	ction 2A					
Aluminum		μg	20	20	28	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<0.9	0.9	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	1.3	1.4	3.10	0.2
Cobalt		μg	<0.2	<0.2	<0.2	0.25
Copper		μg	2.7	2	2	0.25
Lead		μg	2	<1	<1	1.5
Manganese		μg	0.8	0.7	1	0.25
Nickel		μg	0.8	1	1	0.5
Phosphorus		μg	29	25	22	2.5
Selenium		μg	<1	<1	<1	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	6.6	3.0	7.3	0.5
Volume	Sample	mL	850	776	825	
Volume	aliquot volume	mL	800	726	775	
Mercury by CVAA	•					
Mercury	As Tested	μg/L	< 0.05	<0.05	< 0.05	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE Metals and Hg Samples

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653281

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 15, 2023

Report Number: 2876531

Reference Number 1653281-4 1653281-5 1653281-6 Sample Date May 16, 2023 May 17, 2023 May 17, 2023 Sample Time NA NA NA

Sample Location

Sample Description Unit 2 Run 1 + 4

Unit 2 Run 1 (MV Unit 2 Run 2 (Unit-2 Unit 2 Run 3 (Unit -2 Run 2 + 4 Bottles) Run 3 + 4 Bottles)

Bottles)

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Analyte Units Results Results Results Limit Mercury by CVAA - Continued Dilution Factor As Tested 1 1 1 Volume Sample mL 250 250 250 25 Volume aliquot volume mL 25 25 Volume Final 40 40 40 mL Mercury Fraction 1B µg/sample < 0.02 < 0.02 < 0.02 Mercury As Tested μg/L < 0.05 < 0.05 < 0.05 0.05 As Tested **Dilution Factor** 1 1 850 Volume Sample mL 776 825 Volume aliquot volume mL 5.0 5.0 5.0 Volume Final mL 40 40 40 Mercury Fraction 2B µg/sample < 0.3 < 0.3 < 0.3 < 0.05 0.05 Mercury As Tested μg/L < 0.05 < 0.05 **Dilution Factor** As Tested 1 1 1 Volume Sample 148 143 mL 162 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3A µg/sample < 0.01 < 0.01 < 0.01 0.05 As Tested < 0.05 < 0.05 < 0.05 Mercury μg/L **Dilution Factor** As Tested 1 1 1 Volume Sample mL 1000 1000 1000 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Fraction 3B < 0.08 < 0.08 Mercury µg/sample <0.08 Mercury As Tested μg/L < 0.05 0.12 0.06 0.05 **Dilution Factor** As Tested 1 1 1 Volume Sample 200 200 200 mL aliquot volume 25 25 25 Volume mL Volume Final mL 40 40 40 Fraction 3C < 0.02 0.040 0.02 Mercury µg/sample

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653281

Control Number:

Date Received: May 24, 2023
Date Reported: Jun 15, 2023
Report Number: 2876531

Reference Number
Sample Date
Sample Time
Sample Location

1653281-7 May 17, 2023 NA

Bottles

1653281-8 May 18, 2023 NA 1653281-9 May 18, 2023

NA

Sample Description Unit 3 Run 1 (MV Unit 3 Run 1 + 4

Unit 3 Run 2 (MV Unit 3 Run 2 + 4 Bottles) Unit 3 Run 3 (MF-3 Run 3 + 4 Bottles)

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Analyte **Units** Results Results Results Limit Front Half Metals Fraction 1A Aluminum 20 27 20 5 μg Antimony 3 <2 10 2.5 μg 4.1 Arsenic <1 1 1 μg Cadmium 8.0 2.7 0.25 μg 1 Chromium μg 1.6 0.87 2.2 0.2 Cobalt < 0.3 0.4 < 0.3 0.25 μg 4.4 5.0 0.25 Copper 4.0 μg Lead 6.1 12 11 1.5 μg Manganese μg 2 3.1 2.7 0.25 Nickel 3.0 6.2 4.7 0.5 μg Phosphorus 10 20 20 2.5 μg 2.9 <2 4.7 1.5 Selenium μg Tellurium 3.8 4.9 3.0 2 μg Thallium 3.4 <2 2 1.5 μg Vanadium <1 <1 <1 1 μg 0.5 Zinc μg 65.1 96.8 136 **Back Half Metals Fraction 2A** 10 10 20 5 Aluminum μg Antimony <2 <2 <2 2.5 μg Arsenic 1 2 2.5 1 μg Cadmium < 0.2 < 0.2 < 0.2 0.25 μg Chromium 2.15 1.1 1.9 0.2 μg <0.2 <0.2 0.25 Cobalt <0.2 μg Copper 2 1 0.3 0.25 μg Lead 2.4 <1 3.6 1.5 μg 0.7 0.25 Manganese 0.4 1 μg Nickel μg 1 2 0.9 0.5 Phosphorus 23 20 21 2.5 μg Selenium 1.5 μg <1 <1 <1 Tellurium <2 <2 <2 2 μg Thallium <1 <1 <1 1.5 μg Vanadium < 0.9 < 0.9 < 0.9 1 μg Zinc 5.1 2.4 3.5 0.5 μg Sample 828 803 826 Volume mL Volume aliquot volume mL 753 776 778 Mercury by CVAA As Tested < 0.05 0.28 0.20 0.05 Mercury µg/L

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Sample Location Sample Description Lot ID: 1653281

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 15, 2023 Report Number: 2876531

Reference Number 1653281-7 Sample Date May 17, 2023 Sample Time NA

May 18, 2023 NA

May 18, 2023

NA

Unit 3 Run 1 (MV Unit 3 Run 2 (MV Unit 3 Run 1 + 4 Unit 3 Run 2 + 4 Bottles

Bottles)

1653281-8

Unit 3 Run 3 (MF-3 Run 3 + 4 Bottles)

1653281-9

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	0.11	0.082	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	803	826	828	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	< 0.3	< 0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	153	166	150	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.01	<0.01	<0.01	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	1000	1000	1000	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.08	<0.08	<0.08	
Mercury	As Tested	μg/L	0.07	0.07	0.21	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.02	0.02	0.068	

Approved by:

Operations Chemist

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653281

Control Number:

Date Received: May 24, 2023
Date Reported: Jun 15, 2023
Report Number: 2876531

· · · · · · · · · · · · · · · · · ·			
Method of Analysis			
Method Name	Reference	Method	Date Analysis Location Started
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Jun 12, 2023 Element Vancouver
Mercury in Air (VAN) - 1B	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023 Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023 Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023 Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023 Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023 Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	May 25, 2023 Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	May 25, 2023 Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

Metro Vancouver WTE

NH3 Blanks

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project Location:

Project ID:

Project Name:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652746

Control Number:

Date Received: May 23, 2023 Date Reported: May 26, 2023

2875839 Report Number:

Contact	Company	Address					
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street					
		Surrey, BC V4N 4W7					
		Phone: (604) 881-2582 Fax: (604) 881-2581					
		Email: mark.lanfranco@alanfranco.com					
Delivery	<u>Format</u>	<u>Deliverables</u>					
Email	PDF	COA / COC					
Email	PDF	COC / Test Report					
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street					
		Surrey, BC V4N 4W7					
		Phone: (604) 881-2582 Fax: (604) 881-2581					
		Email: missy@alanfranco.com					
Delivery	<u>Format</u>	<u>Deliverables</u>					
Email	PDF	Invoice					

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com
W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652746

Control Number:

Date Received: May 23, 2023
Date Reported: May 26, 2023

Report Number: 2875839

Reference Number Sample Date Sample Time 1652746-1 May 16, 2023 NA 1652746-2 May 17, 2023 NA 1652746-3 May 18, 2023

NA

Sample Location Sample Description

Matrix

Unit #1 NH3 Blk / 19.8 °C

Stack Samples

Unit #2 NH3 Blk / 19.8 °C

Stack Samples

Unit #3 NH3 Blk / 19.8 °C Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						_
Ammonium - N	As Tested	μg/L	28	<25	78	25
Dilution Factor	As Tested		1.00	1.00	1.00	
Sample Volume	Sample volume	mL	262	223	300	
Ammonium - N		μg/sample	7.3	<5.6	23	

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks
Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652746

Control Number:

Date Received: May 23, 2023
Date Reported: May 26, 2023
Report Number: 2875839

eport Number. 20750

Method of Analysis

Method Name Reference Method Date Analysis Location Started

Ammonium in Impingers (VAN) APHA * Automated Phenate Method, 4500-NH3 G May 25, 2023 Element Edmonton - Roper

Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

Metro Vancouver WTE

NH3 Samples

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project Name:

Project ID:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652742

Control Number:

Date Received: May 23, 2023 Date Reported: May 26, 2023

2875835 Report Number:

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652742

Control Number:

Date Received: May 23, 2023
Date Reported: May 26, 2023

Report Number: 2875835

 Reference Number
 1652742-1
 1652742-2
 1652742-3

 Sample Date
 May 16, 2023
 May 16, 2023
 May 16, 2023

 Sample Time
 NA
 NA
 NA

 Sample Location
 NA
 NA
 NA

 Sample Description
 Unit #1 NH3 Run 1 / Unit #1 NH3 Run 2 / Unit #1 NH3 Run 3 / 19.8 °C
 Unit #1 NH3 Run 2 / 19.8 °C
 Unit #1 NH3 Run 3 / 19.8 °C

Matrix Stack Samples Stack Samples Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Ammonium - N	As Tested	μg/L	1080	1760	4500	25
Dilution Factor	As Tested		1.00	1.00	1.00	
Sample Volume	Sample volume	mL	345	400	354	
Ammonium - N		μg/sample	373	702	1590	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652742

Control Number:

Date Received: May 23, 2023 Date Reported: May 26, 2023

2875835 Report Number:

1652742-4 1652742-5 1652742-6 Reference Number Sample Date May 17, 2023 May 17, 2023 May 17, 2023 Sample Time NA NA NA

Sample Location

Sample Description Unit #2 NH3 Run 1 / Unit #2 NH3 Run 2 / Unit #2 NH3 Run 3 / 19.8 °C 19.8 °C

19.8 °C

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Results Analyte **Units** Results Results Limit Air Quality Ammonium - N As Tested 1020 3460 102 25 μg/L Dilution Factor As Tested 1.00 1.00 1.00 Sample Volume Sample volume mL 416 378 400 Ammonium - N µg/sample 426 1310 40.8

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

NH3 Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652742

Control Number:

Date Received: May 23, 2023 Date Reported: May 26, 2023

2875835 Report Number:

Reference Number Sample Date

1652742-7 May 18, 2023

NA

1652742-8 May 18, 2023 NA

1652742-9 May 18, 2023

NA

Sample Time **Sample Location**

Sample Description Unit #3 NH3 Run 1 / Unit #3 NH3 Run 2 / Unit #3 NH3 Run 3 / 19.8 °C 19.8 °C

19.8 °C

Stack Samples Stack Samples

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						_
Ammonium - N	As Tested	μg/L	1440	218	2920	25
Dilution Factor	As Tested		1.00	1.00	1.00	
Sample Volume	Sample volume	mL	354	322	346	
Ammonium - N		μg/sample	510	70.2	1010	

Approved by:

Max Hewitt

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By:

Company:

Attn: Missy

Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1652742

Control Number:

Date Received: May 23, 2023 Date Reported: May 26, 2023

2875835 Report Number:

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Ammonium in Impingers (VAN)	APHA	* Automated Phenate Method, 4500-NH3 G	May 25, 2023	Element Edmonton - Roper

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653274

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 15, 2023

2876525 Report Number:

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Reagent Blanks

Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653274

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 15, 2023

2876525 Report Number:

Reference Number 1653274-1 1653274-2 1653274-3 Sample Date May 15, 2023 May 15, 2023 May 15, 2023 Sample Time NA NA NA

Sample Location

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	tion 1A					
Aluminum		μg	<5	5	<5	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	0.3	<0.3	0.25
Chromium		μg	0.34	<0.2	0.2	0.2
Cobalt		μg	<0.3	<0.3	0.6	0.25
Copper		μg	<0.3	<0.3	<0.3	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	<0.3	<0.3	<0.3	0.25
Nickel		μg	0.8	0.7	<0.5	0.5
Phosphorus		μg	<2	3	10	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	<2	5.4	6.2	2
Thallium		μg	<2	<2	2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	0.9	1.0	1.0	0.5
Back Half Metals Frac	tion 2A					
Aluminum		μg	<5	7	6	5
Antimony		μg	<3	<3	<3	2.5
Arsenic		μg	5.3	2	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	0.46	0.70	0.66	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	2	2	1	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	0.3	<0.3	0.3	0.25
Nickel		μg	0.7	1	0.7	0.5
Phosphorus		μg	20	20	20	2.5
Selenium		μg	3.5	<2	<2	1.5
Tellurium		μg	6.8	5.3	<2	2
Thallium		μg	4.7	<2	3	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	2	2.8	1	0.5
Volume	Sample	mL	201	207	213	
Volume	aliquot volume	mL	151	157	163	
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05	<0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653274

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 15, 2023

Report Number: 2876525

Reference Number 1653274-1 1653274-2 1653274-3 Sample Date May 15, 2023 May 15, 2023 May 15, 2023 Sample Time NA NA NA

Sample Location

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	201	207	213	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	50	50	50	
Mercury	Fraction 2B	μg/sample	<0.1	<0.1	<0.1	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	100	99	99	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	< 0.008	< 0.008	<0.008	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	< 0.04	< 0.04	< 0.04	
Mercury	As Tested	μg/L	0.11	0.10	0.10	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.036	0.033	0.03	

Approved by:

Operations Chemist

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com
W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Reagent Blanks

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1653274

Control Number:

Date Received: May 24, 2023 Date Reported: Jun 15, 2023 Report Number: 2876525

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Jun 12, 2023	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 12, 2023	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	May 25, 2023	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	May 25, 2023	Element Vancouver
		* Pafaranca Mathad Madified		

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

LABORATORY REPORT

June 1, 2023

Mark Lanfranco A. Lanfranco and Associates Inc. Unit 101 - 9488 189 St. Surrey, BC V4N 4W7

RE: Metro Vacouver W.T.E.

Dear Mark:

Enclosed are the results of the samples submitted to our laboratory on May 22, 2023. For your reference, these analyses have been assigned our service request number P2302296.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

ALS | Environmental

for Sue Anderson Project Manager

alsglobal.com

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

Client: A. Lanfranco and Associates Inc. Service Request No: P2302296

Project: Metro Vacouver W.T.E.

CASE NARRATIVE

The samples were received intact under chain of custody on May 22, 2023 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Methane, Ethene, Ethane, and C3 through C6+ Hydrocarbons Analysis

The samples were analyzed per modified EPA Method TO-3 for methane, ethene, ethane, and C3 through >C6 hydrocarbons using a gas chromatograph equipped with a flame ionization detector (FID). This procedure is described in laboratory SOP VOA-TO3C1C6. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP accreditation.

Manual integration of the chromatographic ranges in each sample with reported concentrations was required to correct the integration performed by the automated data processing program. The raw data states the rationale and specific ranges impacted by the manual integration.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	https://dec.alaska.gov/spar/csp/lab-approval/list-of-approved-labs	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental-laboratories/index.html	E871020
Louisiana DEQ (NELAP)	https://internet.deq.louisiana.gov/portal/divisions/lelap/accredited-laboratories	05071
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtm	2022028
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	006-999-456
New Jersey DEP (NELAP)	https://dep.nj.gov/dsr/oqa/certified-laboratories/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	4068-011
Pennsylvania DEP	hhttp://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env_lab_accreditation.html	T104704413- 22-13
Utah DOH (NELAP)	https://uphl.utah.gov/certifications/environmental-laboratory-certification/	CA016272022 -14
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client: A. Lanfranco and Associates Inc.

Project ID: Metro Vacouver W.T.E. Service Request: P2302296

Date Received: Time Received: Client Sample ID	5/22/2023 09:20 Lab Code	Matrix	Date Collected	Time Collected	Container ID	Pi1 (psig)	Pfl (psig)	0 - 2010 F- 3/11 FA	<u>ئ</u>	TO-3 Modified - MEEPP Can	
Unit 1 Run 1	P2302296-001	Air	5/16/2023	10:50	SC02337	-3.60	3.70			X	
Unit 1 Run 2	P2302296-002	Air	5/16/2023	12:10	SC01608	-2.30	3.83		X	X	
Unit 1 Run 3	P2302296-003	Air	5/16/2023	13:23	SC02191	-2.10	4.55		X	X	
Unit 2 Run 1	P2302296-004	Air	5/17/2023	10:58	SC00645	-0.85	3.95		X	X	
Unit 2 Run 2	P2302296-005	Air	5/17/2023	12:10	SC02245	-3.43	4.00		X	X	
Unit 2 Run 3	P2302296-006	Air	5/17/2023	13:22	SC01596	-3.75	4.15		X	X	
Unit 3 Run 1	P2302296-007	Air	5/18/2023	10:09	SC00095	-6.59	3.83		X	X	
Unit 3 Run 2	P2302296-008	Air	5/18/2023	11:26	SC01768	0.17	3.81		X	X	
Unit 3 Run 3	P2302296-009	Air	5/18/2023	12:40	SC02250	-4.17	4.41		X	X	

Air - Chain of Custody Record & Analytical Service Request

1	1	
Page	of	L

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

(ALS)	Phone (805)	526-7161			equested Turnaround Time in Business Days (Surcharges) please circle Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-Stan					ALS POISE N	BZZRL
				1 Day (100%) 2 Day	(1070) 0 Day (007	(0070)	o Day (2070) 10	Day otali	ALS Contact:		
Company Name & Address (Reporting				Project Name		+1					
4 Lanfranco & Associ				Metro Va	ncouver 1	N.I.E.			Analysis	Method	
# 101-9488 189 Street	SurreyiBo	C, Canada		Project Number					TO-3		
Project Manager Mark Lanfr	anco			P.O. # / Billing Inform	nation				(List on		Comments
Phone G04-881-2582 Email Address for Result Reporting	Fax			Bill to A	ccount				File)		e.g. Actual Preservative or
Email Address for Result Reporting	_			Sampler (Print & Sign)	ampler (Print & Sign)						specific instructions
mark.lanfrancopal	antranc	0.(0m		Christian	De Lai	O Cols					
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code # - FC #)	Canister Start Pressure "Hg	Canister End Pressure "Hg/psig	Sample Volume			
Unit Run	1	05-16-23	0950-1050	SC02337	0A00804	-27 li	-65"	64			
Unit 1 Runz	2	05-16-23	1110-1210	5001608	0A00538	-29.5"	- 6 11	GL			
Unit 1 Run 3	3	05-16-23	1223-1323	SC0 2191	DA01426	-2811	-4"	6L			
Unit 2 Run 1	4	05-17-23	0958-1058	SC00645	0AD0030	- 28.5"	-2.5"	6 L			
Unit 2 Run 2	(05-17-23	1110-1210	SC02245	0A01178	-29.511	-3"	6L			
Unit 2 Run 3	Ç	05-17-23	1222+1322	SC01596	0A-00936	-264	-55"	6L			
Unit 3 Run 1	1	05-18-23	0904-1009	SCO 0095	OA 00984	-30"	-14.5"	6L			
Unit 3 Run 2	8	05-18-23	1026-1126	SC01768	DA 02930	-20"	-6.5 "	GL			
Unit 3 Run 3	5	05-16-23	1140-1240	SCO 2250	0A01669	-30"	-94	64			
	-										
											1-
B	Tion Lovele	nlesse sala	ot .					L			Project Requirements
Tier I - Results (Default if not specified) Tier II (Results + QC Summaries)	Tier III	- please sele (Results + QC Data Validation I	& Calibration Su	ummaries) Surcharge	EDD required Ye	es / No Units:			Custody Seal: BROKEN		(MRLs, QAPP)
Relinquished by: (Signature)			Date:	Time:	Received by: (Signa	ature)		_	Date:	Time:	
Relinquished by: (Signature)			Date:	Time: Pa	agres500628y: (81gna	ature)		- 1	Date 7-27	Time: 920	Cooler / Blank Temperature°C

ALS Environmental Sample Acceptance Check Form

	t: Metro Vacou	o and Associates Inc.			-	Work order:	P2302296			
	e(s) received or				Date opened	5/22/23	by:	ADAV	'ID	
lota: Thi	s form is used for	all samples received by ALS	The use of this f	Form for custody s	eals is strictly m	eant to indicate presen	ce/absence and no	nt ac an i	ndication	of
		y. Thermal preservation and							idication	01
omphane	e or noncomorning	y. Thermal preservation and	i pir win only oc c	varuated ettiler at	the request of th	ic chefit and/or as requ	area by the metho	Yes	No	N/A
1	Were sample	e containers properly	marked with cl	ient sample ID	?			X		
2	-	containers arrive in go		1				X		
3	Were chain-	of-custody papers use	d and filled out	t?				X		
4		container labels and/o			ers?			X		
5	-	volume received adeq						$\overline{\mathbf{x}}$		
6	-	within specified holding	•					X		
7	•	temperature (thermal	•	of cooler at rec	eint adhered	to?				×
,	·· do proper	omportuna o (morrina	pr - 22 - 21 (1211)	,						_
8	Were custod	ly seals on outside of c	ooler/Box/Con	ntainer?					X	
O	vv ere custou	Location of seal(s)		itumer.			Sealing Lid?			×
	Were signatu	are and date included?					Scaling Lia.			X
	Were seals in									\boxtimes
9		ners have appropriate p	recervation a	ecording to me	ethod/SOP or	Client specified i	nformation?			X
9		ent indication that the		•		Chefit specified i	inormation:			X
		vials checked for pres			eserveu:					X
					unale all end	if = = = = = = = = = = = = = = = = = = =	:49			X
1.0		ent/method/SOP requir	-		шріе ргі апо	in necessary after	11.			
10	Tubes:	Are the tubes cap	-							X
11	Badges:	Are the badges p								\boxtimes
		Are dual bed bac	lges separated a	and individuall	y capped and	l intact?				X
Lal	b Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receip	t / Pres	ervation	1
		Description	pH *	pН	pН	(Presence/Absence)		Comme	nts	
23022	96-001.01	6.0 L Source Can			İ					
23022	96-002.01	6.0 L Source Can								
	96-003.01	6.0 L Source Can								
	96-004.01	6.0 L Source Can								
	96-005.01	6.0 L Source Can								
	96-006.01 96-007.01	6.0 L Source Can 6.0 L Source Can								
	96-008.01	6.0 L Source Can								
	96-009.01	6.0 L Source Can								
					-	+				
		1		<u> </u>	<u> </u>	<u> </u>	<u> </u>			
Expla	un any discrepan	icies: (include lab sample	iD numbers):							

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 1

ALS Project ID: P2302296

Client Project ID: Metro Vacouver W.T.E.

