

WASTE-TO-ENERGY FACILITY

Appendices of Emissions Testing Report

June 2025 Survey

Second Quarter 2025

Table of Contents

<u>Appendix</u>

- A Quality Assurance / Quality Control Results
- B Calculations
- C Laboratory Results
- D Computer Generated Results
- E Field Data Sheets
- F Calibration Sheets and Technician Certificates

APPENDIX - A

QUALITY ASSURANCE / QUALITY CONTROL RESULTS

Quality assurance / quality control (QA/QC) is divided into four categories: administration, preparation, testing, and analysis. The following sections detail results found for the above four categories.

Administration:

- All field, process, and analytical data was reviewed to ensure data integrity and accuracy.
- Duplicate proof of draft and final report, including data entry, conducted.

Preparation:

- All glassware cleaned
- Blank samples of reagents collected.

Testing:

- Stack diameter and absence of cyclonic flow confirmed
- Calibrated magnehelic used for all velocity measurements
- All trains past pre- and post- leak checks.
- Isokinetics all within 100% ± 10%.

Analysis:

- Trace Metals and Mercury analysis conducted at Element Labs, Surrey, B.C.
- Fluoride (HF) analysis conducted at Element Labs in Surrey, B.C.
- Nitrous Oxide (N₂O) analysis conducted at Bureau Veritas in Mississauga, ON.
- Volatile Organic Compounds (VOC) analysis conducted at ALS Environmental in Simi Valley, CA.
- Particulate analysis conducted at A. Lanfranco and Associates Inc., Surrey, BC.
- Chain of Custody protocols followed for all samples.
- Acceptable blank values for all sample types. All samples blank corrected.

Sample Type	Blank Value		
Second Quarter 2025	Unit 1	Unit 2	Unit 3
Filter	-0.6 mg	0.1 mg	-1.2 mg
Front Half Washings	0.5 mg	0.5 mg	0.6 mg
Mercury Front	<0.02 ug	<0.02 ug	<0.02 ug
Mercury Back	<0.27 ug	<0.17 ug	<0.17 ug
Trace Metals Front *	<66.4 ug	<126.8 ug	<109.5 ug
Trace Metals Back*	<47.7 ug	<52.7 ug	<49.6 ug
Ammonia	<6 ug	<6 ug	<6 ug
Fluoride	<70 ug	<70 ug	<70 ug
Chloride	<100 ug	<100 ug	<100ug

Sum of all reported elements except Hg*

APPENDIX - B CALCULATIONS

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-11 were used to calculate particulate concentration at standard conditions on a dry basis. Equations 12-26 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 27-29 were used to calculate the volumetric flowrate of the stack flue gas.

App B.1

pp B.1	Contaminant Concentration Calculations	
	$c = \frac{m}{V_{std}}$	Equation 1
	$m_{part} = m_{filter} + m_{pw}$	Equation 2
	$m_i = m_{ana,i} - m_{blank}$	Equation 3
	$V_{std} = \frac{V_{std(imp)}}{35.315}$	Equation 4
	$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$	Equation 5
	$V_{samp} = V_{final} - V_{init}$	Equation 6
	$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$	Equation 7
ΔH_{av}	$h_{pe} = rac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}$, where $n=$ the number of points	Equation 8
	$OC = \frac{20.9 - \%O_{2c}}{20.9 - \%O_{2m}}$	Equation 9
$%O_{2m} = \frac{1}{2}$	$\frac{1}{n}\sum_{i=1}^{n}\%O_{2i}$, where $n=$ the number of O_{2} measurements	Equation 10
% <i>CO</i> ₂ =	$= \frac{1}{n} \sum_{i=1}^{n} \%CO_{2i}, where n = the number of CO_{2} measurements$	Equation 11

Where,

c = Contaminant concentration

m = Contaminant mass

 m_i = Net analytical mass (mg, ng, or μ g) $m_{ana,i}$ = Analytical mass (mg, ng, or μ g) m_{blank} = Blank analytical mass (mg, ng, or μ g)

 m_{part} = Total particulate mass (mg)

 m_{filter} = Net particulate gain from filter (mg)

 m_{pw} = Net particulate gain from probe wash (mg) $V_{std(imp)}$ = Sample volume at standard conditions (ft³) V_{samp} = Sample volume at actual conditions (ft³)

 V_{final} = Final gas meter reading (ft³) V_{init} = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) T_m = Gas meter temperature (°F)

 $T_{m(ave)}$ = Average gas meter temperature (°F) P_m = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg)

 ΔH_{ave} = Average of individual point orifice pressures (inches of H_2O) $\Delta H_{i(act)}$ = Individual recorded point orifice pressures (inches of H_2O)

OC = Oxygen correction factor (dimensionless)

 $%O_{2c}$ = Oxygen concentration to correct to (% dry basis)

 $\%O_{2m}$ = Average measured stack gas oxygen concentration (% dry basis) $\%CO_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant. For particulate, m is the sum of the mass contributed from probe washing and filter particulate.