ALS Sample ID: P2302296-001

Test Code:EPA TO-3 ModifiedDate Collected: 5/16/23Instrument ID:HP5890A/GC10/FIDDate Received: 5/22/23Analyst:Gilbert GutierrezDate Analyzed: 5/23/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02337

Initial Pressure (psig): -3.60 Final Pressure (psig): 3.70

Container Dilution Factor: 1.66

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.2	ND	3.3	
74-85-1	Ethene	ND	1.1	ND	1.0	
74-84-0	Ethane	ND	1.2	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 2

Client Project ID: Metro Vacouver W.T.E.

ALS Project ID: P2302296

ALS Sample ID: P2302296-002

Test Code: EPA TO-3 Modified Date Collected: 5/16/23
Instrument ID: HP5890A/GC10/FID Date Received: 5/22/23
Analyst: Gilbert Gutierrez Date Analyzed: 5/23/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01608

Initial Pressure (psig): -2.30 Final Pressure (psig): 3.83

Container Dilution Factor: 1.49

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.0	ND	3.0	_
74-85-1	Ethene	ND	1.0	ND	0.89	
74-84-0	Ethane	ND	1.1	ND	0.89	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 3

Client Project ID: P2302296

ALS Project ID: P2302296-003

ALS Sample ID: P2302296-003

Test Code: EPA TO-3 Modified Date Collected: 5/16/23
Instrument ID: HP5890A/GC10/FID Date Received: 5/22/23
Analyst: Gilbert Gutierrez Date Analyzed: 5/23/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02191

Initial Pressure (psig): -2.10 Final Pressure (psig): 4.55

Container Dilution Factor: 1.53

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.0	ND	3.1	
74-85-1	Ethene	ND	1.1	ND	0.92	
74-84-0	Ethane	ND	1.1	ND	0.92	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1 ALS Project ID: P2302296
Client Project ID: Metro Vacouver W.T.E. ALS Sample ID: P2302296-004

Test Code: EPA TO-3 Modified Date Collected: 5/17/23
Instrument ID: HP5890A/GC10/FID Date Received: 5/22/23
Analyst: Gilbert Gutierrez Date Analyzed: 5/23/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00645

Initial Pressure (psig): -0.85 Final Pressure (psig): 3.95

Container Dilution Factor: 1.35

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	1.8	ND	2.7	
74-85-1	Ethene	ND	0.93	ND	0.81	
74-84-0	Ethane	ND	1.0	ND	0.81	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: Metro Vacouver W.T.E.

ALS Project ID: P2302296

ALS Sample ID: P2302296-005

Test Code: EPA TO-3 Modified Date Collected: 5/17/23
Instrument ID: HP5890A/GC10/FID Date Received: 5/22/23
Analyst: Gilbert Gutierrez Date Analyzed: 5/23/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02245

Initial Pressure (psig): -3.43 Final Pressure (psig): 4.00

Container Dilution Factor: 1.66

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.2	ND	3.3	_
74-85-1	Ethene	ND	1.1	ND	1.0	
74-84-0	Ethane	ND	1.2	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: P2302296

ALS Project ID: P2302296-006

Test Code: EPA TO-3 Modified Date Collected: 5/17/23
Instrument ID: HP5890A/GC10/FID Date Received: 5/22/23
Analyst: Gilbert Gutierrez Date Analyzed: 5/23/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01596

Initial Pressure (psig): -3.60 Final Pressure (psig): 3.70

Container Dilution Factor: 1.66

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.2	ND	3.3	_
74-85-1	Ethene	ND	1.1	ND	1.0	
74-84-0	Ethane	ND	1.2	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2302296
Client Project ID: Metro Vacouver W.T.E. ALS Sample ID: P2302296-007

Test Code: EPA TO-3 Modified Date Collected: 5/18/23
Instrument ID: HP5890A/GC10/FID Date Received: 5/22/23
Analyst: Gilbert Gutierrez Date Analyzed: 5/23/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00095

Initial Pressure (psig): -2.30 Final Pressure (psig): 3.83

Container Dilution Factor: 1.49

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.0	ND	3.0	
74-85-1	Ethene	ND	1.0	ND	0.89	
74-84-0	Ethane	ND	1.1	ND	0.89	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: P2302296

ALS Project ID: P2302296-008

ALS Sample ID: P2302296-008

Test Code: EPA TO-3 Modified Date Collected: 5/18/23
Instrument ID: HP5890A/GC10/FID Date Received: 5/22/23
Analyst: Gilbert Gutierrez Date Analyzed: 5/23/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01768

Initial Pressure (psig): -2.10 Final Pressure (psig): 4.55

Container Dilution Factor: 1.53

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.2	2.0	3.4	3.1	
74-85-1	Ethene	ND	1.1	ND	0.92	
74-84-0	Ethane	ND	1.1	ND	0.92	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: P2302296

ALS Project ID: P2302296-009

ALS Sample ID: P2302296-009

Test Code: EPA TO-3 Modified Date Collected: 5/18/23
Instrument ID: HP5890A/GC10/FID Date Received: 5/22/23
Analyst: Gilbert Gutierrez Date Analyzed: 5/23/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02250

Initial Pressure (psig): -0.85 Final Pressure (psig): 3.95

Container Dilution Factor: 1.35

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	1.8	ND	2.7	
74-85-1	Ethene	ND	0.93	ND	0.81	
74-84-0	Ethane	ND	1.0	ND	0.81	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Method Blank
Client Project ID: Metro Vacouver W.T.E.

ALS Project ID: P2302296
ALS Sample ID: P230523-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID Date Received: NA
Analyst: Gilbert Gutierrez Date Analyzed: 5/23/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m³	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	1.3	ND	2.0	
74-85-1	Ethene	ND	0.69	ND	0.60	
74-84-0	Ethane	ND	0.74	ND	0.60	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Duplicate Lab Control SampleALS Project ID: P2302296Client Project ID:Metro Vacouver W.T.E.ALS Sample ID: P230523-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID Date Received: NA
Analyst: Gilbert Gutierrez Date Analyzed: 5/23/23
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

Test Notes:

CAS#	Compound	Spike Amount LCS / DLCS	Re LCS	sult DLCS	% Re	covery	ALS Acceptance	RPD	RPD	Data
	•	ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
74-82-8	Methane	7.60	7.35	7.19	97	95	70-130	2	15	
74-85-1	Ethene	7.55	7.31	7.04	97	93	70-130	4	15	
74-84-0	Ethane	7.50	7.63	7.31	102	97	70-130	5	15	

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 1

ALS Project ID: P2302296

Client Project ID: Metro Vacouver W.T.E.

ALS Sample ID: P2302296-001

Test Code:EPA TO-3 ModifiedDate Collected: 5/16/23Instrument ID:HP5890 II/GC8/FIDDate Received: 5/22/23Analyst:Kylan Malloy/Gilbert GutierrezDate Analyzed: 5/25/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02337

Initial Pressure (psig): -3.60 Final Pressure (psig): 3.70

Container Dilution Factor: 1.66

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.83	
C ₄ as n-Butane	ND	0.83	
C ₅ as n-Pentane	ND	0.83	
C ₆ as n-Hexane	ND	0.83	
C ₆ + as n-Hexane	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 2

Client Project ID: Metro Vacouver W.T.E.

ALS Project ID: P2302296

ALS Sample ID: P2302296-002

Test Code: EPA TO-3 Modified Date Collected: 5/16/23
Instrument ID: HP5890 II/GC8/FID Date Received: 5/22/23
Analyst: Kylan Malloy/Gilbert Gutierrez Date Analyzed: 5/25/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01608

Initial Pressure (psig): -2.30 Final Pressure (psig): 3.83

Container Dilution Factor: 1.49

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.75	
C ₄ as n-Butane	ND	0.75	
C ₅ as n-Pentane	ND	0.75	
C ₆ as n-Hexane	ND	0.75	
C ₆ + as n-Hexane	ND	1.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 3

ALS Project ID: P2302296

Client Project ID: Metro Vacouver W.T.E.

ALS Sample ID: P2302296-003

Test Code: EPA TO-3 Modified Date Collected: 5/16/23
Instrument ID: HP5890 II/GC8/FID Date Received: 5/22/23
Analyst: Kylan Malloy/Gilbert Gutierrez Date Analyzed: 5/25/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02191

Initial Pressure (psig): -2.10 Final Pressure (psig): 4.55

Container Dilution Factor: 1.53

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.77	
C ₄ as n-Butane	ND	0.77	
C ₅ as n-Pentane	ND	0.77	
C ₆ as n-Hexane	ND	0.77	
C ₆ + as n-Hexane	ND	1.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1 ALS Project ID: P2302296
Client Project ID: Metro Vacouver W.T.E. ALS Sample ID: P2302296-004

Test Code: EPA TO-3 Modified Date Collected: 5/17/23
Instrument ID: HP5890 II/GC8/FID Date Received: 5/22/23
Analyst: Kylan Malloy/Gilbert Gutierrez Date Analyzed: 5/25/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00645

Initial Pressure (psig): -0.85 Final Pressure (psig): 3.95

Container Dilution Factor: 1.35

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.68	
C ₄ as n-Butane	ND	0.68	
C ₅ as n-Pentane	ND	0.68	
C ₆ as n-Hexane	ND	0.68	
C ₆ + as n-Hexane	ND	1.4	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: Metro Vacouver W.T.E.

ALS Project ID: P2302296

ALS Sample ID: P2302296-005

Test Code:EPA TO-3 ModifiedDate Collected: 5/17/23Instrument ID:HP5890 II/GC8/FIDDate Received: 5/22/23Analyst:Kylan Malloy/Gilbert GutierrezDate Analyzed: 5/25/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02245

Initial Pressure (psig): -3.43 Final Pressure (psig): 4.00

Container Dilution Factor: 1.66

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.83	
C ₄ as n-Butane	ND	0.83	
C ₅ as n-Pentane	ND	0.83	
C ₆ as n-Hexane	ND	0.83	
C ₆ + as n-Hexane	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: P2302296

ALS Project ID: P2302296-006

Test Code:EPA TO-3 ModifiedDate Collected: 5/17/23Instrument ID:HP5890 II/GC8/FIDDate Received: 5/22/23Analyst:Kylan Malloy/Gilbert GutierrezDate Analyzed: 5/25/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01596

Initial Pressure (psig): -3.75 Final Pressure (psig): 4.15

Container Dilution Factor: 1.72

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.86	
C ₄ as n-Butane	ND	0.86	
C ₅ as n-Pentane	ND	0.86	
C ₆ as n-Hexane	ND	0.86	
C ₆ + as n-Hexane	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2302296
Client Project ID: Metro Vacouver W.T.E. ALS Sample ID: P2302296-007

Test Code:EPA TO-3 ModifiedDate Collected: 5/18/23Instrument ID:HP5890 II/GC8/FIDDate Received: 5/22/23Analyst:Kylan Malloy/Gilbert GutierrezDate Analyzed: 5/25/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00095

Initial Pressure (psig): -6.59 Final Pressure (psig): 3.83

Container Dilution Factor: 2.28

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	1.1	
C ₄ as n-Butane	ND	1.1	
C ₅ as n-Pentane	ND	1.1	
C ₆ as n-Hexane	ND	1.1	
C ₆ + as n-Hexane	ND	2.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: Metro Vacouver W.T.E.

ALS Project ID: P2302296

ALS Sample ID: P2302296-008

Test Code:EPA TO-3 ModifiedDate Collected: 5/18/23Instrument ID:HP5890 II/GC8/FIDDate Received: 5/22/23Analyst:Kylan Malloy/Gilbert GutierrezDate Analyzed: 5/25/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01768

Initial Pressure (psig): 0.17 Final Pressure (psig): 3.81

Container Dilution Factor: 1.24

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.62	
C ₄ as n-Butane	ND	0.62	
C ₅ as n-Pentane	ND	0.62	
C ₆ as n-Hexane	ND	0.62	
C ₆ + as n-Hexane	ND	1.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

ALS ENVIRONMENTAL

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: Metro Vacouver W.T.E.

ALS Project ID: P2302296

ALS Sample ID: P2302296-009

Test Code: EPA TO-3 Modified Date Collected: 5/18/23
Instrument ID: HP5890 II/GC8/FID Date Received: 5/22/23
Analyst: Kylan Malloy/Gilbert Gutierrez Date Analyzed: 5/25/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02250

Initial Pressure (psig): -4.17 Final Pressure (psig): 4.41

Container Dilution Factor: 1.81

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.91	
C ₄ as n-Butane	ND	0.91	
C ₅ as n-Pentane	ND	0.91	
C ₆ as n-Hexane	ND	0.91	
C ₆ + as n-Hexane	ND	1.8	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

ALS ENVIRONMENTAL

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Method Blank
Client Project ID: Metro Vacouver W.T.E.

ALS Project ID: P2302296
ALS Sample ID: P230525-MB

Test Code:EPA TO-3 ModifiedDate Collected: NAInstrument ID:HP5890 II/GC8/FIDDate Received: NAAnalyst:Kylan Malloy/Gilbert GutierrezDate Analyzed: 5/25/23

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.50	
C ₄ as n-Butane	ND	0.50	
C ₅ as n-Pentane	ND	0.50	
C ₆ as n-Hexane	ND	0.50	
C ₆ + as n-Hexane	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

ALS ENVIRONMENTAL

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Duplicate Lab Control SampleALS Project ID: P2302296Client Project ID:Metro Vacouver W.T.E.ALS Sample ID: P230525-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Kylan Malloy/Gilbert Gutierrez Date Analyzed: 5/25/23
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

Test Notes:

	Spike Amount	Re	sult			ALS			
Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
	ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
Propane	1,000	972	952	97	95	92-120	2	6	
n-Butane	1,000	971	949	97	95	91-121	2	6	
n-Pentane	1,000	938	913	94	91	89-118	3	6	
n-Hexane	1,000	967	935	97	94	92-125	3	6	

APPENDIX - D COMPUTER GENERATED RESULTS

Client: Metro Vancouver Date: 15-May-23

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time:** 11:42 - 13:44

Concentrations:

Particulate 0.88 mg/dscm 0.00039 gr/dscf

0.50 mg/Acm 0.00022 gr/Acf

Emission Rates:

Particulate 0.058 Kg/hr 0.127 lb/hr

Flue Gas Characteristics:

Flow 1087 dscm/min 38372 dscf/min

 18.11 dscm/sec
 640 dscf/sec

 1926 Acm/min
 68022 Acf/min

Velocity 12.604 m/sec 41.35 f/sec

Temperature 143.8 oC 290.9 oF

Moisture 15.8 %

Gas Analysis 8.7 % O2

11.1 % CO2

30.123 Mol. Wt (g/gmole) Dry 28.204 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5441 dscm 89.845 dscf

Sample Time 120.0 minutes Isokineticity 104.9 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client:Metro VancouverDate:15-May-23

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time**: 11:10 - 13:15

Control Unit (Y)	0.9818	Collection:		Gas Analys	is (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.3058	Filter (grams) 0.00005		CO2	O2	Impinger 1	224.0
Pitot Factor	0.8352	Washings (grams) 0.00220	Traverse 1	11.00	8.80	Impinger 2	92.0
Baro. Press. (in. Hg)	29.92		Traverse 2	11.17	8.67	Impinger 3	20.0
Static Press. (in. H20)	-19.00	Total (grams) 0.00225				Impinger 4	6.0
Stack Height (ft)	30					Impinger 5	2.0
Stack Diameter (in.)	70.90					Impinger 6	1.0
Stack Area (sq.ft.)	27.417			11.09	8.74	Gel	14.0
Minutes Per Reading	5.0						
Minutes Per Point	5.0					Gain (grams)	359.0

					Dry Gas	Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Traverse 1	0.0	562.401								
1	5.0	565.930	0.28	1.52	93	93	5	289	1.5	105.3
2	10.0	569.570	0.30	1.52	93	93	5	293	4.7	105.2
3	15.0	572.830	0.25	1.30	93	93	6	292	8.4	103.1
4	20.0	576.020	0.23	1.25	94	94	6	293	12.5	105.0
5	25.0	579.280	0.24	1.30	94	94	5	292	17.7	105.0
6	30.0	582.900	0.30	1.63	94	94	5	292	25.2	104.4
7	35.0	587.280	0.46	2.34	95	95	6	292	45.6	102.0
8	40.0	591.980	0.50	2.73	96	96	6	292	53.2	104.9
9	45.0	596.800	0.52	2.83	96	96	8	292	58.3	105.5
10	50.0	601.470	0.49	2.68	97	97	8	292	62.5	105.1
11	55.0	605.600	0.38	2.08	98	98	7	290	66.1	105.0
12	60.0	609.670	0.37	2.03	98	98	7	290	69.4	104.9
Traverse 2	0.0	609.670								
1	5.0	614.030	0.42	2.31	99	99	6	288	1.5	105.2
2	10.0	618.490	0.44	2.42	99	99	6	290	4.7	105.3
3	15.0	622.690	0.39	2.14	99	99	8	290	8.4	105.2
4	20.0	626.980	0.41	2.25	99	99	8	290	12.5	104.9
5	25.0	631.250	0.40	2.20	100	100	8	291	17.7	105.6
6	30.0	635.520	0.40	2.20	100	100	8	291	25.2	105.6
7	35.0	639.560	0.36	1.98	100	100	8	291	45.6	105.2
8	40.0	643.660	0.38	2.03	100	100	8	291	53.2	104.2
9	45.0	647.540	0.33	1.82	101	101	8	291	58.3	105.3
10	50.0	651.300	0.31	1.71	101	101	8	291	62.5	105.3
11	55.0	654.990	0.30	1.65	100	100	7	290	66.1	105.1
12	60.0	658.560	0.28	1.55	101	101	7	289	69.4	105.0
Average:			0.364	1.978	97.5	97.5	6.8	290.9		104.9

Client: Metro Vancouver Date: 16-May-23

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 1 **Run Time:** 09:11 - 11:13

Concentrations:

Particulate 0.64 mg/dscm 0.00028 gr/dscf

0.37 mg/Acm 0.00016 gr/Acf

Emission Rates:

Particulate 0.044 Kg/hr 0.098 lb/hr

Flue Gas Characteristics:

Flow 1147 dscm/min 40490 dscf/min

 19.11 dscm/sec
 675 dscf/sec

 1970 Acm/min
 69568 Acf/min

Velocity 12.890 m/sec 42.29 f/sec

Temperature 142.7 oC 288.8 oF

Moisture 13.8 %

Gas Analysis 9.3 % O2

10.9 % CO2

30.118 Mol. Wt (g/gmole) Dry 28.442 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.6417 dscm 93.290 dscf

Sample Time 120.0 minutes Isokineticity 103.2 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 16-May-23 Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals 09:11 - 11:13 Source: Unit 1 Run Time: Control Unit (Y) 0.9818 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.3058 Filter (grams) 0.00030 185.0 Nozzle Diameter (in.) CO2 11.50 02 Impinger 1 Pitot Factor 0.8352 Washings (grams) 0.00140 Impinger 2 87.0 Baro. Press. (in. Hg) 30.06 Traverse 2 10.33 9.63 Impinger 3 18.0 Total (grams) 0.00170 Static Press. (in. H20) -19.00 Impinger 4 5.0 Stack Height (ft) 30 2.0 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 20.0 10.92 9 28 Gain (grams) 318.0 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Orifice ^H Isokin. Traverse / Time Inlet Outlet Vacuum Temp. Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 659.041 103.3 0.38 2.02 81 81 289 1.5 5.0 663.050 10.0 666.840 0.34 1.81 83 293 103.1 83 3 15.0 670.160 0.26 1.38 83 83 292 8.4 103.1 20.0 25.0 0.23 291 292 12.5 17.7 103.2 103.3 4 673.290 1.23 83 83 84 6 30.0 680.320 0.30 1.60 84 292 25.2 103.0 35.0 684.400 0.39 2.09 85 85 291 45.6 103.1 40.0 688.750 0.44 2.36 289 53.2 103.3 9 45.0 693.050 0.43 2.31 288 58.3 103.2 10 50.0 55.0 696.980 0.36 1.95 87 285 62.5 102.6 284 701.040 0.38 2.06 87 66.1 103.1 12 60.0 705.180 0.39 2.13 88 88 280 69.4 103.3 0.0 5.0 705.180 Traverse 2 709.790 0.49 2.67 89 284 1.5 102.9 2.77 2.81 89 90 286 290 10.0 714.510 0.51 89 4.7 103.4 15.0 719.280 0.52 90 8.4 103.6 3 20.0 723.900).49 2.65 291 103.4 5 25.0 728,420 0.47 2.54 90 90 291 17.7 103.3 6 30.0 732.830 0.45 2.43 90 90 8 291 25.2 102.9 35.0 737.010 0.40 2.17 45.6 103.1 741 100 2.06 40.0 0.38 92 92 289 103.3 45.0 745.350 0.41 9 2.23 92 92 6 289 58.3 103.4 10 50.0 749.280 0.35 1.90 290 103.4 55.0 753.030 0.32 1.74 92 92 290 66.1 103.2 60.0 756.660 92 285 12 0.30 1.64 92 69.4 102.8 Average: 0.386 2.085 87.8 87.8 6.9 288.8 103.2

Client: Metro Vancouver Date: 16-May-23

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 1 **Run Time:** 11:29 - 13:31

Concentrations:

Particulate 0.3 mg/dscm 0.0001 gr/dscf

0.2 mg/Acm 0.0001 gr/Acf

Emission Rates:

Particulate 0.022 Kg/hr 0.049 lb/hr

Flue Gas Characteristics:

Flow 1184 dscm/min 41827 dscf/min

 19.74 dscm/sec
 697 dscf/sec

 2047 Acm/min
 72302 Acf/min

Velocity 13.397 m/sec 43.95 f/sec

Temperature 145.9 oC 294.5 oF

Moisture 13.7 %

Gas Analysis 10.1 % O2

10.2 % CO2

30.030 Mol. Wt (g/gmole) Dry 28.383 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7226 dscm 96.149 dscf

Sample Time 120.0 minutes Isokineticity 103.0 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 16-May-23 Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals 11:29 - 13:31 Source: Unit 1 **Run Time:** Control Unit (Y) 0.9818 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) Filter (grams) 0.00005 CO2 212.0 0.3058 Impinger 1 Pitot Factor 0.8352 Washings (grams) 0.00080 Impinger 2 82.0 Baro. Press. (in. Hg) 30.06 Traverse 2 10.17 9.70 Impinger 3 6.0 Total (grams) 0.00085 Static Press. (in. H20) -19.00 Impinger 4 4.0 Stack Height (ft) 30 2.0 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 17.0 10.17 10.07 Gain (grams) 324 0 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Time Orifice ^H Traverse / Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse ' 0.0 103.1 0.51 2.75 90 90 292 1.5 5.0 761.720 3.13 10.0 766.750 0.58 90 90 292 103.4 3 15.0 771.850 0.60 3.23 90 90 6 294 8.4 103.2 20.0 25.0 0.58 0.59 295 297 12.5 17.7 4 776.850 3.11 89 89 89 103.2 103.2 6 30.0 786.680 0.53 2.84 90 90 296 25.2 103.2 35.0 791.380 0.51 2.74 91 297 297 45.6 103.1 40.0 795.800 0.45 2.41 53.2 103.1 45.0 800.080 0.42 2.26 91 296 58.3 103.2 10 50.0 804.080 0.37 1.99 92 92 297 62.5 102.6 55.0 807.980 0.35 1.88 92 298 66.1 102.9 11 12 60.0 811.660 0.31 1.67 92 92 295 69.4 102.9 811.660 Traverse 2 0.0 815.830 0.40 2.15 92 297 1.5 102.9 92 93 297 297 10.0 819.790 0.36 1.94 92 6 4.7 103.0 0.27 1.45 8.4 15.0 823.230 93 103.0 20.0 826.580 0.26 1.40 102.2 5 25.0 829.950 0.26 1.40 93 93 296 17.7 102.7 6 30.0 833.260 0.25 1.35 93 93 6 295 25.2 102.8 0.40 2.16 45.6 35.0 837.450 103.0 93 40.0 841.750 294 53.2 103.2 846.200 0.45 2.44 93 58.3 103.1 45.0 292 10 50.0 850.450 0.41 2.23 103.0 11 55.0 854.500 0.37 95 95 288 66.1 102.7 858.350 1.81 69.4 12 60.0 0.33 96 96 6 286 103.0 Average: 0.416 2.241 91.9 91.9 6.3 294.5 103.0

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 1

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date Test Time		16-May-23 09:54 - 10:54	16-May-23 11:10 - 12:10	16-May-23 12:23 - 13:23
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	30.06	30.06	30.06
DGM Factor	(Y)	0.9983	0.9983	0.9983
Initial Reading	(m ³)	572.209	572.678	573.292
Final Reading	(m^3)	572.672	573.290	573.968
Temp. Outlet	(Avg. oF)	84.5	86.0	88.5
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.45	0.59	0.65
HF	(mg)	0.005	0.005	0.005
Oxygen	(Vol. %)	8.7	9.3	10.1
HF	(mg/Sm³)	0.011	0.009	0.008
HF	(mg/Sm ³ @ 11% O2)	0.009	0.008	0.007
Moisture	(Vol. %)	13.8	13.8	13.7

Tstd. (oF) 68 Pstd. (in. Hg) 29.92

Client: Metro Vancouver
Jobsite: WTE (Burnaby,B.C)

Source: Unit 1

Sample Type: NH₃

Parameter	N⊓ ₃	Test 1	Test 2	Test 3
Test Date		16-May-23	16-May-23	16-May-23
Test Time		09:54 - 10:54	11:10 - 12:10	12:23 - 13:23
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	30.06	30.06	30.06
DGM Factor	(Y)	1.0609	1.0609	1.0609
Initial Reading	(m ³)	103.067	103.553	104.163
Final Reading	(m ³)	103.548	104.158	104.781
Temp. Outlet	(Avg. oF)	82.0	93.5	95.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.50	0.62	0.63
NH ₃	(mg)	0.4	0.8	1.9
Oxygen	(Vol. %)	8.7	9.3	10.1
NH ₃	(mg/Sm³)	0.9	1.4	3.1
NH ₃	(mg/Sm ³ @ 11% O2)	0.7	1.2	2.8
Moisture	(Vol. %)	13.8	13.8	13.7

Tstd. (oF) 68 Pstd. (in. Hg) 29.92

Client: Metro Vancouver Date: 16-May-23

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 2 **Run Time:** 12:15 - 14:17

Concentrations:

Particulate 0.0 mg/dscm 0.0000 gr/dscf

0.0 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.002 Kg/hr 0.006 lb/hr

Flue Gas Characteristics:

Flow 1072 dscm/min 37843 dscf/min

 17.86 dscm/sec
 631 dscf/sec

 1926 Acm/min
 68033 Acf/min

Velocity 12.606 m/sec 41.36 f/sec

Temperature 156.2 oC 313.2 oF

Moisture 14.9 %

Gas Analysis 11.0 % O2

9.9 % CO2

30.020 Mol. Wt (g/gmole) Dry 28.233 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5726 dscm 90.852 dscf

Sample Time 120.0 minutes Isokineticity 105.9 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 16-May-23 Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals Source: Unit 2 Run Time: 12:15 - 14:17 Control Unit (Y) 0 9976 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.3083 Filter (grams) 0.00005 168.0 Nozzle Diameter (in.) 9.75 Impinger 1 Pitot Factor 0.8461 Washings (grams) 0.00005 Traverse 1 Impinger 2 92.0 Baro. Press. (in. Hg) 30.03 Traverse 2 10.00 11.25 Impinger 3 39.0 Total (grams) 0.00010 Static Press. (in. H20) -19.00 Impinger 4 12.0 Stack Height (ft) 30 Impinger 5 4.0 Stack Diameter (in.) 70.90 2.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 20.2 Minutes Per Reading 9.88 11 00 Gain (grams) 337 2 5.0 Minutes Per Point 5.0 Dry Gas Temperature Wall Stack Dry Gas Meter Pitot ^P Orifice ^H Traverse / Time Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 817.250 313 105.8 0.34 1.83 76 76 1.5 5.0 821.060 0.37 10.0 825.040 1.99 76 76 313 106.0 3 15.0 829.070 0.38 2.04 76 313 8.4 105.9 0.35 0.29 1.88 1.56 12.5 17.7 20.0 832.950 78 314 105.9 6 30.0 840.370 0.35 1.89 79 79 314 25.2 106.0 35.0 844.310 0.36 1.94 79 79 314 45.6 105.8 40.0 848.780 0.46 2.49 314 106.0 45.0 852.950 0.40 2.16 81 315 58.3 106.0 10 50.0 857.570 0.49 2.65 82 82 315 62.5 106.0 861.750 0.40 2.17 55.0 83 315 66.1 105.9 12 60.0 865.930 0.40 2.17 83 83 5 315 69.4 105.9 Traverse 2 0.0 865.930 5.0 870.030 0.38 2.08 85 311 105.8 2 10.0 874.070 0.37 2.02 85 85 314 4.7 105.9 15.0 878.280 0.40 2.19 315 105.8 3 8.4 20.0 882.280 0.36 1.97 105.9 5 25.0 886,400 0.38 2.09 88 88 313 177 105.9 6 30.0 889.940 0.28 1.54 88 88 313 25.2 105.9 1.32 893.220 45.6 35.0 0.24 105.8 0.23 311 40.0 896,430 88 105.7 45.0 899.840 0.26 1.43 311 58.3 88 88 105.7 50.0 903.380 0.28 1.54 105.7 11 55.0 907.050 0.30 1.65 88 88 310 66.1 105.9 12 60.0 310 910.203 0.22 1.21 89 89 5 69.4 105.9 0.345 1.878 Average: 83.4 83.4 5.0 313.2 105.9

Client: Metro Vancouver Date: 17-May-23

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 2 **Run Time:** 09:11 - 11:12

Concentrations:

Particulate 0.63 mg/dscm 0.00027 gr/dscf

0.35 mg/Acm 0.00015 gr/Acf

0.57 mg/dscm (@ 11% O2) 0.00025 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.041 Kg/hr 0.090 lb/hr

Flue Gas Characteristics:

Flow 1087 dscm/min 38390 dscf/min

 18.12 dscm/sec
 640 dscf/sec

 1940 Acm/min
 68503 Acf/min

Velocity 12.693 m/sec 41.64 f/sec

Temperature 146.6 oC 295.9 oF

Moisture 15.8 %

Gas Analysis 10.0 % O2

10.0 % CO2

29.998 Mol. Wt (g/gmole) Dry 28.098 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.4795 dscm 87.563 dscf

Sample Time 120.0 minutes Isokineticity 105.1 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 17-May-23 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: 09:11 - 11:12 Source: Unit 2 Run Time: Control Unit (Y) 0 9976 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3087 Filter (grams) 0.00150 234.0 CO2 10.00 Impinger 1 Pitot Factor 0.8511 Washings (grams) 0.00005 Traverse 1 Impinger 2 Baro. Press. (in. Hg) 29.96 Traverse 2 10.00 9.93 Impinger 3 12.0 Total (grams) 0.00155 Static Press. (in. H20) -19.50 Impinger 4 2.0 Stack Height (ft) 30.16 0.0 Impinger 5 Stack Diameter (in.) 70.90 0.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 16.1 10.00 9 95 Gain (grams) 350 1 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Dry Gas Meter Pitot ^P Orifice ^H Isokin. Time Inlet Outlet Vacuum Temp. Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 910.647 105.0 0.26 1.38 72 300 1.5 5.0 913.960 917.340 73 73 10.0 1.44 301 105.0 0.27 3 15.0 920.680 0.26 1.39 74 299 8.4 105.4 0.27 0.28 298 298 20.0 924.080 1.44 74 74 105.2 298 6 30.0 932.020 0.47 2.52 75 75 25.2 105.2 35.0 936.280 0.42 2.26 76 77 76 296 45.6 105.4 40.0 941.070 0.53 2.87 293 53.2 105.2 9 45.0 945.820 0.52 2.82 78 78 294 58.3 105.2 10 50.0 950.500 0.50 2.73 79 79 290 62.5 105.2 80 11 55.0 955.150 0.49 2.68 80 289 66.1 105.3 12 60.0 959.610 0.45 2.48 81 81 6 285 69.4 104.9 Traverse 2 0.0 959.610 5.0 963.920 0.42 2.28 82 82 297 1.5 105.5 84 85 84 85 298 297 10.0 968.330 0.44 2.40 8 4.7 105.2 15.0 0.42 105.2 972.650 2.29 8.4 20.0 976.820 0.39 2.14 296 105.0 5 25.0 980.870 0.37 2.03 87 87 8.5 298 17.7 104 7 6 30.0 984.830 0.35 1.93 88 88 8.5 296 25.2 104.9 45.6 53.2 988.260 105.1 35.0 0.26 1.43 89 8.5 40.0 89 297 8 991.620 0.25 1.38 89 105.0 0.24 45.0 89 89 994.920 1.32 297 58.3 105.3 50.0 998.150 0.23 1.27 297 105.0 11 55.0 1001.320 0.22 1.21 90 91 90 91 7.5 7.5 297 66.1 105.4 293 12 60.0 1004.480 0.22 1.22 69.4 104.6 0.355 Average: 1.934 81.8 81.8 7.5 295.9 105.1

Client: Metro Vancouver Date: 17-May-23

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 2 **Run Time:** 11:35 - 13:39

Concentrations:

Particulate0.1 mg/dscm0.0000 gr/dscf

0.0 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.00 Kg/hr 0.008 lb/hr

Flue Gas Characteristics:

Flow 1076 dscm/min 38000 dscf/min

 17.93 dscm/sec
 633 dscf/sec

 1917 Acm/min
 67689 Acf/min

Velocity 12.542 m/sec 41.15 f/sec

Temperature 147.5 oC 297.6 oF

Moisture 15.5 %

Gas Analysis 10.0 % O2

9.8 % CO2

29.960 Mol. Wt (g/gmole) Dry 28.106 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5625 dscm 90.494 dscf

Sample Time 120.0 minutes Isokineticity 104.7 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 17-May-23 Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals 11:35 - 13:39 Unit 2 **Run Time:** Source: Control Unit (Y) 0 9976 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3087 Filter (grams) 0.00010 CO2 Impinger 1 222.0 Pitot Factor 0.8511 Washings (grams) 0.00005 Traverse 1 Impinger 2 Baro. Press. (in. Hg) 29.96 Traverse 2 10.00 9.60 Impinger 3 26.0 Total (grams) 0.0001 Static Press. (in. H20) -19.50 Impinger 4 8.0 Stack Height (ft) 30 Impinger 5 3.0 Stack Diameter (in.) 70.90 1.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 14.7 Minutes Per Reading 9.75 10 00 Gain (grams) 352 7 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Orifice ^H Isokin. Traverse / Time Inlet Outlet Vacuum Temp. Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 4.940 104.7 0.35 1.92 87 87 5.5 296 1.5 5.0 8.900 10.0 12.960 0.37 2.03 88 88 5.5 297 104.3 3 15.0 17.090 0.38 2.09 88 88 5.5 297 8.4 104.7 21.220 25.380 29.560 20.0 25.0 0.38 5.5 5.5 297 298 12.5 17.7 2.09 88 88 104.7 5.5 6 30.0 0.39 2.14 88 88 298 25.2 104.6 35.0 33.360 0.32 1.76 89 89 5.5 5.5 298 45.6 104.7 40.0 36.920 0.28 299 53.2 104.9 45.0 40.350 0.26 1.43 89 89 5.5 300 58.3 104.9 10 50.0 43.920 0.28 1.54 90 90 5.5 298 62.5 104.9 1.44 91 55.0 47.360 0.26 91 4.5 297 66.1 104.7 12 60.0 50.530 0.22 1.22 92 92 4.5 298 69.4 104.7 Traverse 2 0.0 50.530 5.0 54.230 0.30 1.66 93 93 300 104.7 93 93 10.0 57.800 0.28 1.55 93 6 300 4.7 104.5 93 300 1.21 104.6 3 15.0 60.970 0.22 6 8.4 20.0 64.080 0.21 1.16 93 299 105.0 5 25.0 67.330 0.23 1.27 94 94 6.5 299 17.7 104 7 6 30.0 70.780 0.26 1.44 94 94 6.5 299 25.2 104.5 74.950 79.680 35.0 94 93 45.6 104.6 0.38 2.11 298 93 297 40.0 0.49 2.72 6.5 53.2 104.8 45.0 84.460 0.50 2.77 93 93 6.5 297 58.3 104.8 50.0 89.430 0.54 3.00 297 104.7 11 55.0 94.320 0.52 2.90 94 94 293 66.1 104.7 95 95 290 12 60.0 99.080 0.49 2.75 6 69.4 104.6 Average: 0.346 1.912 91.3 91.3 3.0 297.6 104.7

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 2

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date Test Time Test Duration	(min.)	17-May-23 09:58 - 10:58 60	17-May-23 11:10 - 12:10 60	17-May-23 12:22 - 13:22 60
Baro. Press.	(in. Hg)	29.96	29.96	29.96
DGM Factor	(Y)	0.9983	0.9983	0.9983
Initial Reading	(m ³)	573.976	574.570	575.186
Final Reading	(m ³)	574.566	575.180	575.782
Temp. Outlet	(Avg. oF)	72.0	85.5	88.5
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.58626	0.59093	0.57421
HF	(mg)	0.005	0.005	0.005
Oxygen	(Vol. %)	11.0	10.0	10.0
HF	(mg/Sm³)	0.009	0.009	0.009
HF	(mg/Sm³ @ 11% O2)	0.009	0.008	0.008
Moisture (isokinetic)	(Vol. %)	14.9	15.8	15.5

*Wet Basis Calculated on moisture from isokinetic tests Tstd. (oF) 68

Pstd. (in. Hg) 29.92

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 2

 NH_3 Sample Type:

Parameter	3	Test 1	Test 2	Test 3
Test Date Test Time		17-May-23 09:58 - 10:58	17-May-23 11:10 - 12:10	17-May-23 12:22 - 13:22
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	29.96	29.96	29.96
DGM Factor	(Y)	1.0320	1.0320	1.0320
Initial Reading	(m ³)	249.519	250.024	250.597
Final Reading	(m^3)	250.019	250.591	251.179
Temp. Outlet	(Avg. oF)	71.5	86.0	88.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.51330	0.56719	0.58008
NH ₃	(mg)	0.5	1.6	0.0
Oxygen	(Vol. %)	11.0	10.0	10.0
NH ₃	(mg/Sm³)	1.0	2.8	0.1
NH ₃	(mg/Sm ³ @ 11% O2)	1.0	2.5	0.1
Moisture (isokinetic)	(Vol. %)	14.9	15.8	15.5