App B.2 Isokinetic Variation Calculations

$$\Delta H_{l} = \frac{2.62 \times 10^{7} \times c_{p} \times A_{n} \times (1 - B_{wo}) \times M_{D} \times (T_{m} + 459.67) \times \Delta p_{l}}{k_{o} \times M_{w} \times (T_{Stk} + 459.67)} \qquad \text{Equation } 12$$

$$R_{m} = 85.49 \times c_{p} \times \sqrt{\Delta p_{l}} \times \sqrt{\frac{(T_{stk_{l}} + 459.67)}{M_{w} \times P_{B}}} \times 60 \times A_{n} \times \frac{(T_{m_{l}} + 459.67) \times (1 - B_{wo})}{(T_{stk_{l}} + 459.67) \times y} \qquad \text{Equation } 13$$

$$A_{n} = \pi \left(\frac{d_{n}}{24}\right)^{2} \qquad \qquad \text{Equation } 14$$

$$M_{w} = M_{D} \times (1 - B_{wo}) + 18 \times B_{wo} \qquad \qquad \text{Equation } 15$$

$$M_{D} = 0.44 \times \% CO_{2} + 0.32 \times \% O_{2} + 0.28 \times (100 - \% CO_{2} - \% O_{2}) \qquad \qquad \text{Equation } 16$$

$$T_{Stk} = \frac{1}{n} \sum_{l=1}^{n} T_{Stk_{l}}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation } 17$$

$$B_{wo} = \frac{V_{cond}}{V_{cond} + V_{std(limp)}} \qquad \qquad \text{Equation } 18$$

$$V_{cond} = 0.04707 \times V_{gain} \qquad \qquad \text{Equation } 19$$

$$Iso = \frac{1}{n} \sum_{l=1}^{n} Iso_{l}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation } 20$$

$$Iso_{l} = \frac{v_{nzi}}{v_{l}} \qquad \qquad \text{Equation } 21$$

$$v_{l} = 85.49 \times c_{p} \times \sqrt{\Delta p_{l}} \times \sqrt{\frac{(T_{Stk_{l}} + 459.67)}{(P_{Stk} \times M_{W})}} \qquad \qquad \text{Equation } 22$$

$$v_{nzi} = \frac{(V_{l} - V_{l-1}) \times y \times (T_{Stk_{l}} + 459.67) \times (P_{B} + \frac{\Delta H_{l(act)}}{13.6})}{A_{n} \times t_{l} \times 60 \times (T_{m(l)} + 459.67) \times P_{stk} \times (1 - B_{wo})} \qquad \qquad \text{Equation } 23$$

$$P_{stk} = P_B + \frac{P_g}{13.6}$$
 Equation 24

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
 , where $n =$ the number of points

Equation 25

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
, where $n =$ the number of points

Equation 26

Where,

 $A_n = Nozzle area (ft^2)$

 d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H₂O)

 P_g = Stack Static pressure (inches of H_2O) P_{stk} = Absolute stack pressure (inches of H_B) M_W = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

*%CO*₂ = Stack gas carbon dioxide concentration (% dry basis)

 $\%O_2$ = Stack gas oxygen concentration (% dry basis) B_{wo} = Stack gas water vapour, proportion by volume

V_{cond} = Total volume of water vapor collected, corrected to standard conditions

 (ft^3)

 V_{gain} = Condensate gain of impinger contents (mL) P_{std} = Standard pressure (29.92 inches of Hg)

 v_{stk} = Average flue gas velocity (ft/sec)

 v_i = Individual point flue gas velocity (ft/sec)

 v_{nz} = Average velocity at nozzle(ft/sec)

 v_{nzi} = Individual point velocity at nozzle(ft/sec) Iso_i = Individual point isokinetic variation (%)

Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (ft^3 /min)