*Wet Basis Calculated on moisture from isokinetic tests

68

Tstd. (oF)

Client: Metro Vancouver Date: 17-May-23

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 3 **Run Time:** 11:40 - 13:42

Concentrations:

Particulate 2.27 mg/dscm 0.00099 gr/dscf

1.26 mg/Acm 0.00055 gr/Acf

Emission Rates:

Particulate 0.143 Kg/hr 0.314 lb/hr

Flue Gas Characteristics:

Flow 1048 dscm/min 36993 dscf/min

 17.46 dscm/sec
 617 dscf/sec

 1891 Acm/min
 66780 Acf/min

Velocity 12.374 m/sec 40.60 f/sec

Temperature 152.7 oC 306.8 oF

Moisture 15.9 %

Gas Analysis 10.1 % O2

10.0 % CO2

29.997 Mol. Wt (g/gmole) Dry 28.094 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5138 dscm 88.773 dscf

Sample Time 120.0 minutes Isokineticity 105.8 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 17-May-23 Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals Source: Unit 3 Run Time: 11:40 - 13:42 Control Unit (Y) 0 9916 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) Filter (grams) 0.00470 232.0 0.3083 9.90 Impinger 1 Pitot Factor 0.8461 Washings (grams) 0.00100 Traverse 1 Impinger 2 82.0 Baro. Press. (in. Hg) 30.01 Traverse 2 10.00 10.25 Impinger 3 16.0 Total (grams) 0.00570 Static Press. (in. H20) -19.00 Impinger 4 9.0 Stack Height (ft) 30 2.0 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 13.6 9.95 10 13 Gain (grams) 355 6 Minutes Per Reading 5.0 Minutes Per Point 5.0 Wall Dry Gas Temperature Stack Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 5.0 966.065 105.6 0.27 1.56 81 307 1.5 969,490 81 10.0 972.720 0.24 1.39 81 307 105.5 3 15.0 975.890 0.23 1.33 81 81 306 8.4 105.7 0.25 0.26 307 306 12.5 17.7 105.5 105.6 20.0 979,190 1.45 82 82 82 82 25.0 83 6 30.0 986.700 0.39 2.26 83 306 25.2 105.9 35.0 991.150 0.45 2.61 83 83 306 45.6 106.0 40.0 995.700 0.47 2.73 307 53.2 106.0 45.0 1000.390 0.50 2.90 84 84 307 58.3 106.0 10 50.0 1004.800 0.44 2.56 85 85 307 62.5 105.9 0.42 85 55.0 1009.110 2.44 85 307 66.1 106.0 11 12 60.0 1013.210 0.38 2.22 86 86 307 69.4 105.7 0.0 1013.210 Traverse 2 1017.440 0.40 2.34 88 88 307 1.5 105.9 88 88 88 88 10.0 1021.770 0.42 2.46 307 4.7 105.9 0.44 2.57 307 8.4 105.8 15.0 1026.200 20.0 1030.480 0.41 2.40 105.9 5 25.0 1034,870 0.43 2.52 89 89 307 17.7 105.9 6 30.0 1038.990 0.38 2.23 88 88 306 25.2 105.8 0.25 1042.340 45.6 35.0 106.0 1.35 89 40.0 1045 550 89 307 53.2 105.6 1048.540 1.17 89 58.3 105.4 45.0 0.20 89 307 10 1051.610 0.21 1.23 105.6 50.0 11 1054.830 0.23 1.35 90 90 307 66.1 105.7 90 69.4 12 60.0 1057.900 0.21 1.23 90 307 105.4

0.338

2.012

85.9

5.5

306.8

105.8

85.9

Average:

Client: Metro Vancouver Date: 18-May-23

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 3 **Run Time:** 08:29 - 10:31

Concentrations:

Particulate3.92 mg/dscm0.00171 gr/dscf

2.25 mg/Acm 0.00098 gr/Acf

3.15 mg/dscm (@ 11% O2) 0.00138 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.256 Kg/hr 0.564 lb/hr

Flue Gas Characteristics:

Flow 1087 dscm/min 38391 dscf/min

 18.12 dscm/sec
 640 dscf/sec

 1897 Acm/min
 66978 Acf/min

Velocity 12.410 m/sec 40.72 f/sec

Temperature 154.1 oC 309.4 oF

Moisture 12.6 %

Gas Analysis 8.6 % O2

9.6 % CO2

29.884 Mol. Wt (g/gmole) Dry 28.381 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5258 dscm 89.198 dscf

Sample Time 120.0 minutes Isokineticity 102.4 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 18-May-23 Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals 08:29 - 10:31 Source: Unit 3 Run Time: Control Unit (Y) 0 9916 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.3083 Filter (grams) 0.00840 CO2 9.75 244.0 Nozzle Diameter (in.) Impinger 1 Pitot Factor 0.8461 Washings (grams) 0.00150 Impinger 2 0.9 Baro. Press. (in. Hg) 30.01 Traverse 2 9.50 8.60 Impinger 3 8.0 Total (grams) 0.00990 Static Press. (in. H20) -19.00 Impinger 4 6.0 Stack Height (ft) 30 2.0 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 12.5 9.63 8 60 Gain (grams) 274 4 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Dry Gas Meter Pitot ^P Orifice ^H Vacuum Isokin. Time Inlet Outlet Temp. Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 58.507 1.5 102.4 0.40 2.30 76 76 303 5.0 62.650 10.0 4.7 0.42 2.34 76 307 102.6 66.890 3 15.0 71.280 0.45 2.54 77 77 309 8.4 102.6 20.0 25.0 2.51 2.73 4 75.600 0.44 76 76 311 12.5 102.4 80.120 0.48 102.7 6 30.0 84.270 0.40 2.29 78 78 308 25.2 102.5 35.0 87.920 0.31 1.78 78 78 308 45.6 102.3 40.0 91.330 0.27 1.55 309 53.2 102.3 9 45.0 94.550 0.24 1.38 79 79 309 58.3 102.4 10 50.0 97.700 0.23 1.32 81 81 312 62.5 102.1 55.0 100.780 0.22 1.26 81 81 312 66.1 102.1 12 60.0 103.720 0.20 1.15 81 81 5 312 69.4 102.2 0.0 5.0 103.720 Traverse 2 107.020 0.25 1.44 83 83 311 1.5 102.2 10.0 110.460 0.27 1.57 83 83 307 4.7 102.3 0.29 83 15.0 1.68 306 8.4 114.030 83 102.4 3 20.0 117.670 0.30 1.74 306 102.4 5 25.0 120.920 0.24 1.39 84 84 309 17.7 102.4 6 30.0 124.550 0.30 1.79 85 85 310 25.2 102.3 35.0 128.960 0.44 0.57 45.6 102.6 2.56 310 40.0 8 133.980 3.31 86 86 53.2 102.8 45.0 138.290 2.44 9 0.42 87 311 58.3 102.5 10 50.0 142.550 0.41 2.38 312 62.5 102.6 11 55.0 146.490 0.35 2.03 87 87 311 66.1 102.5 60.0 1.69 87 311 12 150.073 0.29 87 69.4 102.3 Average: 0.341 1.966 81.7 81.7 5.8 309.4 102.4

Client: Metro Vancouver Date: 18-May-23

Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals

Source: Unit 3 **Run Time:** 10:41 - 12:43

Concentrations:

Particulate 3.13 mg/dscm 0.00137 gr/dscf

1.71 mg/Acm 0.00075 gr/Acf

2.57 mg/dscm (@ 11% O2) 0.00112 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.197 Kg/hr 0.434 lb/hr

Flue Gas Characteristics:

Flow 1048 dscm/min 37001 dscf/min

 17.46 dscm/sec
 617 dscf/sec

 1922 Acm/min
 67859 Acf/min

Velocity 12.574 m/sec 41.25 f/sec

Temperature 154.6 oC 310.3 oF

Moisture 16.8 %

Gas Analysis 8.8 % O2

10.6 % CO2

30.053 Mol. Wt (g/gmole) Dry 28.028 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5220 dscm 89.063 dscf

Sample Time 120.0 minutes Isokineticity 106.1 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 18-May-23 Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals 10:41 - 12:43 Source: Unit 3 **Run Time:** Control Unit (Y) 0.9916 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3083 Filter (grams) 0.00620 254.0 Impinger 1 02 Pitot Factor 0.8511 Washings (grams) 0.00170 Impinger 2 Baro. Press. (in. Hg) 30.01 Traverse 2 10.25 8.65 Impinger 3 22.0 Total (grams) 0.00790 Static Press. (in. H20) -19.00 Impinger 4 6.0 Stack Height (ft) 30 3.0 Impinger 5 Stack Diameter (in.) 70.90 Impinger 6 1.0 27.417 Stack Area (sq.ft.) Gel 12.2 10.63 8.83 Gain (grams) 382 2 Minutes Per Reading 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Orifice ^H Isokin. Traverse / Time Inlet Outlet Vacuum Temp. Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 150.492 105.9 0.29 1.68 89 89 311 1.5 5.0 154.080 10.0 157.790 0.31 1.79 89 89 311 105.9 3 15.0 161.260 0.27 1.56 89 89 311 8.4 106.1 0.26 0.29 312 312 12.5 17.7 20.0 164,660 1.50 89 89 106.0 311 25.2 6 30.0 0.28 1.62 89 89 106.0 35.0 176.590 0.52 3.01 90 90 312 45.6 106.5 40.0 181.080 0.45 2.61 91 91 312 53.2 106.3 45.0 185.420 0.42 2.44 91 91 311 58.3 106.2 10 50.0 189.650 0.40 2.32 91 91 311 311 62.5 106.1 91 11 55.0 193.780 0.38 2.21 91 66.1 106.2 12 60.0 197.450 0.30 1.74 91 91 311 69.4 106.1 197.450 Traverse 2 0.0 5.0 201.750 0.41 2.39 92 92 309 1.5 106.2 92 92 10.0 206.100 0.42 2.45 92 308 4.7 106.1 0.45 92 15.0 2.63 308 106.3 210.610 8.4 214.960 0.42 308 12.5 106.1 5 25.0 219,470 0.45 2.62 93 93 311 17.7 106.3 6 30.0 223.610 0.38 2.22 93 93 8 311 25.2 106.1 45.6 53.2 311 311 106.0 227.290 0.30 1.75 8 40.0 230.850 0.28 1 63 93 93 106.1 0.24 45.0 94 58.3 105.9 234.150 1.41 94 309 237.380 0.23 1.35 309 62.5 105.9 11 55.0 240.540 0.22 1.29 94 94 308 66.1 105.8 94 12 60.0 243.563 0.20 1.17 94 308 69.4 106.1

91.4

91.4

7.6

310.3

106.1

0.340

1.980

Average:

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 3

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date		18-May-23	18-May-23	18-May-23
Test Time		09:09 - 10:09	10:26 - 11:26	11:40 - 12:40
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	30.01	30.01	30.01
DGM Factor	(Y)	0.9983	0.9983	0.9983
Initial Reading	(m ³)	575.795	576.393	576.976
Final Reading	(m ³)	576.386	576.971	577.518
Temp. Outlet	(Avg. oF)	82.0	93.5	94.5
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.57738	0.55275	0.51662
HF	(mg)	0.005	0.005	0.005
Oxygen	(Vol. %)	10.1	8.6	8.8
HF	(mg/Sm³)	0.009	0.008	0.010
HF	(mg/Sm ³ @ 11% O2)	800.0	0.007	0.008
Moisture (isokinetic)	(Vol. %)	15.9	12.6	16.8

Pstd. (in. Hg)

29.92

*Wet Basis Calculated on moisture from isokinetic tests Tstd. (oF) 68

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 3

Sample Type: NH₃

Parameter Parameter	14113	Test 1	Test 2	Test 3
Test Date		18-May-23	18-May-23	18-May-23
Test Time	(09:09 - 10:09	10:26 - 11:26	11:40 - 12:40
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	30.01	30.01	30.01
DGM Factor	(Y)	1.0320	1.0320	1.0320
Initial Reading	(m ³)	251.221	251.795	252.384
Final Reading	(m ³)	251.787	252.376	252.961
Temp. Outlet	(Avg. oF)	81.5	93.5	67.0
Orifice Press.	(∆H in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.57256	0.57388	0.59933
NH ₃	(mg)	0.6	0.1	1.2
Oxygen	(Vol. %)	10.1	8.6	8.8
NH ₃	(mg/Sm³)	1.0	0.1	2.0
NH ₃	(mg/Sm ³ @ 11% O2)	1.0	0.1	1.6
Moisture (isokinetic)	(Vol. %)	15.9	12.6	16.8

*Wet Basis Calculated on moisture from isokinetic tests

Tstd. (oF) 68 Pstd. (in. Hg) 29.92

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Parameter: N₂O

Molecular Weight: 44.00 grams/mol Reportable Detection

Lab Detection Limit: 0.1 ppm Limit: 0.18 mg/Sm³

Sample ID	Date	Time	N₂O ppm	N₂O mg/Sm³	N₂O mg/Sm³ @ 11% O₂
Unit 1 - Run 1 Unit 1 - Run 2 Unit 1 - Run 3 Average	2023-05-16 2023-05-16 2023-05-16	10:00 - 11:00 11:15 - 12:15 12:23 - 13:23	0.00 0.00 0.00	0.18 0.18 0.18	0.15 0.16 0.17 0.16
Unit 2 - Run 1 Unit 2 - Run 2 Unit 2 - Run 3 Average	2023-05-17 2023-05-17 2023-05-17	09:58 - 10:58 11:10 - 12:10 12:22 - 13:22	0.00 0.00 0.00	0.18 0.18 0.18	0.18 0.17 0.17 0.17
Unit 3 - Run 1 Unit 3 - Run 2 Unit 3 - Run 3 Average	2023-05-18 2023-05-18 2023-05-18	09:09 - 10:09 10:26 - 11:26 11:40 - 12:40	0.00 0.00 0.00	0.18 0.18 0.18	0.17 0.15 0.15 0.16

Date:	16-May-23			17-May-23			18-May-23		
	Unit 1 Run 1	Run 2	Run 3	Unit 2 Run 1	Run 2	Run 3	Unit 3 Run 1	Run 2	Run 3
Test Times:	09:50 - 10:50	11:10 - 12:10	12:23 - 13:23	09:58 - 10:58	11:10 - 12:10	12:22 - 13:22	09:09 - 10:09	10:26 - 11:26	11:40 - 12:40
Methane (ppmv) Ethane (ppmv) Ethene (ppmv)	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	3.40 ND ND	ND ND ND
C3 as Propane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C4 as n-Butane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C5 as n-Pentane (ppmv) C6 as n-Hexane (ppmv)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
C6+ as n-Hexane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
 ,									
Detection Limits:									
Methane	3.3	3.0	3.1	2.7	3.3	3.3	3.0	3.1	2.7
Ethane	1.00	0.89	0.92	0.81	1.0	1.00	0.89	0.92	0.81
Ethene	1.00	0.89	0.92	0.81	1.0	1.00	0.89	0.92	0.81
C3 as Propane C4 as n-Butane	0.83 0.83	0.75 0.75	0.77 0.77	0.68 0.68	0.83 0.83	0.86 0.86	1.10 1.10	0.62 0.62	0.91 0.91
C5 as n-Pentane	0.83	0.75	0.77	0.68	0.83	0.86	1.10	0.62	0.91
C6 as n-Hexane	0.83	0.75	0.77	0.68	0.83	0.86	1.10	0.62	0.91
C6+	1.7	1.5	1.5	1.4	1.7	1.7	2.3	1.2	1.8
Using 1/2 DL Convention									
Sample Date:	16-May-23			17-May-23			18-May-23		
Sample Date:	Unit 1	Run 2	Run 3	Unit 2	Run 2	Run 3	Unit 3	Run 2	Run 3
Sample Date: Test Times:		Run 2 11:10 - 12:10	Run 3 12:23 - 13:23		Run 2 11:10 - 12:10	Run 3 12:22 - 13:22		Run 2 10:26 - 11:26	Run 3 11:40 - 12:40
·	Unit 1 Run 1			Unit 2 Run 1			Unit 3 Run 1		
Test Times:	Unit 1 Run 1 09:50 - 10:50 1.65 0.50	11:10 - 12:10	12:23 - 13:23 1.55 0.46	Unit 2 Run 1 09:58 - 10:58 1.35 0.41	11:10 - 12:10 1.65 0.50	12:22 - 13:22 1.65 0.50	Unit 3 Run 1 09:09 - 10:09	10:26 - 11:26	11:40 - 12:40 1.35 0.41
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50	11:10 - 12:10 1.50 0.45 0.45	12:23 - 13:23 1.55 0.46 0.46	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41	11:10 - 12:10 1.65 0.50 0.50	12:22 - 13:22 1.65 0.50 0.50	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45	10:26 - 11:26 3.40 0.46 0.46	11:40 - 12:40 1.35 0.41 0.41
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42	11:10 - 12:10 1.50 0.45 0.45 0.38	12:23 - 13:23 1.55 0.46 0.46 0.39	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34	11:10 - 12:10 1.65 0.50 0.50 0.42	12:22 - 13:22 1.65 0.50 0.50 0.43	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55	10:26 - 11:26 3.40 0.46 0.46 0.31	11:40 - 12:40 1.35 0.41 0.41 0.46
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38	12:23 - 13:23 1.55 0.46 0.46 0.39 0.39	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42	12:22 - 13:22 1.65 0.50 0.50 0.43 0.43	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55	10:26 - 11:26 3.40 0.46 0.46 0.31 0.31	11:40 - 12:40 1.35 0.41 0.41 0.46 0.46
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38	12:23 - 13:23 1.55 0.46 0.46 0.39 0.39 0.39	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42	12:22 - 13:22 1.65 0.50 0.50 0.43 0.43 0.43	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55	3.40 0.46 0.46 0.31 0.31 0.31	1.35 0.41 0.41 0.46 0.46 0.46
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42 0.42	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38 0.38	1.55 0.46 0.39 0.39 0.39 0.39 0.39	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34 0.34	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42 0.42	1.65 0.50 0.50 0.43 0.43 0.43 0.43	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55 0.55	10:26 - 11:26 3.40 0.46 0.46 0.31 0.31 0.31 0.31	11:40 - 12:40 1.35 0.41 0.41 0.46 0.46
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38	12:23 - 13:23 1.55 0.46 0.46 0.39 0.39 0.39	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42	12:22 - 13:22 1.65 0.50 0.50 0.43 0.43 0.43	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55	3.40 0.46 0.46 0.31 0.31 0.31	11:40 - 12:40 1.35 0.41 0.41 0.46 0.46 0.46 0.46
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38 0.38 0.75	1.55 0.46 0.46 0.39 0.39 0.39 0.39 0.75	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34 0.70	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85	12:22 - 13:22 1.65 0.50 0.50 0.43 0.43 0.43 0.43 0.43 1.10	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55 0.55 1.15	10:26 - 11:26 3.40 0.46 0.46 0.31 0.31 0.31 0.31 0.60	11:40 - 12:40 1.35 0.41 0.41 0.46 0.46 0.46 0.46 0.90
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 0.85	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38 0.38 0.75	1.55 0.46 0.46 0.39 0.39 0.39 0.39 0.75	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34 0.34 0.70	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 0.85	1.65 0.50 0.50 0.43 0.43 0.43 0.43 0.85	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55 0.55 1.15	10:26 - 11:26 3.40 0.46 0.31 0.31 0.31 0.31 0.31 0.60	11:40 - 12:40 1.35 0.41 0.41 0.46 0.46 0.46 0.46 0.90
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38 0.38 0.75	1.55 0.46 0.46 0.39 0.39 0.39 0.39 0.75	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34 0.70	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85	12:22 - 13:22 1.65 0.50 0.50 0.43 0.43 0.43 0.43 0.43 1.10	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55 0.55 1.15	10:26 - 11:26 3.40 0.46 0.46 0.31 0.31 0.31 0.31 0.60	11:40 - 12:40 1.35 0.41 0.41 0.46 0.46 0.46 0.46 0.90
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38 0.75 1.00 0.30	1.55 0.46 0.46 0.39 0.39 0.39 0.39 0.75	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34 0.70	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 0.85	1.65 0.50 0.50 0.43 0.43 0.43 0.43 0.43 0.85	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55 0.55 1.15 1.00 0.30	10:26 - 11:26 3.40 0.46 0.31 0.31 0.31 0.31 0.60 2.27 0.31	11:40 - 12:40 1.35 0.41 0.46 0.46 0.46 0.46 0.90 0.90
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6+ as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38 0.75 1.00 0.30 0.30	1.55 0.46 0.46 0.39 0.39 0.39 0.39 0.75	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34 0.70 0.90 0.27 0.27	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 0.85 1.10 0.33 0.33	12:22 - 13:22 1.65 0.50 0.50 0.43 0.43 0.43 0.43 0.43 0.85 1.10 0.33 0.33	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55 0.55 1.15 1.00 0.30 0.30	10:26 - 11:26 3.40 0.46 0.31 0.31 0.31 0.31 0.60 2.27 0.31 0.31	11:40 - 12:40 1.35 0.41 0.46 0.46 0.46 0.46 0.90 0.90 0.27 0.27
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) Ethene (mg/m³ as CH ₄) C3 as Propane (mg/m³ as CH ₄)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85 1.10 0.33 0.33 0.28	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38 0.75 1.00 0.30 0.30 0.30	1.55 0.46 0.46 0.39 0.39 0.39 0.75 1.03 0.31 0.31	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34 0.70 0.90 0.27 0.27 0.23	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85 1.10 0.33 0.33 0.28	1.65 0.50 0.50 0.43 0.43 0.43 0.43 0.43 0.85 1.10 0.33 0.33	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55 0.55 1.15 1.00 0.30 0.30 0.37	10:26 - 11:26 3.40 0.46 0.31 0.31 0.31 0.31 0.60 2.27 0.31 0.31 0.31	11:40 - 12:40 1.35 0.41 0.46 0.46 0.46 0.46 0.90 0.90 0.27 0.27 0.30
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6+ as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42 0.85 1.10 0.33 0.33 0.28 0.28	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38 0.75 1.00 0.30 0.30 0.25 0.25	1.55 0.46 0.46 0.39 0.39 0.39 0.75 1.03 0.31 0.31 0.26 0.26	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34 0.70 0.90 0.27 0.27 0.23 0.23	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85 1.10 0.33 0.33 0.28 0.28	1.65 0.50 0.50 0.43 0.43 0.43 0.43 0.85 1.10 0.33 0.33 0.29 0.29	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55 0.55 1.15 1.00 0.30 0.30 0.37 0.37	10:26 - 11:26 3.40 0.46 0.31 0.31 0.31 0.31 0.60 2.27 0.31 0.31 0.21	11:40 - 12:40 1.35 0.41 0.46 0.46 0.46 0.90 0.90 0.27 0.27 0.30 0.30
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6+ as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄) C5 as n-Pentane (mg/m³ as CH₄)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85 1.10 0.33 0.33 0.28 0.28	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38 0.75 1.00 0.30 0.30 0.25 0.25	1.55 0.46 0.46 0.39 0.39 0.39 0.75 1.03 0.31 0.31 0.26 0.26	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34 0.70 0.90 0.27 0.27 0.27 0.23 0.23 0.23	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85 1.10 0.33 0.33 0.28 0.28 0.28	1.65 0.50 0.50 0.43 0.43 0.43 0.43 0.43 0.85 1.10 0.33 0.33 0.29 0.29 0.29	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55 0.55 1.15 1.00 0.30 0.30 0.37 0.37 0.37	10:26 - 11:26 3.40 0.46 0.31 0.31 0.31 0.31 0.60 2.27 0.31 0.31 0.21 0.21	11:40 - 12:40 1.35 0.41 0.46 0.46 0.46 0.90 0.90 0.27 0.27 0.30 0.30 0.30
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6+ as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄) C5 as n-Pentane (mg/m³ as CH₄) C6 as n-Hexane (mg/m³ as CH₄)	Unit 1 Run 1 09:50 - 10:50 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85 1.10 0.33 0.33 0.28 0.28 0.28 0.28	11:10 - 12:10 1.50 0.45 0.45 0.38 0.38 0.38 0.75 1.00 0.30 0.30 0.25 0.25 0.25	1.55 0.46 0.46 0.39 0.39 0.39 0.75 1.03 0.31 0.31 0.26 0.26 0.26	Unit 2 Run 1 09:58 - 10:58 1.35 0.41 0.41 0.34 0.34 0.34 0.70 0.90 0.27 0.27 0.27 0.23 0.23 0.23 0.23	11:10 - 12:10 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.85 1.10 0.33 0.33 0.28 0.28 0.28 0.28	1.65 0.50 0.50 0.43 0.43 0.43 0.43 0.85 1.10 0.33 0.33 0.29 0.29 0.29	Unit 3 Run 1 09:09 - 10:09 1.50 0.45 0.45 0.55 0.55 0.55 1.15 1.00 0.30 0.30 0.37 0.37 0.37	10:26 - 11:26 3.40 0.46 0.31 0.31 0.31 0.31 0.60 2.27 0.31 0.31 0.21 0.21 0.21	11:40 - 12:40 1.35 0.41 0.46 0.46 0.46 0.90 0.90 0.27 0.27 0.30 0.30 0.30 0.30

All data is corrected to standard conditions (S) of 20 °C, 101.325 kPa (dry) unless otherwise noted.

APPENDIX - E FIELD DATA SHEETS

Unit	ICOUVER WTE						TER, IN. 0				1	TOTAL GAIN
R / RUN No				PROBE 7	FAL G	VRO-1	P 0.83	52	VOLUMES	(mL)	(mL)	(mL)
	00 11 10	7. //.	100	20071511					Imp. #1	0	1229	229 92
No	Metals /PA	eticulate	181	PORT LENG					Imp. #2	100	192	
1 lay	15,2073		•		ESSURE, IN.		9.04		Imp. #3	100	120	20
	15015	v	2							0	6	6
a	ME GADD			STACK HEI	GHI 3	78'				100		2.
IC PRESSI	DE IN Ha 59.		822	INUTIAL LEA	K TEOT	A	0 1 6		100	/0/		
		12					10	100				
IOIOTOILE,	DW /4/.			FINAL LEAK	(IESI	2003	e 18"	Imp. #8		<u>1 i</u>		
ck Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °			Pump Vac.	Fv	rites	
MS 87 -		IN. H₂O	IN. H ₂ O	Dry Gas	Stack	Probe		Impinger	1 1			
142			_	Outlet				Exit		Vol. %		
	565.93	0.28	182	93	289	782	747		5		1	
10	569.57	0.30	1.62	93	293		-	- /		110	87	
	572.83	0.24	1.30	93	297	250	.257	73	5.5	1	2.0	+-
20	576.02	0.23	1.75	94		177			2.3			
	579.28	0.24	130	94	297	25)	749	62	5			
30	582.90	0.30	183	94	297	-				MIT	93	
	587.28	2.43	234	95	292	252	250	59	4	70.0	7.5	
40	591.98	0.50	2.73	96	292							
	596.80	0.52		96	292	252	749	55	8			
50	801.47	049	2 68	97	292					117	2.9	
		0.38	208	98	290	252	249	51	7		0.7	
60	609.64	0.37	2.03	28	29D	-0.2						
	111100	- //>	2 > 7	4.0								
10	977.03	272		79	288	282	250	68	6	115	84	
-	5/0.77	0 49	2.47									
20	2000 57	0.37	2.17			252	259	63	8			
	12170	2.27			270	7	- A . NO	75		//	27	
30	235 67	200				202	278	6/	8	110	84	
	239 57	0.70	7,80	2	541	15	0110	/5	0			
40	203 67	035	203			202	277	03	4			
		233		7		755	751	10	75			
50			1			101	201	57	8	110	90	
	1 4 4 4		1			5747	345		dor-y	11-1	8.7	
144					200	200	290	62	1			
-1-	230.20	0.20	1.00	10/	207							
	C PRESSU OISTURE, k Time	C PRESSURE, IN. Hg	ΔH@ C PRESSURE, IN. Hg OISTURE, BW Rk Time Dry Gas Meter ft Pitot ΔP IN. H ₂ O 10 552.40 10 552.40 10 553.50 10 553	ΔH@ C PRESSURE, IN. Hg OISTURE, BW OISTURE	NIT	NIT	NIT	NIT	NIT	NIT	NIT	NIT

METRO VA	ANCOUVER WTE	- BURNAR	Y B.C.		G,309			3058			FINAL	TOTAL GAI
	. / 4 /			PROBE	T'AL C	FURD-1	Op 0.83	352	VOLUMES	(mL)	(mL)	(mL)
OURCE //wi	4 11		/ / -						Imp. #1	0	185	185
ARAMETER / RUN I		peticular	4/R-7	PORT LENC			· · · ·		Imp. #2	100	187	87
ATE .	4.16,7073				ESSURE, IN.		9.04		imp. #3	100	118	18
PERATOR:	25			STACK DIA	METER	70.9"			lmp. #4	0		5
ONTROL UNIT	CAE GIOS		8/8	STACK HEI	GHT	30.01			lmp. #5	100	102	2
			322						Imp. #6	1200	101	
AROMETRIC PRES		06		INITIAL LEA		0.004	C 15"		Imp(#3-e			
SSUMED MOISTUR	E, Bw 14%.			FINAL LEAK	CTEST	0.003	C 15"		lmp. #8		,	
911												
Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °	F		Pump Vac.	Fy	rites	
Point	100 - 110	IN. H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
27	859.04D			Outlet				Exit		Vol. %	Vol. %	
1	663.05	0.38	2.02	8/	289	252	250	59	7			
2 10	666.84	0.34	1.81	23	293					115	89	
3	670.12	0.26	138	8.3	292	282	25/	27	7		1	
4 20	673.29	0.23	1.23	23	291				(
5	676.75	0.28	149	84	297	252	249	57	6			
6 30	680.32	0.30	1.60	34	292		- 6 /			115	90	
7	884.40	0.39	209	85	791	282	250	61	8	110	1	
8 40	688.75	0.44	236	86	289							
9	693.05	0.43	2.31	86	288	252	ZSD	65	8			
10 50	698.98	0.36	1.95	87	286					11.5	89	
11	701.04	0.38	206	87	284	252	257	82		01	/	
12 60	705 18	0.39	213	88	280	-3-	000		7			
									-			
1	709.79	2.49	2.67	29	289	252	282	54	8			
2 10	214 51	051	277	89	286	202		-/	-	105	95	
3	719.78	257	2.87	90	290	252	ZSD	57	8	10.0	10	-+
4 20	723.90	0.49	265	20	790		-30	50				-
5	728 47	0.42	254	98	291	252	250	28	8			
6 30	73283	045	3 43	90	3.91	202						
7	237 DI	040	217	99	289	252	25/	55	7	10.5	9.5	$\overline{}$
8 40	74110	0.38		95	289	1	20/	00	-	10.0	1.0	$\overline{}$
9	745.35	047	223	92	289	252	281	58	6		 	
10 50	749.28	0.35	790	97-	290			20				-
11	753.03.	0.37	124		290	252	250	56	8	10.0	99	$\overline{}$
12 //1/3	756.66	0.30	1.64	92	288	202	200			10.0	<i>C 1</i>	$\overline{}$
7,.0	,00.00		1.01		200	t						$\overline{}$
												-
												$\overline{}$

SA.

	METRO VA	NCOUVER WTE	- BURNAB	Y B.C.	NOZZLE	G-30		TER, IN.				FINAL	TOTAL GAIN
SOUR					PROBE	7'AL	SURM	Cp <i>O</i> 83	152	VOLUMES		(mL)	(mL)
			1. 11.	100	DODELEN	~~				Imp. #1	0	212	2/2
DATE	WIETER / KUN N	retals/PAR	tiwate.	1 R-3	PORT LENG		1100	10 . 0		lmp. #2	100	182	82
	ATOR:	6,2023				ESSURE, IN.		9.00		Imp. #3	100	106	6
			v 000	P	STACK DIA		70.9			Imp. #4	0	14	4
CONT	NOL GIVIT	9E G105	Y 0.98	78	STACK HEI	GHI	30.01			Imp. #5	100	102	
BARO	METRIC PRESS	URE, IN. Hg 30.0	/10		INITIAL LEA	W TEST	200/1	0 154		Imp. #6	100		
	MED MOISTURE		00		FINAL LEAF		2004	6 (2"		Imp. #7	200	0	~
10001	VIED MIGIGIOTOTE	, DW / 7 / 1			TIVAL LEAR	(IESI	0.003	0 124		Imp. #8		<u> </u>	
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice AH			Temperature c	T		Pump Vac.	Ex	rites	
Point			D. 17.0	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂		
	11:29	757.012		21120	Outlet	Budok	11006	DOX	Exit	цч. пg	Vol. %	O ₂ Vol. %	
1	, ,	761.77	0.51	275	90	292	253	246		4	V UI. 70	V U1. 76	
2	10	2224	0.58	3/3	90	292	233	216	65	7	9.5	10 7	
3		777 85	12 80	3 23	90	294	252	252	60		7.3	10.2	
4	20	77600	0.58	311	89	295	202	LOL	-00	6		-	
5		727 29	123	3/5	89	297	752	250	64			-	
6	30	78668	0.53	2.84	20		150	280	67	6		-	
7		791.38	03)	2.74	97	293 297	252	250	58	7	95	10/	
8	40	795.20	nux	241	91	1947	202	200	00	7	1.5	10.6	
9		800.08	045	2.28	6/1	29%	252	ZSD	49	7		-	
10	50	204.08	037	199	92	297	202	200	7/				
11		807.98	035	122	92	790	252	250	SD	8	9.5	14	
12	60	811.66	039	137	92	295	202	230	ريد	-	7.0	10.5	
		011108	00,	701	10	2/3						-	
1		8/5.83	0.40	215	97-	297	252	180	82	6			
2	10	8/9,79	0.36	794	92	297		750	00	-0	95	103	
3		823.23	027	145	93	797	252	25-1	54	6	/ 4	100	
4	20	826.58	0.26	140	93	297	-30	20,					
5		829.95	0.26	1.40	93	797	252	249	56	6			
6	30	833.26	025	135	93	795					10.5	9.5	
7		237.45	0.40	2.16	93	294	282	280	52	8	, ,, ,	600	
8	40	841.75	042	2.27	93	294							
9		246.20	0.45	2.44	93	292	252	287	54	7			
10	50	850.45	041	223		290							
11		854.5D	0.37	202	95	788	282	250	88	6	10.5	9.3	
12	/33/	858.35	0.33	181	96	286						(~)	
-													

A. Lanfranco and Associates Inc.

OL IEN	140. 1	TC			NOZZLE (7-3171	DIAME	TER, IN 7	1043	IMPINGER	INITIAL	FINAL !	TOTAL GAIN
CLIEN.	WW W	116			PROBE	HA I	-	P 18416	1	VOLUMES	(mL)	(mL)	(mL)
SOURC	DE Ilnit	はて							` `	Imp. #1	. 0	1108	168
PARAM	METER / RUN N	lo metals /12	who R	2.1	PORT LENG	GTH				Imp. #2	CPO	190	97
DATE	5.16.2	1			STATIC PR	ESSURE, IN.	H2O -	19,0		Imp. #3	100	1/29	39
OPERA	TOR: 56	PV .			STACK DIA	METER		1 2 1 -		Imp. #4	0	. 177	12
CONTR	OL UNIT	Au 15	Y ,99°	76	STACK HEI	GHT				Imp. #5	100	1/84	4
		1101 (2	ΔH@ / 3	30						Imp. #6	100	m	1
BARON	ETRIC PRESS	SURE, IN. Hg 30.0	3		INITIAL LEA	AK TEST	000 B15	И		Upstream D		100	
ASSUM	IED MOISTURI	E, Bw //7	0/0		FINAL LEA		200001	1-1		Downstream		-	
		, μ	10					9		1			
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °	F		Pump Vac.	Fy	rites	
Point		@17 000	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
	12:15	817.250		_	Outlet				Exit		Vol. %	Vol. %	ľ
i	1	821,06	134	1.80	76	313	250	251	55/	4.5		1	
电	10	825,04	127	1,99	76	312	0,5-	(0)	2.8	(0)	9.5	11,0	
ã		829.07	138	2,04	76	313	256	253	58	4.5	1-1	11.0	
u	20	832,95	135	1.88	75	319	-30	CV "	1	1-1-3		 	
5			129	1,80		315	250	249	98	465			
10	30	836,48	100 30	1.50	势	314	250		-0	Ces		1 7 1	
7		844.31	136	194	79	314	257	282	58	5,0	10,0	10,5	_
1	40	848,74	95,96	7.49	8	314	21	000	10	7,0	1010	10/3	
8	-40	952,95	197,40		81	215	250	257	58	5.0		++	
10	50	SP7 67	140	2,65	92	3/15	-	000	2.5	7.0			
ir		861.75	140	2.12	1000	325	249	2481	58	3.0			
in	le d	965,03	140	111	85	3/5	201	068	28	12.0		1	
.,		0001012	140	0117	0	12/2	 			_	-	+	
-		8th. 03	28	2,08	90	311	750	247	00	415		-	
2		874 67	138	2,02	85	214	0,0	211	58	10/03	10,0	11.0	
3		978 78	1910	2:19	87	315	257	248	100	45	10,0	11.0	
_		882.18	136	1.97	87	315		041	58	10/25		+	
4		866,40	138	2.09	60	3/3	250	248	58	9.0		+ +	
6		889,94	118	19	20	3/3	0	000	77	7.0			
4		893.22	1,24	1251	85	32	2419	947	57	5.0		+	
9		3912:03	123	7.24	88	3/1	01	1	21	7.0			7
a		499.4V	26	1,43	40	311	250	248	37	5,0	10,0	1/6-	
iD		ans 34	128	4,501	70	1311	230	1	1	7.0	1010	11-2	
il		90+.05	130	1.65	64	310	251	757	97	5.0	 		
12		010,703	122	121	80	310	001	601	1	1.0		1	
	101:17	BND FORT	15-	1,0	1	710				1			
	/	- 140 JOST				†				—		 	
						1				+		1	
				-		 				 		+	
-										 		+ +	
		L				1							

	AETRO VA	NCOLIVED WITE	DUDMAD	V D C	NOZZLE	G-309	DIAME	TER, IN.	3087	IMPINGER	INITIAL	FINAL	TOTAL GAIN
	The same of the sa	NCOUVER WTE	- DUKNAD	i b.C.	PROBE	7'0		Op 17.8		VOLUMES	(mL)	(mL)	(mL)
OURC				1-		,				Imp. #1	0	234	234
ARAM	ETER / RUN N	· Matals/A	reticilato	12-2	PORT LENG	3TH				Imp. #2	100	784	84
ATE	May	17, 2023		, , , , ,	STATIC PR	ESSURE, IN.	H2O _/	9.50		Imp. #3	100	114	14
PERA	TOR:	5			STACK DIA	METER 🪄	9911			Imp. #4	0	5	5
ONTR	OL UNIT	9015	Y 0.99	276	STACK HEI	GHT 🙎	30.6			Imp. #5	100	102	7.
			ΔH@	(39	İ			Imp. #6	100	101	7		
	ETRIC PRESS		9-6		INITIAL LEA		200/E			(III)O#	2000	1	
SSUM	ED MOISTURE	E, Bw /4//			FINAL LEAF	(TEST /	DO2 6	0/59		Imp. #8		1	1
											7	95to#	/
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °	F		Pump Vac.		rites	
Point	4 1612		IN. H₂O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
	9:11	9/0.647			Outlet				Exit		Vol. %	Vol. %	1
1	-	91.91	0.26	1.38	72	300	260	238	45	5			
2	10	912 20	077	7.44	43	30/					10.0	102	
3		920 68	074	129	14	299	254	759	50	.5	1010	100	
4	20	92408	0.77	144	74	298	1		00				
5		BOYEU	10.28	155	14	292	255	254	55	5			
6	30	925 05	0.47	752	2	298	200			-			
7		93678	1247	277	76	296	248	253	52	7	100	99	
8	40	94/07	253	227	77	793	270	200	00	-	10.0		
9		945.82	0.52	285	12	393	25/	255	56	8			
10	50	950.5D	0.50	223	79	290		200	-0				
11		955.78	049	2 68	80	289	252	752	59	7	100	98	
12	60	95961	0.45	248	81	785		200		- (60.0	1.0	
		(()					-						
1		963 97	1247	228	87	297	252	257	45	7	100	10.0	
2	10	968 33	0.44	248	87 84 85	298		212	7.0		10.0	120.00	
3		77265	1945	3.29	25	297	252	250	48	7			
4	20	77687	0.39	214	86	791		200			-		
5		980 27	037	2.03	87	295 298	248	248	49	7			
6	30	984.83	035	7.93	88	798	~/0	20		-	100	98	
7	_	988.25	0.75	142	89	297	252	フマノ	57	_	100	1.0	
8	40	991.87	0.75	738	89	297		23/	00				
9		994.92	0.74	137	29	297	25D	252	56	5			
10	50	998 15	0.73	127	90	797	740	-	20				
11		100/37	0 22	171	96	397	248	754	50		15.0	10.D	
12	1112	1004.48	0.22	1.72	91	293	~ (0						
					-/								
											1	- +	