App B.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$

$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
Equation 28

$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
 Equation 29

Where,

 Q_A = Actual flowrate (Am³/min)

 $Qs = Flowrate (m^3/min)$ at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)

d = Diameter of stack (inches)

APPENDIX - C LABORATORY RESULTS

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823114

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jul 14, 2025
Report Number: 3150677
Report Type: Final Report

Contact	Company	Address			
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street			
		Surrey, BC V4N 4W7			
		Phone: (604) 881-2582 Fax: (604) 881-2581			
		Email: mark.lanfranco@alanfranco.com			
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>			
Email	PDF	COA / COC			
Email	PDF	COC / Test Report			
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street			
		Surrey, BC V4N 4W7			
		Phone: (604) 881-2582 Fax: (604) 881-2581			
		Email: missy@alanfranco.com			
Delivery	<u>Format</u>	<u>Deliverables</u>			
Email	PDF	Invoice			

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location: LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823114

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025 Report Number: 3150677 Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location

Jun 04, 2025 NA

1823114-1 1823114-2 Jun 05, 2025 NA

1823114-3 Jun 05, 2025

NA

Sample Description Unit 1 Run 1 (Unit 1

R1 + 4 Bottles) / 21.9

Unit 1 Run 2 (MV Unit 1 Run 2 + 4 Bottles) / 21.9 °C Unit 1 Run 3 (MV Unit 1 Run 3 + 4 Bottles) / 21.9 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	action 1A					
Aluminum		μg	110	34	20	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	<0.2	2.0	<0.2	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	0.9	1	<0.3	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	1	0.9	0.8	0.25
Nickel		μg	4.0	2	2	0.5
Phosphorus		μg	56	37	48	2.5
Selenium		μg	51.4	9.7	15	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<2	5.5	<2	1.5
Vanadium		μg	1	<1	<1	1
Zinc		μg	9.9	5.2	2	0.5
Back Half Metals Fra	ection 2A					
Aluminum		μg	10	20	20	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<0.9	<0.9	<0.9	1
Cadmium		μg	<0.2	0.4	<0.2	0.25
Chromium		μg	<0.2	0.40	<0.2	0.2
Cobalt		μg	<0.2	<0.2	<0.2	0.25
Copper		μg	2.3	2.8	4.1	0.25
Lead		μg	<1	2	3.2	1.5
Manganese		μg	0.9	2	1.0	0.25
Nickel		μg	0.6	<0.4	<0.4	0.5
Phosphorus		μg	6	10	7	2.5
Selenium		μg	<1	30.5	36.9	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	6.1	<1	11	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	<0.4	2	1	0.5
Volume	Sample	mL	748	657	734	
Volume	aliquot volume	mL	698	607	684	
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05	<0.05	<0.05	0.05

T: +1 (604) 514-3322
E: info.vancouver@element.com
h Columbia W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Sample Description Unit 1 Run 1 (Unit 1

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823114

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jul 14, 2025
Report Number: 3150677
Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location

1823114-1 Jun 04, 2025 NA 1823114-2 Jun 05, 2025 1823114-3 Jun 05, 2025

NA

INA

NA

R1 + 4 Bottles) / 21.9 °C Unit 1 Run 2 (MV Unit 1 Run 2 + 4 Bottles) / 21.9 °C Unit 1 Run 3 (MV Unit 1 Run 3 + 4 Bottles) / 21.9 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - Co	ontinued					Liiii
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	<0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	748	657	734	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	97	98	106	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	< 0.008	< 0.008	<0.008	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	< 0.04	< 0.04	<0.04	
Mercury	As Tested	μg/L	0.21	0.13	0.20	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.067	0.041	0.064	

Surrey, British Columbia

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823114

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025 Report Number: 3150677 Report Type: Final Report

1823114-5 1823114-6

Reference Number Sample Date Sample Time

1823114-4 Jun 12, 2025 NA

Jun 13, 2025

Jun 13, 2025

NA

NA

Sample Location

Sample Description Unit 2 Run 1 (Unit 2

R1 + 4 Bottles) / 21.9 °C

Unit 2 Run 2 (MV Unit 2 Run 2 + 4 Bottles) / 21.9 °C Unit 2 Run 3 (MV Unit 2 Run 3 + 4 Bottles) / 21.9 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals F	raction 1A					Limit
Aluminum		μg	48	20	5	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1	10	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	0.75	<0.2	<0.2	0.2
Cobalt		μg	<0.3	0.3	<0.3	0.25
Copper		μg	<0.3	2.6	2	0.25
Lead		μg	<2	<2	3.5	1.5
Manganese		μg	0.7	0.8	1	0.25
Nickel		μg	3.0	1	4.9	0.5
Phosphorus		μg	33	20	48	2.5
Selenium		μg	19	43.1	8.6	1.5
Tellurium		μg	<2	6.3	15	2
Thallium		μg	<2	17	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	7.1	32.6	33.6	0.5
Back Half Metals Fr	raction 2A					
Aluminum		μg	25	20	24	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<0.8	<0.9	<0.9	1
Cadmium		μg	<0.2	<0.2	0.6	0.25
Chromium		μg	2.83	1.4	<0.2	0.2
Cobalt		μg	<0.2	0.4	<0.2	0.25
Copper		μg	2.3	5.8	0.3	0.25
Lead		μg	<1	2.8	8.5	1.5
Manganese		μg	2.5	1	2	0.25
Nickel		μg	<0.4	<0.4	3.9	0.5
Phosphorus		μg	29	<2	20	2.5
Selenium		μg	<1	2.8	<1	1.5
Tellurium		μg	<2	<2	8.9	2
Thallium		μg	20	<1	<1	1.5
Vanadium		μg	<0.8	2	<0.9	1
Zinc		μg	2	2	3.9	0.5
Volume	Sample	mL	874	697	677	
Volume	aliquot volume	mL	824	647	627	
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
•						

#104, 19575-55 A Ave. Surrey, British Columbia T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823114

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025 Report Number: 3150677 Report Type: Final Report

Reference Number Sample Date Sample Time

1823114-4 Jun 12, 2025 NA

1823114-5 Jun 13, 2025 NA

1823114-6 Jun 13, 2025 NA

Sample Location

Sample Description Unit 2 Run 1 (Unit 2

R1 + 4 Bottles) / 21.9 °C

Unit 2 Run 2 (MV Unit 2 Run 2 + 4 Bottles) / 21.9 °C

Unit 2 Run 3 (MV Unit 2 Run 3 + 4 Bottles) / 21.9 °C

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Units Analyte Results Results Results Limit Mercury by CVAA - Continued Dilution Factor As Tested 1 1 1 Volume Sample mL 250 250 250 Volume aliquot volume mL 25 25 25 40 40 Volume Final mL 40 Fraction 1B < 0.02 < 0.02 Mercury µg/sample < 0.02 Mercury As Tested µg/L < 0.05 < 0.05 < 0.05 0.05 **Dilution Factor** As Tested 1 1 1 Volume Sample mL 874 697 677 Volume aliquot volume mL 5.0 5.0 5.0 40 Volume Final mL 40 40 Mercury Fraction 2B µg/sample < 0.3 <0.3 < 0.3 As Tested < 0.05 0.07 < 0.05 0.05 Mercury μg/L **Dilution Factor** As Tested 1 1 Volume Sample 103 97 99 mL Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3A µg/sample < 0.008 0.01 < 0.008 < 0.05 Mercury As Tested µg/L < 0.05 < 0.05 0.05 **Dilution Factor** As Tested 1 1 1 Volume Sample mL 500 500 500 25 Volume aliquot volume mL 25 25 Volume Final mL 40 40 40 Fraction 3B < 0.04 < 0.04 < 0.04 Mercury µg/sample As Tested 0.05 0.05 Mercury μg/L 0.18 0.14 **Dilution Factor** As Tested 1 1 1 200 Volume Sample mL 200 200 Volume aliquot volume 25 25 25 mL Volume Final mL 40 40 40 Fraction 3C Mercury µg/sample 0.02 0.059 0.046

Surrey, British Columbia

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823114

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025 3150677 Report Number: Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location **Sample Description**