	AETPO VAI	NCOUVER WTE	- BIIDMAR'	V R C	NOZZLE	G 367	DIAME	TER, IN. 🔭	3087	IMPINGER	INITIAL	FINAL	TOTAL GAIN
•	21		- BUKNAD	1 B.C.	PROBE	70	(P 0.83	5//	VOLUMES	(mL)	(mL)	(mL)
SOURC			0							Imp. #1	0	222	2.72
PARAM	ETER / RUN No	Motols/PR	reticulati	0/R-3				4		Imp. #2	100	178	48
DATE "	May.	17.2023				ESSURE, IN.		9.5"		Imp. #3	100	126	26
OPERA		5			STACK DIA		10.9"	·		Imp. #4	D	8	8
CONTR	OL UNIT	9015	Y 0.99	176	STACK HEI	GHT :	30.01			lmp. #5	100	/03	3
			ΔH@ /. 7	739						Imp. #6	100	16/0/1) .
	IETRIC PRESS		95		INITIAL LEA		2001	6 124		PRAM	200		
ASSUM	ED MOISTURE	, Bw 14%.			FINAL LEAR	(TEST	2001	e 15°		Imp. #8			
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			T 01			Pump Vac.	E		
Daring	Clock Time	Dry Gas Wicter It	4							- 1		rites	
Point	1135	4940	IN. H ₂ O	IN. H₂O	Dry Gas Outlet	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
- 1	11 33	790	2 54	100	1	100	2		Exit		Vol. %	Vol. %	
1	10	8.90	0.35	1.92	87	296	250	243	45	7	-	1	
2	10	12.96	0.37	203	88	797	/	7- 0	7.5		9.5	10.4	
3	20	17.09	2.38	2.09	82	297	26/	256	48	R	CE.	22	
5	20	25.38	0.38	2.09	88	277	0.11		1100	->>		-	No.
6	30	25.34	0.39	214	88	298	264	251	49	8			
7	30	29 35	0.39	214	88	298	7				N		
8	40	33.36	0.37	1, 15	89	278	25/	292	50	7	95	10.6	
9	40	36.97	0.28	1.54	39	299	2- 1	-11-	-5-				
10	50	4035	0.76	1,73	37	300	25/	245	52	6		-	
11	30	75.71	0.28	1,54	95	298	95-	722	-11	-	9-	1 -	
12	60	47.35	0.75	1.22	35	298	25D	252	57	7	95	10.2	
12	- 00	50.53	0.72	1-22	72	278							
1		5473	0.30	166	93	300	247	751	.58	7			
2	10	57.80	0.28	1,55	93	300				-	105	9.4	
3		SD 97	0.72	121	93	300	245	247	59	7		(*/	
4	20	54.08	0.71	778	93	299							
5		67.33	0.23	127	94	299	248	252	50	7	95	98	
6	30	70.78	0.26	1.44	94	299						(
7		74.95	0.38	211	94	798	250	757	57	8			
8	40	79.68	0.49	272	93	797				1 mm.	4.		
9	5	24.45	250	277	93	297 297	249	253	53	8	10D	95	
10	50	89.43	0.54	300	94	297							
11		94.32	0.52	2.90	99	293	252	254	55	8			
12	13 39	99.08	0.49	275	95	290							
	-	1 (- 7			-							

A. Lanfranco and Associates Inc.

CLIENT MU	LITE	;		NOZZLE/	3-3121		ETER, IN.	3083	IMPINGER		FINAL !	TOTAL GAIN
SOURCE ON	L #E3			PROBE	14-1		Cp ,84	61	VOLUMES	(******	(mL)	(mL)
PARAMETER / RUI		.15	71	PORT LEN	OTH				lmp. #1	. 0	132	232
DATE 5, 17 . 7	2 Merkis (P	ATTO F			ESSURE, IN	1100	763		Imp. #2	100	1.82	82
PERATOR:	3430			STACK DIA		. H2O	19		Imp. #3	100	116	16
ONTROL UNIT	HCAC ?	Y 4 994		STACK DIA					Imp. #4	0	19,	9
51111102 01111	1913 6	ΔH@ / 8		STACK HE	GHI				Imp. #5	100	107	2
AROMETRIC PRE	SSURE, IN. Hg	0,07	<i>T</i>)	INITIAL LEA	AK TEST	60191	-u		Imp. #6	1100	16)	/
SSUMED MOISTU				FINAL LEA		2025	15-4		Upstream D	the state of the s		
		10		1 11 12 22 11	TILOT /	2010	15		Downstream	n Diameters		
Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature '	or.		Pump Vac.			
Point 11 total	01160.17	IN. H₂O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	-	-		
11:40	1966,065		-	Outlet	June	11000	DOX.	Exit	IN. Hg	CO ₂ Vol. %	O ₂	
	0169,49	127	11.56	81	307	251	252	50	45	VUI. 70	Vol. %	
2 10	10/12,72	124	11.39	81	307	100	1000	120	100	-	+	
3	075 80	123	17.23	81	306	950	250	88	415	120	100	
9 20	979,79	125	1195	82	307			-0	(11)	6070	WI	
5	982.56	12/2	11.57	1912	306	250	248	50	615			
6 30	086.70	139	2.26	83	306		100		100			
7 40	1991,15	145	12.61	83	30%	249	257	38	5,0	1		
	1095170	147	12,73	84	307					92		
9	1006.39	150	290	84	130+	250	1257	186	19.0	9.8	100	
là So	1004,80	1614	3,56	85	307						1000	
2 60	1000	142	2,44	\$	307	250	257	57	leso			
2 60	1013.2	138	2:22	86	307							
1	1017,44	140	2,34	88	7.7	000	211	0				
2 10	1007132	12/2	9.270	46	307	250	146	91	4,0		Tak	
7 10	1526,20	144	0.51	122	201	7219	17/17	7-		100		
1 70	1030. HK	141	2376	25	307	May	297	57	60	60,0	10:8	
5 0	111184195+	143	7.87	49	307	250	298	00	-	-		
e 40	1439,00	1386	7.73	del	300	000	001	57	100			
7	1104634	125	9,47	487	307	257	7070	97	5.0			
8 40	11045,55	123	1,35	401	307		107	7.7	1,0	-		
	10496, 54	120	11777	901	304	250	753	37	4.5			
0 40	10516	121	1.73	40	307	1	1	/ (107	10,0	10.0	
6	17,684,53	123	11,35	90	307	257	252	57	40	20,10	20,0	
110000	1051,900	121	1:23	010	307							
13:42	ENDitest	-									1	
			-								1	
		 	1						31			
	 	 	-		-							
				L								

A. Lanfranco and Associates Inc.

CLIENT M//	1/11-			NOZZLE (4-5121			3083	IMPINGER	INITIAL	FINAL	TOTAL GAIN			
SOURCE 12:01 7	WIL	77		PROBE	TA-1		Cp 289	161	VOLUMES	(mL)	(mL)	(mL)			
PARAMETER / RUN		1000	na	DODTIEN	OTIL				Imp. #1	10	, 244,	2.44			
DATE 5,/8,2		j jimr	CRZ	PORT LEN		1100	729		Imp. #2	100	186	86			
PERATOR: 36	1 7 2				ESSURE, IN.	H2O -	-/9_		Imp. #3	100	108	P			
CONTROL UNIT ST	2463	v .007		STACK DIA				Imp. #4	0	10 1	6				
JUNIOL DIVIT	CAEC	Y 199/	9	STACK HE	IGHT				Imp. #5	100	102	2			
AROMETRIC PRES	SURE, IN. Hg 30.6	1 62 0	75	INITIAL LEA	NA TEAT				Imp. #6 1 (00 1/01)						
SSUMED MOISTUR						0000	150		Upstream D						
	152	-		FINAL LEA	KIESI	00000	57		Downstream		}				
Clock Time	Dry Gas Meter ft	Pitot ΔP	T Origin AVI						testo	# /	and the state of t				
	Diy Gus Wicker it	4	Orifice ΔH	Tomperature 1					Pump Vac.	Fy	yrites				
Point & 179	SQ 807	IN. H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	- 1			
, 0,01	DONET	1700		Outlet				Exit	=	Vol. %	Vol. %	••			
1 15	6/165	190	2.30	76	303	280	1287	58	6.0			-			
3 6	Glg : 89,	192	7,40	76	307			74		100	8.7				
3	+1,28	145	7,57	17	309	249	252	58	6.0						
4 20	35.60	94	2,5%	76	317.	_									
6 30	80.12	15/8	45	16	371	257	280	58	60						
6 30	89,77	,40	2.29	78	308										
	87:97	13	1178	78	308	150	2219	158	600						
8 40		12+	1,55	79	369		1001				7				
/	94.55	124	1188	79	309	280	1287	38	5.0						
0 50	700 78	173	1,32	(3)	312					915	18,5				
12 10	100, 78	,22	1,76	84	100	180	249	58	4.5		1311				
12 00	103177	120	1115	91	1712		0.0								
/	100-00		1000		-										
- 15	107102	125	1,44	83	311	750	249	54	3.8						
2 10	110.49	127	1157	83	307		0	00		10,0	817				
The second secon	114, 93	129	4198	83	306	257	650	26	15.5		146				
7 70	137.85	130	174	99	306			, ,			1				
9 30	The state of the s	16	1,39	84	399	252	248	58	18.0						
7	146	120	479	55	310										
	129198	195	400	96	310	253	2009	34	1015						
8 40		话花	231	86	310			V	0						
0 50	135.29	4 1 1	7.44	27	311	254	148	58	6,0	9.0	9,5				
	146.49	135	1939	87	3/2	~~	000	///		11	20. 100				
v	138:073	130	7.03	87	311	750	251	58	45						
10:31	ENT FAY	1101	100	57	311		-	60 5	t						
114.01	CIANTEST						-								
		-	-												
											-				
												0			

A. Lanfranco and Associates Inc.

F#

IENT MV.	WIG			NOZZLE PROBE -	15/1	1 DIAM		3083	IMPINGER		FINAL	TOTAL GAIR
URCE //n/7	#3	29.1		TROBE	te		Cp S	2	VOLUMES	(mL)	(mL)	(mL)
RAMETER / RUN I	No MP+1/2	1 mhs	DT	PORT LEN	ICTU		18	511	Imp. #1	18	184:	154
TE >1/8,	103		RESSURE, II	N. HOO			Imp. #2	100	189	74		
ERATOR:	3+30			STACK DIA	NEGOURE, II	N. H2O 🤫	,19		Imp. #3	000	177	22
NTROL UNIT	ST PART	V 90	11				,		Imp. #4	0	.6.	-
		ΔH@ /	10	STACK HE	IGHT		30,0		Imp, #5	100	103	7
ROMETRIC PRESS	SURE, IN. Ha	01	7	INVESTAL A SE					Imp. #6	100	1197	7
SUMED MOISTUR		0/		INITIAL LEAK TEST 1009015.6 Upstream				Upstream D	iameters	0		
	19	10		FINAL LEA	KTEST	10000	1500		Downstream		_	
Clock Time	Dry Gas Meter ft	T 200					-		trest	- Annual Control		
	Diy das wicter it	Pitot ∆P	Orifice AH			Temperature of	°F		Pump ∀ac.	1 01 1	rites	
10:41	150 1100	IN. H₂O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg			
70171	150,492	The second second		Outlet		1	1	Exit	IN. Ing	CO ₂	O ₂	
	1591 DC	129	1/1/28	89	1311	7.80	500			Vol. %	Vol. %	
10	157.79	137	1,10	80	34	100	287	58	70		9	
U	161:26	77	1.37	City	3/1	700	67 -	0.2		8.53		
20	64.66	17/2	17.50	239	312	7500	250	58	75			
	114,79	78	177	89	3/2	100						
30	1717	170	1194			1250	251	58	75			
	176,59	0.17 57	301	90	311	1						
Un.	181,08	145	301		312	250	250	59	90			
	185,47	100	7:00	191	3/2				1	11	9	
50		140	444	91	1311	9/572	249	50	800		-	
1	159,65	140	L. L. L. Cont	91	3/1		0.6		0,00			
2 00	401 To	138	2:21	019	327	250	287	58	655			
	417195	130	1574	91	311			70	000			
	201.95	1-/1	239	97	309	950	526/20	-				
10	John 10	142	2.45	92	398	23	170	58	80	7		
	210, 61	45	5,103	97		0-3	010	-77		1025	95	
20	714.010	1117	5.00	917-	305	257	248	5+	500		040	
	710,00	45	2/2	94	308	0.00						
30	223,101	138	222		3/1	250	014	57	810			
	1777-94	130	11/2	93	311							
	130 185	18	1110	9.5	711	227	254	37	7.5			
	124.15		1,105	93	311	0 '	7	7	76-7			
50	43-1-27	124	7,45	94	209	199	253	87	6.0	10.0	818	
100	2021 -29	128	1155	gel	309		,	11	0.0	0,0	000	
1 1	143,54 143,563	122	1.79	94	908	257	957	97	1-	-		
	ENTH TEST	170	1117	94	308		0	7-7	Cor			
11 4 (*1)	EVU DICAT			,								
											_	
\vdash												
+												
-l												i i

85/

B

Client MVWTE Y LMV-A=0.9983Source Uni+1 Cp
Parameter HF Pbar 30.06 Static
Date 16-May-23 Operator Choistian

Leak Check	Run 1	Run 2	Run 3		
Initial	0.0002	0.0001	0.0001		
Final	0.0001	0.0001	0.0001		

Test	Time (hhmm)	DGM Volume		iture (°F)	Imp. Vol.	L	AP IN. H ₂	0
No.		(cu ft) / (m ³)	DGM Outlet	Stack	(mL)	R1	R2	R3
	0954	572.2089	75				11/2	110
1								
•								
	1054	572.6716	94					
	1110	572.6775	82					
2								
2								
	1210	573.2898	90					
	1223	573.2917	84					
3								
	1323	573.9681	93					
		0.0.1001						

Client	MVWTE	Y	LMU-D = 1.0609
Source	Unit	Ср	
Parameter	NHz	Pbar	30.06 Static
Date	16-May-23	Operator	Christian

Leak Check	Run 1	Run 2	Run 3	
Initial	0.0001	0.0001	0.0001	
Final	6.0001	0.000/	0.0001	

Test	Time	DGM Volume	Tempera	ture (°F)	Imp.	_	AP IN. H ₂	^
No.	(hhmm)	(cu ft) / (m³)	DGM Outlet	Stack	Vol. (mL)			
	0954	103.0666	73			R1	R2	R3
4								
	1-84	103.5478	9)					
		103.3748						
	1110	163,5527	91					
5								
O								
	1210	104:1584	96					
	1223		00					
	1245	(04.1626	88					
6								
•								
	1323	104.7810	102-		-			
					-			

3/

DSV

Client	MV WTE	Υ	LMU-A=0.9983	Client	MVWTE	Υ	LMU-13 = 1.0321
Source	Unit 2	Ср		Source	Unit 2	- Cp	
Parameter	HF	Pbar	29.96 Static	Parameter	NH2	Pbar	29.96 Static
Date	17-May-23	Operator	Christian	Date	17-May-23	_ Operato	
					f).		

Leak Check	Run 1	Run 2	Run 3
Initial	0.000/	0.0001	0.0001
Final	0.0001	0.000/	0.0001

Leak Check	Run 1	Run 2	Run 3	
Initial	0.0001	0.000/	0.000/	
Final	0.000	0.000/	0,000/	

Time	DGM Volume	Tempera	ture (°F)	lmp.	,	DIN H	^
(hhmm)	(cu ft) / (m³)	DGM Outlet	Stack	Vol. (mL)		_	
0958	573.9755	60			KI	R2	R3
1058	574.5657	84					
1110	574,5702	83					
1210	535 1000	24					
000	-1/200 0	Q n/					
	1058	(hhmm) (cu ft)/(m³) 0958 573.9755 1058 574.5657 1110 574.5702 1210 575.1802	(hhmm) DGM DGM Outlet 0958 573.9755 GC 1058 574.5657 84	(hhmm) (cu ft)/(m³) DGM Outlet Stack 0958 573.9755 60 1058 574.5657 84 1110 574.5702 83 1210 575.1802 88	Inne (hhmm)	Inne (hhmm)	Ime (hhmm)

Test No.	Time		Tempera DGM	ature (°F)	lmp. Vol.	ΔP IN. H₂O			
NO.	(hhmm)		Outlet	Stack	(mL)	R1	R2	R3	
	0958	249,5194	60						
4									
	1056	250.0188	83						
	1110								
	1110	250.0239	81						
_									
5									
	1210	250:5908	9/						
	1222	250.5972	83						
	1-	۵,0,5,7,7	0)						
6									
U									
	.000	001 30	GO.						
	1322	251.1791	93						

5/3 /

Client	MYV	VTE	Υ	LMU-A : 0.9	983 Client	MV WTE	Υ	LMU-B = 1.0320
Source	Uni	+3	Ср		Source	Unit 3	— Cp	
Parameter	HF		Pbar	30.0/ Static	Parameter	NH2	Pbar	30.01 Static
Date	18-	May -23	Operator	christian	Date	18-May-23	Operato	4/
1 1. 01		, <u> </u>				/		

Leak Check	Run 1	Run 2	Run 3	Leak Check	Run 1	Run 2	Run 3
Initial	0.000/	0.000/	0.000	Initial	0.000/	0.000/	0.0001
Final	0.0001	0.0001	0.0001	Final	0.000/	0.000/	0.000/

Test	Time	DGM Volume		ature (°F)	Imp. Vol.	_	∆P IN. H₂	0
No.	(hhmm)	(cu ft) / (m ³)	DGM Outlet	Stack	(mL)	R1	R2	R3
(909	575.7945	71					
,								
1								
	1009	576.3857	93					
	1026	576.3929	9]					
2								
1	1126	576.9709	96					
	1140	576.9764	92					
3								
	1240	577.5/76	97					
					+			

Test	Т:	DOMAN	Tempera	ture (°F)	lmp.	,	ΔP IN. H₂O		
No.	Time (hhmm)	DGM Volume (cu ft) / (m³)	DGM Outlet	Stack	Vol. (mL)	R1	R2	R	
	0909	251.2205	72			171	NZ	- K	
4									
	1009	251.787	93						
	1026	251.7954	91						
5									
	1126	252:3759	96						
	1140	252.3839	72						
•									
6									
	0116	000 011	(7)-						
	140	252.9611	67		_				
					-				

CEM FIELD DATA SHEET

entares

Client
Source
Date

MU	WITE	
Varits	#/-2	
May.	2023	1102
		Rughes

Technician Ambient Temp (°C) Barometric Pressure (in. Hg)

11	1		
14			

	N_2	H ₂	1 Gas	2 Gas	3 Gas	4 Gas	5 Gas	O ₂	Comb Air	Low Meth	Mid Meth	High Meth
Cylinder #												
Pressure (psi)												
Expiry Date												
O ₂ (%)												
CO ₂ (%)												
CO (ppm)												
THC (ppm)												
SO ₂ (ppm)												
NOx (ppm)			90.D									

Analyzer	O ₂	CO ₂	СО	THC	SO ₂	NOx
Range						

CEM READINGS

Time	Source	O ₂	CO ₂	СО	ТНС	SO ₂	NOx	Response Time (sec)
Cal	Nz	00						O ₂ Up
	1 Gas	88						O ₂ Dn
May 16/23								CO ₂ Up
ON1+ 1-1	1000-1100							CO ₂ Dn
1-2	1115-1218							CO Up
/-3	1223-1323							CO Dn
May 17/23								THC Up
NIT 2-1	0958-1050							THC Dn
2-2	1110-1210							SO ₂ Up
2-3	1222-1322							SO ₂ Dn
May18/23								NOx Up
wit 3-1	0909-1009							NOx Dn
3-2	1026-1126							
3-3	1/40-1240							
- /	4.7							
Cal	N	D.D						
	/ GUS	89						

APPENDIX – F CALIBRATION SHEETS and TECHNICIAN CERTIFICATES

Pitot Tube Calibration

Date: 11-Jan-23 Temp (R): 539 Pbar (in.Hg): 29.74 Dn (in.): 0.25

Pitot ID: **7A-1**

T HOLID.	17.1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	15.7	0.8478	0.0016
0.095	0.130	20.6	0.8463	0.0002
0.420	0.560	43.4	0.8574	0.0112
0.600	0.830	51.9	0.8417	0.0044
0.730	1.020	57.2	0.8375	0.0086
		Average:	0.8461	0.0052

Pitot ID: ST 8A

TROUB. CICA									
Reference	S-Type	Air	Pitot	Deviation					
Pitot	Pitot	Velocity	Coeff.	(absolute)					
(in H2O)	(in H2O)	(ft/s)	Ср						
0.040	0.055	13.4	0.8443	0.0031					
0.120	0.170	23.2	0.8318	0.0156					
0.300	0.400	36.7	0.8574	0.0100					
0.470	0.630	45.9	0.8551	0.0077					
0.720	0.980	56.8	0.8486	0.0012					
		Average:	0.8474	0.0075					

Pitot ID: 7B

FILULID.	<i>1</i> B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.030	0.040	11.6	0.8574	0.0151
0.150	0.210	25.9	0.8367	0.0056
0.230	0.320	32.1	0.8393	0.0030
0.430	0.610	43.9	0.8312	0.0111
0.710	0.970	56.4	0.8470	0.0047
		Average:	0.8423	0.0079

Pitot ID: ST 8B

FILOUID.	31 00			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.045	0.060	14.2	0.8574	0.0046
0.230	0.320	32.1	0.8393	0.0135
0.430	0.580	43.9	0.8524	0.0003
0.630	0.840	53.2	0.8574	0.0046
0.690	0.920	55.6	0.8574	0.0046
		Average:	0.8528	0.0055

Pitot ID: 7 AL GVRD-1

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.050	0.070	16.3	0.8367	0.0015
0.105	0.145	19.9	0.8425	0.0073
0.250	0.350	25.3	0.8367	0.0015
0.430	0.610	35.8	0.8312	0.0040
0.680	0.970	48.4	0.8289	0.0063
		Average:	0.8352	0.0041

Pitot ID: ST 8C

T HOLID.	01 00			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	14.9	0.8478	0.0021
0.105	0.145	19.4	0.8425	0.0033
0.210	0.290	29.0	0.8425	0.0033
0.500	0.680	43.1	0.8489	0.0032
0.710	0.970	52.8	0.8470	0.0013
		Average:	0.8457	0.0026

Pitot ID: 70

PILOLID:	70			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.040	0.055	13.4	0.8443	0.0069
0.150	0.200	16.3	0.8574	0.0062
0.430	0.580	43.9	0.8524	0.0013
0.480	0.660	30.5	0.8443	0.0069
0.690	0.920	47.0	0.8574	0.0062
		Average:	0.8511	0.0055

Pitot ID:

oD.				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average:		

Calibrated by: Justin Ching Signature: <u>Carter Lanfranco</u> Date: January 11, 2023

^{*} Average absolute deviation must not exceed 0.01.

A.Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

10-Jan-23

Model #: AU 15

0028SPC-081915-1

Barometric Pressure: 29.59 (in. Hg)
Theoretical Critical Vacuum: 13.96 (in. Hg)

111111111

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

111111111

Serial #:

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)\3*(deg R)\0.5/((in.Hg)*(min)).

		DRY GA	S METER READIN	NGS	-			-CRITICAL ORIFICE READINGS-						
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial To Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	nbient Temperat Final (deg F)	ure Average (deg F)
3.40	16.00	250.496	267.425	16.929	75.0	75.0	74.0	74.0	73	0.8185	17.5	83.0	82.0	82.5
1.80	15.00	238.876	250.496	11.620	73.0	73.0	76.0	76.0	63	0.5956	20.0	80.0	84.0	82.0
1.20	15.00	229.882	238.876	8.994	70.0	70.0	73.0	73.0	55	0.4606	22.5	80.0	84.0	82.0
0.60	15.00	223.065	229.882	6.817	67.0	67.0	69.0	69.0	48	0.3560	23.0	71.0	77.0	74.0
0.29	15.00	218.360	223.065	4.705	66.0	66.0	62.0	62.0	40	0.2408	24.5	67.0	74.0	70.5
DBV CA														
DRT GA	S METER			ORIFICE			DRY GA	S METER				ORIFICE		
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y			_IBRATION FA dH@	CTOR		
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr		CALIBRATIO Value	ON FACTOR Y Variation		Value	LIBRATION FA dH@ Value	CTOR Variation		Ko
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)		CALIBRATION Value (number)	ON FACTOR Y Variation (number)		Value (in H2O)	LIBRATION FA dH@ Value (mm H2O)	Variation (in H2O)		(value
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr		CALIBRATIO Value	ON FACTOR Y Variation		Value	LIBRATION FA dH@ Value	CTOR Variation		
VOLUME CORRECTED Vm(std) (cu ft) 16.672	VOLUME CORRECTED Vm(std) (liters) 472.1		VOLUME CORRECTED Vcr(std) (cu ft) 16.637	VOLUME CORRECTED Vcr(std) (liters) 471.2	VOLUME NOMINAL Vcr (cu ft) 17.292		CALIBRATION Value (number) 0.998	ON FACTOR Y Variation (number) 0.000		Value (in H2O) 1.728	LIBRATION FA dH@ Value (mm H2O) 43.89	Variation (in H2O) -0.011		(value 0.728 0.731
VOLUME CORRECTED Vm(std) (cu ft) 16.672 11.398	VOLUME CORRECTED Vm(std) (liters) 472.1 322.8		VOLUME CORRECTED Vcr(std) (cu ft) 16.637 11.355	VOLUME CORRECTED Vcr(std) (liters) 471.2 321.6	VOLUME NOMINAL Vcr (cu ft) 17.292 11.791		Value (number) 0.998 0.996	ON FACTOR Y Variation (number) 0.000 -0.001		Value (in H2O) 1.728 1.726	LIBRATION FA dH@ Value (mm H2O) 43.89 43.84	Variation (in H2O) -0.011		(value 0.728
VOLUME CORRECTED Vm(std) (cu ft) 16.672 11.398 8.859	VOLUME CORRECTED Vm(std) (liters) 472.1 322.8 250.9		VOLUME CORRECTED Vcr(std) (cu ft) 16.637 11.355 8.781	VOLUME CORRECTED Vcr(std) (liters) 471.2 321.6 248.7	VOLUME NOMINAL Vcr (cu ft) 17.292 11.791 9.118		Value (number) 0.998 0.996 0.991	ON FACTOR Y Variation (number) 0.000 -0.001 -0.006		Value (in H2O) 1.728 1.726 1.935	LIBRATION FA dH@ Value (mm H2O) 43.89 43.84 49.15	Variation (in H2O) -0.011 -0.013 0.196		0.728 0.731 0.694
VOLUME CORRECTED Vm(std) (cu ft) 16.672 11.398 8.859 6.749	VOLUME CORRECTED Vm(std) (liters) 472.1 322.8 250.9 191.1		VOLUME CORRECTED Vcr(std) (cu ft) 16.637 11.355 8.781 6.838	VOLUME CORRECTED Vcr(std) (liters) 471.2 321.6 248.7 193.6	VOLUME NOMINAL Vcr (cu ft) 17.292 11.791 9.118 6.995		Value (number) 0.998 0.996 0.991 1.013	ON FACTOR Y Variation (number) 0.000 -0.001 -0.006 0.016		Value (in H2O) 1.728 1.726 1.935 1.606	UBRATION FA dH@ Value (mm H2O) 43.89 43.84 49.15 40.80	Variation (in H2O) -0.011 -0.013 0.196 -0.133		0.728 0.731 0.694 0.746

Т	EMPERATURE CALIBRAT	ION	
Calibration Standard>	Omega Model CL23A S/N:T-2	18768	
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Re Variation (degF)	sults Percent of Absolute
32	32	0	0.00%
100	100	0	0.00%
300	300	0	0.00%
500	500	0	0.00%
1000	1000	0	0.00%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02.
For Orfice Calibration Factor 04/6, the orfice differential pressure in inches of H20 that equates to 0.75 cfm of air 68 F and 29.2 sinches of Hg, acceptable tolerance of individual values from the average is +0.2.
For Temperature Device, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Signature: Carter Lanfranco

Date: January 10, 2023

Calibrated by: Ben Lester

	[BAROMETER	R CALIBRATION	FORM		
		Pbar E	nv Canada	Device (inc	hes of Hg)	Difference
					Elevation	
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)
LA	10-Jan-23	100.5	29.68	29.56	29.63	0.05
DS	10-Jan-23	100.5	29.68	29.55	29.62	0.06
CL	10-Jan-23	100.5	29.68	29.56	29.63	0.05
JC	10-Jan-23	100.5	29.68	29.53	29.60	0.08
SB (LF)	10-Jan-23	100.5	29.68	29.55	29.62	0.06
SH	10-Jan-23	100.5	29.68	29.58	29.65	0.03
CDO	10-Jan-23	100.5	29.68	29.53	29.60	0.08
JG	10-Jan-23	100.5	29.68	29.51	29.58	0.10

Calibrated by: Louis Agassiz Signature: ______ Date: 10-Jan-23

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74_metric_e.html

A.Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

 Model #:
 CAE G10J
 Date:
 10-Jan-23

 Serial #:
 0028-1X1310-1
 Barometric Pressure:
 29.55

#: 0028-1X1310-1 Barometric Pressure: 29.55 (in. Hg)
Theoretical Critical Vacuum: 13.94 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

			DRY GA	S METER READIN	NGS	-				-C	RITICAL ORIF	ICE READING	GS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Te Inlet (deg F)	omps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Temperat Final (deg F)	ure Averag (deg F
3.60	17.00	937.261	955.649	18.388	74.0	74.0	75.0	75.0	73	0.8185	15.5	85.5	82.5	84.0
1.90	16.00	924.799	937.261	12.462	73.0	73.0	74.0	74.0	63	0.5956	18.5	87.0	88.0	87.5
1.15	19.00	913.210	924.799	11.589	71.0	71.0	72.0	72.0	55	0.4606	20.0	80.5	81.0	80.8
0.62	16.00	905.781	913.210	7.429	70.0	70.0	71.0	71.0	48	0.3560	22.0	74.0	80.0	77.0
0.33	16.00	900.665	905.781	5.116	67.0	67.0	71.0	71.0	40	0.2408	23.5	64.0	73.0	68.5
DRY GA	AS METER			ORIFICE		****** RES	DRY GAS		******	******		ORIFICE		
VOLUME	VOLUME		VOLUME	ORIFICE	VOLUME	****** RES		S METER	******		LIBRATION FA			
	VOLUME			ORIFICE		****** RES	DRY GAS	S METER	*****					Ko (valu
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr	****** RES	DRY GAS CALIBRATIO	S METER ON FACTOR Y Variation	******	CAI Value	 LIBRATION FA dH@ Value	CTOR Variation		
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)	****** RES	DRY GAS CALIBRATIO Value (number)	DN FACTOR Y Variation (number)	******	CAL Value (in H2O)	LIBRATION FA dH@ Value (mm H2O)	CTOR Variation (in H2O)		(valu
VOLUME CORRECTED Vm(std) (cu ft) 18.093	VOLUME CORRECTED Vm(std) (liters) 512.4		VOLUME CORRECTED Vcr(std) (cu ft) 17.629	VOLUME CORRECTED Vcr(std) (liters) 499.3	VOLUME NOMINAL Vcr (cu ft) 18.398	****** RES	DRY GAS CALIBRATIO Value (number) 0.974	S METER DN FACTOR Y Variation (number) -0.007	*******	CAI Value (in H2O) 1.837	 dH@ Value (mm H2O) 46.66	CTOR Variation (in H2O) 0.015		(valu 0.71
VOLUME CORRECTED Vm(std) (cu ft) 18.093 12.234	VOLUME CORRECTED Vm(std) (liters) 512.4 346.5		VOLUME CORRECTED Vor(std) (cu ft) 17.629 12.035	VOLUME CORRECTED Vcr(std) (liters) 499.3 340.8	VOLUME NOMINAL Vcr (cu ft) 18.398 12.641	****** RES	DRY GAS CALIBRATIO Value (number) 0.974 0.984	DN FACTOR Y Variation (number) -0.007 0.002	*******	CAI Value (in H2O) 1.837 1.846	 dH@ Value (mm H2O) 46.66 46.90	Variation (in H2O) 0.015 0.024		(valu 0.71 0.70
VOLUME ORRECTED Vm(std) (cu ft) 18.093 12.234 11.398	VOLUME CORRECTED Vm(std) (liters) 512.4 346.5 322.8		VOLUME CORRECTED Vor(std) (cu ft) 17.629 12.035 11.121	VOLUME CORRECTED Vcr(std) (liters) 499.3 340.8 314.9	VOLUME NOMINAL Vor (cu ft) 18.398 12.641 11.537	****** RES	DRY GAS CALIBRATIO Value (number) 0.974 0.984 0.976	S METER ON FACTOR Y Variation (number) -0.007 0.002 -0.006	*******	CAI Value (in H2O) 1.837 1.846 1.853	LIBRATION FA dH@ Value (mm H2O) 46.66 46.90 47.06	Variation (in H2O) 0.015 0.024 0.031		(valu 0.71 0.70 0.70

т	EMPERATURE CALIBRAT	ION	
Calibration Standard>	Omega Model CL23A S/N:T-2	18768	
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Res Variation (degF)	sults Percent of Absolute
32	32	0	0.00%
100	100	0	0.00%
300	300	0	0.00%
500	500	0	0.00%
1000	1000	0	0.00%

Calibrated by: Ben Lester

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02.
For Orlifice Calibration Factor Orlife, the orlifice differential pressure in inches of H20 that equates to 0.75 cm at 68 F and 29.93 cinches of Hg, acceptable tolerance of individual values from the average is +0.2.
For Temperature Devices, the reading must be within 1.5% of certified calibration standard (absolute temperature) to exceptable.

Signature: Carter Lanfranco Date: January 10, 2023

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

GLASS NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Christian De La O Date: January 10, 2023

Signature Carter Lanfrance

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
NOZZIC I.D.						(ft ²)
A	(inch) 0.1270	(inch) 0.1270	(inch) 0.1255	(inch) 0.0015	(inch)	0.0000873
					0.1265	
G-165	0.1650	0.1660	0.1645	0.0015	0.1652	0.0001488
G-170	0.1700	0.1710	0.1695	0.0015	0.1702	0.0001579
G-178	0.1760	0.1770	0.1790	0.0030	0.1773	0.0001715
E	0.1950	0.1930	0.1960	0.0030	0.1947	0.0002067
L	0.2100	0.2070	0.2090	0.0030	0.2087	0.0002375
Q	0.2110	0.2085	0.2100	0.0025	0.2098	0.0002401
P-2240	0.2160	0.2155	0.2170	0.0015	0.2162	0.0002549
P-224	0.2170	0.2160	0.2180	0.0020	0.2170	0.0002568
G-221	0.2160	0.2185	0.2190	0.0030	0.2178	0.0002588
G-225	0.2190	0.2175	0.2180	0.0015	0.2182	0.0002596
G-2232	0.2210	0.2200	0.2215	0.0015	0.2208	0.0002660
P-223	0.2220	0.2210	0.2200	0.0020	0.2210	0.0002664
G-245	0.2470	0.2455	0.2460	0.0015	0.2462	0.0003305
P-251	0.2545	0.2530	0.2540	0.0015	0.2538	0.0003514
P-254	0.2550	0.2540	0.2535	0.0015	0.2542	0.0003523
P-256	0.2540	0.2550	0.2560	0.0020	0.2550	0.0003547
G-282	0.2820	0.2800	0.2825	0.0025	0.2815	0.0004322
P-281	0.2820	0.2820	0.2815	0.0005	0.2818	0.0004332
G-292	0.2820	0.2840	0.2850	0.0030	0.2837	0.0004389
G-309	0.3045	0.3065	0.3065	0.0020	0.3058	0.0005101
G-3121	0.3090	0.3085	0.3075	0.0015	0.3083	0.0005185
G-3091	0.3080	0.3080	0.3090	0.0010	0.3083	0.0005185
G-3072	0.3090	0.3070	0.3100	0.0030	0.3087	0.0005196
P-313	0.3140	0.3130	0.3130	0.0010	0.3133	0.0005355
P-314	0.3135	0.3135	0.3140	0.0005	0.3137	0.0005366
P-315	0.3145	0.3145	0.3145	0.0000	0.3145	0.0005395
V-06	0.3220	0.3215	0.3200	0.0020	0.3212	0.0005626
P-343	0.3430	0.3440	0.3435	0.0010	0.3435	0.0006435
P-346	0.3465	0.3470	0.3465	0.0005	0.3467	0.0006555
G-345	0.3470	0.3475	0.3475	0.0005	0.3473	0.0006580
P27	0.3490	0.3480	0.3500	0.0020	0.3490	0.0006643
G-367	0.3700	0.3685	0.3690	0.0015	0.3692	0.0007433
P-375	0.3730	0.3750	0.3745	0.0020	0.3742	0.0007636
P-401	0.3980	0.3990	0.4000	0.0020	0.3990	0.0008683
P-407	0.4085	0.4085	0.4090	0.0005	0.4087	0.0009109
G-433	0.4360	0.4360	0.4355	0.0005	0.4358	0.0010360
P-29	0.4690	0.4690	0.4700	0.0010	0.4693	0.0010000
G-468	0.4700	0.4685	0.4720	0.0035	0.4702	0.0012014
P-7	0.4965	0.4945	0.4975	0.0030	0.4962	0.0013427
В	0.4903	0.5030	0.5035	0.0030	0.5028	0.0013427
G-540	0.5400	0.5410	0.5400	0.0013	0.5403	0.0015790
U-340	0.5400	0.5410	0.5400	0.0000	#DIV/0!	#DIV/0!
G-215				0.0000	#DIV/0!	#DIV/0!
G-218				0.0000	#DIV/0!	#DIV/0!
G-218 G-2231				0.0000	#DIV/0! #DIV/0!	#DIV/0!
G-2501				0.0000	#DIV/0! #DIV/0!	#DIV/0!
G-2501 P				0.0000	#DIV/0! #DIV/0!	#DIV/0!
				0.0000	#DIV/0!	#DIV/0!
				0.0000	#DIV/0!	#DIV/0!
				0.0000	#DIV/0!	#DIV/0!
				0.0000	#DIV/0!	#DIV/0!
				0.0000	#DIV/0!	#DIV/0!

Where:

(a) D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.

(b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.

(c) Average = average of D1, D2 and D3

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-A Date: 10-Jan-23

Serial #: Kimmon 186 Barometric Pressure: 29.52 (in. Hg)

Theoretical Critical Vacuum: 13.92 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

!!!!!!!!!

			DRY GA	S METER READII	NGS	-			-CRITICAL ORIFICE READINGS-					
dH (in H2O) 0.00 0.00 0.00	Time (min) 15.00 16.00 21.00	Volume Initial (m³) 557.8680 558.0660 558.2770	Volume Final (m³) 558.0660 558.2770 558.5550	Volume Total (cu ft) 6.992 7.451 9.817	Initial To Inlet (deg F) 68.0 69.0 67.0	emps. Outlet (deg F) 68.0 69.0 67.0	Final Inlet (deg F) 70.0 65.0 65.0	Temps. Outlet (deg F) 70.0 65.0 65.0	Orifice Serial# (number) 48 48 48	K' Orifice Coefficient (see above) 0.3560 0.3560	Actual Vacuum (in Hg) 20.0 20.0 20.0	Amb Initial (deg F) 65.0 64.0 61.0	pient Tempera Final (deg F) 65.0 61.0 58.0	Ature Average (deg F) 65.0 62.5 59.5
DRY GA	S METER			***************************		****** RES	:ULTS ****** DRY GAS		********	********		ORIFICE	·	
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y		CAL	IBRATION FA dH@	CTOR		
Vm(std)	Vm(std)		Vcr(std)	Vcr(std)	Vcr		Value	Variation		Value	Value	Variation		
(cu ft)	(liters) 194.9		(cu ft) 6.880	(liters) 194.8	(cu ft) 6.936		(number) 1.000	(number) 0.001		(in H2O) 0.000	(mm H2O) 0.00	(in H2O) 0.000		
6 883				208.3	7.381		0.999	0.001		0.000	0.00	0.000		
6.883 7.363			7.356											
6.883 7.363 9.719	208.5 275.2		7.356 9.683	274.2	9.660		0.996	-0.002		0.000	0.00	0.000		
7.363	208.5						0.996	-0.002		0.000	0.00	0.000		

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer

Signature:

Date: January 10, 2023

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-B Date: 10-Jan-23

Serial #: Wizit 6276 Barometric Pressure: 29.58 (in. Hg)

Theoretical Critical Vacuum: 13.95 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

!!!!!!!!!

			DRY GA	S METER READI	NGS	-				-CI	RITICAL ORIF	ICE READING	GS-	
.0.1	Time	Volume	Volume	Volume	Initial T			Temps.	Orifice	K' Orifice	Actual		bient Tempera	
dH (in H2O)	Time (min)	Initial (m³)	Final (m³)	Total (cu ft)	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	Serial# (number)	Coefficient (see above)	Vacuum (in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)
0.00	22.00	232.3240	232.6050	9.923	68.0	68.0	71.0	71.0	48	0.3560	20.0	63.0	65.0	64.0
0.00	18.00	232.6050	232.8370	8.193	70.0	70.0	73.0	73.0	48	0.3560	20.0	64.0	66.0	65.0
0.00	16.00	232.8370	233.0430	7.275	72.0	72.0	76.0	76.0	48	0.3560	20.0	65.0	69.0	67.0
			*****	******	*****	******* RE\$	SULTS ******	******	******	******	***			
DRY GA	S MFTFR			ORIFICE			DRY GAS	S METER				ORIFICE		
	S METER			ORIFICE			DRY GAS			0.11		ORIFICE		
VOLUME	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL			S METER ON FACTOR Y		CAL	LIBRATION FA			
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr		CALIBRATION Value	ON FACTOR Y Variation		Value	LIBRATION FA dH@ Value	CTOR Variation		
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y			LIBRATION FA	CTOR		
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)		CALIBRATION Value (number)	ON FACTOR Y Variation (number)		Value (in H2O)	LIBRATION FA dH@ Value (mm H2O)	Variation (in H2O)		
VOLUME CORRECTED Vm(std) (cu ft) 9.779	VOLUME CORRECTED Vm(std) (liters) 276.9		VOLUME CORRECTED Vcr(std) (cu ft) 10.121	VOLUME CORRECTED Vcr(std) (liters) 286.6	VOLUME NOMINAL Vcr (cu ft) 10.163		CALIBRATION Value (number) 1.035	ON FACTOR Y Variation (number) 0.003		Value (in H2O) 0.000	LIBRATION FA dH@ Value (mm H2O) 0.00	Variation (in H2O) 0.000		
VOLUME CORRECTED Vm(std) (cu ft) 9.779 8.043	VOLUME CORRECTED Vm(std) (liters) 276.9 227.8		VOLUME CORRECTED Vcr(std) (cu ft) 10.121 8.273	VOLUME CORRECTED Vcr(std) (liters) 286.6 234.3	VOLUME NOMINAL Vcr (cu ft) 10.163 8.323		Value (number) 1.035 1.028	ON FACTOR Y Variation (number) 0.003 -0.003		Value (in H2O) 0.000 0.000	LIBRATION FA dH @ Value (mm H2O) 0.00	Variation (in H2O) 0.000 0.000		

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by:	Liam Forrer	Signature:	Date:	January 10, 202
----------------	-------------	------------	-------	-----------------

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

-CRITICAL ORIFICE READINGS-

Model #: LMU-D Date: 10-Jan-23

Serial #: **Wizit 4618** Barometric Pressure: 29.58 (in. Hg)

- DRY GAS METER READINGS -----

Theoretical Critical Vacuum: 13.95 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above. **IMPORTANT**

The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

!!!!!!!!!!

			DIT! OA	O MILTER READII						0.	MITIOAL OIM			
dH (in H2O) 0.00	Time (min) 18.00	Volume Initial (m³) 96.613	Volume Final (m³) 96.838	Volume Total (cu ft) 7.942	Initial To Inlet (deg F) 72.0	emps. Outlet (deg F) 72.0	Final Inlet (deg F) 75.0	Temps. Outlet (deg F) 75.0	Orifice Serial# (number) 48	K' Orifice Coefficient (see above) 0.3560	Actual Vacuum (in Hg) 20.0	Am Initial (deg F) 64.0	bient Tempera Final (deg F) 69.0	Ature Average (deg F) 66.5
0.00	15.00	96.838	97.026	6.653	73.0	73.0	76.0	76.0	48	0.3560	20.0	63.0	68.0	65.5
0.00	20.00	97.026	97.278	8.899	75.0	75.0	76.0	76.0	48	0.3560	20.0	64.0	69.0	66.5
DRY GA	S METER			*********************		******* RESU		S METER				ORIFICE		
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr		Value	ON FACTOR Y Variation		Value	_IBRATION FA dH@ Value	Variation		
(cu ft) 7.768	(liters) 220.0		(cu ft) 8.261	(liters) 233.9	(cu ft) 8.335		(number) 1.063	(number) 0.003		(in H2O) 0.000	(mm H2O) 0.00	(in H2O) 0.000		
6.495	183.9		6.891	195.1	6.940		1.061	0.000		0.000	0.00	0.000		
8.671	245.6		9.179	259.9	9.261		1.058	-0.002		0.000	0.00	0.000		

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Signature: January 10, 2023 Calibrated by: Liam Forrer

A.Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

09-Jan-23

Model #: ST CAE2 Date:

 Serial #:
 0028-072911-1
 Barometric Pressure:
 29.33
 (in. Hg)

 Theoretical Critical Vacuum:
 13.83
 (in. Hg)

111111111

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

			DRY GA	S METER READIN	IGS					-CI	RITICAL ORIF	CE READING	SS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Te Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Temperatu Final (deg F)	ure Average (deg F)
3.70	19.00	86.397	106.864	20.467	76.0	76.0	79.0	79.0	73	0.8185	12.5	74.0	76.0	75.0
1.95	16.00	72.580	85.009	12.429	75.0	75.0	76.0	76.0	63	0.5956	15.5	75.0	72.0	73.5
1.18	17.00	62.184	72.515	10.331	73.0	73.0	75.0	75.0	55	0.4606	17.0	79.0	74.0	76.5
0.68	16.00	54.727	62.105	7.378	70.0	70.0	73.0	73.0	48	0.3560	19.5	74.0	79.0	76.5
0.33	15.00	49.950	54.794	4.844	72.0	72.0	70.0	70.0	40	0.2408	21.0	69.0	73.0	71.0
VOLUME	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		DRY GAS			CAL	 IBRATION FA. dH@	ORIFICE CTOR		
Vm(std) (cu ft)	Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		Ko (value)
19.884	563.1		19.720	558.5	20.392		0.992	0.000		1.860	47.26	-0.012		0.701
12.067	341.7		12.101	342.7	12.478		1.003	0.011		1.853	47.08	-0.019		0.696
10.039	284.3		9.915	280.8	10.282		0.988	-0.004		1.891	48.04	0.018		0.701
7.194	203.7		7.213	204.3	7.479		1.003	0.011		1.833	46.56	-0.040		0.701
4.724	133.8		4.597	130.2	4.718		0.973	-0.018		1.926	48.92	0.053		0.705
					Avera	ge Y>	0.9916	Avera	ge dH@>	1.873	47.6	Av	erage Ko>	0.701

т	EMPERATURE CALIBRAT	ION	
Calibration Standard>	Omega Model CL23A S/N:T-2	18768	
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Re Variation (degF)	sults Percent of Absolute
32	32	0	0.00%
100	100	0	0.00%
300	300	0	0.00%
500	500	0	0.00%
1000	1000	0	0.00%

Calibrated by: Liam Forrer

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02.
For Orifice Calibration Factor OHB, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of all or at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +0.2.
For Temperature Devices, the reading must be within 1.5% of cartifice calibration standard (absolute temperature) to expectable.

Signature:

Date: January 9, 2023

Calibration Certificate

 Date:
 02-Feb-23
 Insrtument Calibrated:
 Testo 1 (330-2LL)

 Calibrated by:
 Louis Agassiz
 Serial #:
 03101345

 Authorizing Signature:
 Customer:
 ALA

Ambient Conditions: Temperature: 19 °C Barometric Pressure: 101.96 kPa Relative Humidity: 61%

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

O_2		Initial Evaluation	on			After Calibr	ation		
Gas	Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Certified Value (vol %)
Zero	0.15	0.15	Pass		0.05	0.05	Pass		0
O_2	11.0	0.00	Pass		11.0	0.00	Pass		11.00
Ambient	20.9	0.05	Pass		20.9	0.05	Pass		20.95

Performance Specification: +/- 1% O₂ (absolute diff)

CO		Initial Evaluation	on			After Calibra	ition		
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero	-1	0.3%	Pass		0	0.0%	Pass		0
1 Gas	1899	0.4%	Pass	Re-cal on 2	1915	0.4%	Pass		1907
2 Gas	475	7.1%	Fail	Gas	444	0.1%	Pass		444
3 Gas	230	5.9%	Fail		245	0.2%	Pass		245

Performance Specification: +/- 5% of Certified Gas Value

NO		Initial Evaluation	on			After Calibra	tion		0.45.17.1
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero 1 Gas 2 Gas 3 Gas	0 102 460 55	0.0% 1.6% 1.1% 20.3%	Pass Pass Pass Fail	Re-cal on 3 Gas	0 100 467 45	0.0% 0.4% 0.4% 1.6%	Pass Pass Pass Pass		0 100 465 46

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure (PSI)	NO (ppm)	O ₂ (Vol. %)	CO
				(PSI)	(ppm)	(VOI. 70)	(ppm)
Zero Gas (N ₂)	833435	30-Jan-2021	29-Nov-2026	1000	0	0	0
1 Gas	XC004912B	10-Jun-2021	11-Jun-2029	300	100.4	-	1907
2 Gas	XC015932B	15-Jun-2021	14-Jun-2024	600	465.2	-	443.5
3 Gas	CC101659	21-Jun-2021	22-Jun-2029	1000	45.71	-	244.5
O ₂ /CO ₂	CC38269	2-Jun-2021	3-May-2029	500	-	11.00	-

Note: National Institute of Standards and Technology traceable certificates are available upon request.

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

\square Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conducting and standards of practice.	my work in accordance with my Code of Ethics
In addition, I will take the following steps have disclosed, to ensure the public interest	to mitigate the real or perceived conflict(s) I est remains paramount:
Further, I acknowledge that this disclosure	e may be interpreted as a threat to my
independence and will be considered by the	he statutory decision maker accordingly.
This conflict of interest disclosure statement is of Information and Protection of Privacy Act for the	e purposes of increasing government
transparency and ensuring professional ethics a statement you consent to its publication and its valid from the date submitted and cannot be re-	
collection, use or disclosure of your personal inf	
Environment and Climate Change Strategy Head	Iquarters Office at 1-800-663-7867.
Signature:	Witnessed by,
x P	x
Print name: Mark Lanfranco	Print name: Carter LanGanco
Date: Dec.16, 2020	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Shawn Harrington

has met the requirements of

Stack Testing for Pollutants (CHSC 7760)

School of Process, Energy and Natural Resources Chemical Sciences Program

Endorsed by:

Environment Canada

Environnement

British Columbia Ministry of

JUNE 21, 2001

School of Process, Energy and Natural Resources

Marsh Hemekey, Dean

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;

1/

- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

I <u>Shawn Harrington</u> , as a m declare	ember of Air and Waste Management Association
Select one of the following:	
☑ Absence from conflict of interest	
Other than the standard fee I will receive for my	professional services, I have no financial or
other interest in the outcome of this project	. I further declare that should a
conflict of interest arise in the future during the o	course of this work, I will fully disclose the
circumstances in writing and without delay to Mr. Sajid Barlas	, erring on the side of caution.

Date: Dec.16, 2020

Description	on and nature of conflic	t(s):	
		.(0).	
·			
and the second			
	ntain my objectivity, cood dards of practice.	nducting my work	in accordance with my Code of Ethics
	on, I will take the followi losed, to ensure the pul	• .	nte the real or perceived conflict(s) I ins paramount:
-		•	e interpreted as a threat to my tory decision maker accordingly.
			under section 26(c) of the Freedom c
•			untability. By signing and submitting t
•	·		re outside of Canada. This consent is
			f you have any questions about the new please contact the Ministry of
	•		s Office at 1-800-663-7867.
ignature:	// · A	Wi	itnessed by:
Manua	Home alon		$\mathcal{L}(\mathcal{A})$

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Print name:

Mark Lanfranco

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

MOUNT ROYAL COLLEGE

Faculty of Continuing Education and Extension

Carter Lanfranco

has successfully completed

Stack Sampling

May 2009

Date

Door

Faculty of Continuing Education and Extension

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Doclaration

<u> </u>	Deciaration
1 Carter Lanfranco	as a member of _Air and Waste Management Association
declare	
Select one of the following:	
Absence from conflict of interest	
Other than the standard fee I will receive	re for my professional services, I have no financial or
other interest in the outcome of this P	oroject . I further declare that should a
conflict of interest arise in the future du	ring the course of this work, I will fully disclose the
circumstances in writing and without de Mr. Sajid Barlas	elay to, erring on the side of caution.

Real or perceived conflict of interest
Description and nature of conflict(s):
I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.
In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:
Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.
onflict of interest disclosure statement is collected under section 26(c) of the Freedom of nation and Protection of Privacy Act for the purposes of increasing government

This of . Info transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name: Conter

Witnessed by:

Mark Lanfranco Print name:

Date: Dec. 16, 2020

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Faculty of Continuing Education and Extension

Daryl Sampson

has successfully completed

The program of studies and is awarded the certificate in

STACK SAMPLING

May 2005

Date

Dear

Faculty of Continuing Education and Protection

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration I Daryl Sampson , as a member of Air and Waste Management Association declare Select one of the following: Absence from conflict of interest Other than the standard fee I will receive for my professional services, I have no financial or other interest in the outcome of this project . I further declare that should a conflict of interest arise in the future during the course of this work, I will fully disclose the circumstances in writing and without delay to Mr. Sajid Barlas , erring on the side of caution.

\square Real or perceived conflict of interest	i.
Description and nature of conflict(s)	:
I will maintain my objectivity, condu and standards of practice.	cting my work in accordance with my Code of Ethics
In addition, I will take the following shave disclosed, to ensure the public	steps to mitigate the real or perceived conflict(s) I interest remains paramount:
•	closure may be interpreted as a threat to my decision maker accordingly.
Information and Protection of Privacy Act transparency and ensuring professional et statement you consent to its publication a valid from the date submitted and cannot	ent is collected under section 26(c) of the <i>Freedom of</i> for the purposes of increasing government thics and accountability. By signing and submitting this and its disclosure outside of Canada. This consent is be revoked. If you have any questions about the nal information please contact the Ministry of y Headquarters Office at 1-800-663-7867.
Signature:	Witnessed by:
X Daryl Sampson	Mark Lanfranco
Print name: Daryl Sampson	Print name:
Date: Dec.18, 2020	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

their common sense, conscience and sense of personal in	tegrity.
<u>Declaration</u>	
Jeremy Globs as a me	ember of _Air and Waste Management Association
declare	
Select one of the following:	
X Absence from conflict of interest	
Other than the standard fee I will receive for my p	rofessional services, I have no financial or
other interest in the outcome of this project	. I further declare that should a
conflict of interest arise in the future during the co	ourse of this work, I will fully disclose the
circumstances in writing and without delay to Mr. Sajid Barlas	, erring on the side of caution.

☐ Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conducting and standards of practice.	my work in accordance with my Code of Ethics
In addition, I will take the following steps have disclosed, to ensure the public inter	to mitigate the real or perceived conflict(s) I est remains paramount:
Further, I acknowledge that this disclosur independence and will be considered by t	•

This conflict of interest disclosure statement is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name

Date: Dec.16, 2020

Witnessed by:

151

Mark Lanfranco
Print name:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

MOUNT ROYAL UNIVERSITY

Faculty of Continuing Education and Extension

Jeremy Shawn Gibbs

has successfully completed

Stack Sampling

35 Hours / 2019

May 22, 2019

Date

		·
1.	Name of Qualified Professional	Shawn Harrington
	Title	Senior Environmental Technician /Project manager
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☑No
	Name of Association:	Registration #
3.	Brief description of professional se Environmental consulting ,spe	ervices: ecializing in air and atmospheric sciences
Pro pro pu car pe	otection of Privacy Act for the purpo ofessional ethics and accountability blication and its disclosure outside nnot be revoked. If you have any q	ected under section 26(c) of the <i>Freedom of Information and</i> oses of increasing government transparency and ensuring r. By signing and submitting this statement you consent to its of Canada. This consent is valid from the date submitted and uestions about the collection, use or disclosure of your the Ministry of Environment and Climate Change Strategy 67.
		<u>Declaration</u>
	·	knowledge, skills and experience to provide expert ndations in relation to the specific work described above.
<u>X</u> Pri	int Name: Shawn Harrington te signed: November 26, 2020	Witnessed by: X Print Name: Mark anfranco

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

1.	Name of Qualified Professional Carter Lankon
	Title Chief operations officer (au
2.	Are you a registered member of a professional association in B.C.?
	Name of Association:Registration #
3.	Brief description of professional services:
pro pu ca pe	ofessional ethics and accountability. By signing and submitting this statement you consent to its blication and its disclosure outside of Canada. This consent is valid from the date submitted and mnot be revoked. If you have any questions about the collection, use or disclosure of your resonal information please contact the Ministry of Environment and Climate Change Strategy adquarters Office at 1-800-663-7867.
	<u>Declaration</u>
	m a qualified professional with the knowledge, skills and experience to provide expert formation, advice and/or recommendations in relation to the specific work described above.
X	witnessed by: x Must faithful
	int Name: <u>Carter Lastrance</u> Pribt Name: // Jhalin Harrington
Da	ite signed: 1000

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

1.	Name of Qualified Professional <u>Daryl S</u>	ampson
	Title Senior	Environmental Technician/Project Manager
2.	Are you a registered member of a profess	ional association in B.C.? ☐ Yes ☒ No
	Name of Association:	Registration #
3.	Brief description of professional services:	
	Environmental consulting, specializing in air and atmospheric sciences	
pro pu car pe	otection of Privacy Act for the purposes of interestional ethics and accountability. By signal blication and its disclosure outside of Canamanot be revoked. If you have any questions	nder section 26(c) of the <i>Freedom of Information and</i> ncreasing government transparency and ensuring hing and submitting this statement you consent to its da. This consent is valid from the date submitted and is about the collection, use or disclosure of your stry of Environment and Climate Change Strategy
	<u>D</u> (<u>eclaration</u>
	·	dge, skills and experience to provide expert in relation to the specific work described above.
Sig	nature:	Witnessed by:
<u>x 2</u>	Daryl Sampson	x Zen Com
Pri	Daryl Sampson nt Name: <u>Daryl Sampson</u>	Print Name: Louis Agassiz
Da	te signed: November 23, 2020	

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

knowledge, experience and objectivity necessary to fulfill this role.
1. Name of Qualified Professional Jeverny Obles
Title Environmental technician
2. Are you a registered member of a professional association in B.C.? ☐ Yes ☐ No
Name of Association:Registration #
3. Brief description of professional services: Environmental Consultant Specialize in Gir and atmospheric Sciences
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.
<u>Declaration</u>
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above. Signature: Witnessed by:
* home fill
Print Name: Deremy 6.45 Print Name: Connoc Laan
Date signed: Nav 1 2020

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{}f 1}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Canadian Association for Laboratory Accreditation Inc.

Certificate of Accreditation

A. Lanfranco and Associates Inc. 101 - 9488 - 189th Street Surrey, British Columbia

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Accreditation No.: A4232

Issued On: February 5, 2021

Accreditation Date: February 5, 2021

Expiry Date: August 6, 2023