1823114-7 Jun 03, 2025 NA

Unit 3 Run 1 (MV

1823114-8 Jun 04, 2025

1823114-9 Jun 04, 2025

NA NA

Unit 3 R1 + 4 Bottles / 21.9 °C

Unit 3 Run 2 (Unit 3 Run 2 + 4 Bottles) / 21.9 °C

Unit 3 Run 3 (MV Unit 3 Run 3 + 4 Bottles) / 21.9 °C

			/ 21.9 °C	21.9 °C	Bottles) / 21.9 °C	
		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	ction 1A					
Aluminum		μg	<5	29	10	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	0.28	4.09	7.80	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	<0.3	2	3.8	0.25
Lead		μg	7.6	18	<2	1.5
Manganese		μg	3.6	7.5	2	0.25
Nickel		μg	<0.5	8.6	9.8	0.5
Phosphorus		μg	27	38	78	2.5
Selenium		μg	39.8	<2	62.2	1.5
Tellurium		μg	<2	12	2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	47.0	43.8	27.6	0.5
Back Half Metals Frac	ction 2A					
Aluminum		μg	26	20	28	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	15	<0.9	<0.9	1
Cadmium		μg	<0.2	<0.2	0.2	0.25
Chromium		μg	0.25	1.3	<0.2	0.2
Cobalt		μg	<0.2	0.6	<0.2	0.25
Copper		μg	3.9	4.1	3.1	0.25
Lead		μg	<1	5.8	<1	1.5
Manganese		μg	1	2.6	2	0.25
Nickel		μg	0.8	2.4	<0.4	0.5
Phosphorus		μg	9	29	<2	2.5
Selenium		μg	25.7	<1	16	1.5
Tellurium		μg	<2	7.7	4.3	2
Thallium		μg	7.0	11	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	2	2.4	2	0.5
Volume	Sample	mL	611	661	718	
Volume	aliquot volume	mL	561	611	668	
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823114

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025 Report Number: 3150677 Report Type: Final Report

Reference Number Sample Date Sample Time

1823114-7 Jun 03, 2025 NA

1823114-8 Jun 04, 2025 NA

1823114-9 Jun 04, 2025 NA

Sample Location

Sample Description

Unit 3 Run 1 (MV Unit 3 Run 2 (Unit 3 Unit 3 Run 3 (MV Unit 3 Run 3 + 4

Unit 3 R1 + 4 Bottles Run 2 + 4 Bottles) / / 21.9 °C 21.9 °C Bottles) / 21.9 °C Stack Samples Stack Samples Stack Samples

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - Co	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	611	661	718	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.2	<0.3	<0.3	
Mercury	As Tested	μg/L	0.34	1.01	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	108	96	97	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	0.059	0.16	<0.008	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.04	< 0.04	<0.04	
Mercury	As Tested	μg/L	0.50	0.80	0.32	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.16	0.25	0.10	

Approved by:

Carol Nam, Dipl. T.

Quality Assurance Coordinator

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Metro Vancouver WTE

Metals and Hg Samples

E: info.vancouver@element.com W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID:

Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823114

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025 Report Number: 3150677 Report Type: Final Report

Method of Analysis	<u> </u>			
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 1B	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 23, 2025	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 23, 2025	Element Vancouver
		* Reference Method Modified		

Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF/HCL Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823183

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jun 25, 2025
Report Number: 3150781

Report Type: Final Report

Contact	Company	Address			
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street			
		Surrey, BC V4N 4W7			
		Phone: (604) 881-2582 Fax: (604) 881-2581			
		Email: mark.lanfranco@alanfranco.com			
Delivery	<u>Format</u>	<u>Deliverables</u>			
Email	PDF	COA / COC			
Email	PDF	COC / Test Report			
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street			
		Surrey, BC V4N 4W7			
		Phone: (604) 881-2582 Fax: (604) 881-2581			
		Email: missy@alanfranco.com			
Delivery	<u>Format</u>	<u>Deliverables</u>			
Email	PDF	Invoice			

Notes To Clients:

• Reduction of analytical volume was necessary for anion analysis due to matrix effects in lot 1823183. Detection limits are adjusted accordingly.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: HF/HCL Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823183

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jun 25, 2025
Report Number: 3150781

Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location

1823183-1 Jun 05, 2025 NA 1823183-2 Jun 05, 2025 1823183-3 Jun 05, 2025

NA NA

Sample Description Unit #1 HF/HCL Run Unit #1 HF/HCL Run Unit #1 HF/HCL Run

1 / 21.9 °C 2 / 21.9 °C

3 / 21.9 °C

Stack Samples Stack Samples Stack Samples Matrix Nominal Detection Analyte Units Results Results Results Limit Air Quality 378 415 453 Volume Sample mL chloride 10.00 Dilution Factor 10.00 10.00 Chloride As Tested mg/L 14.6 62.9 34.0 0.05 Chloride Water Soluble µg/sample 5530 26100 15400 Dilution Factor fluoride 10.00 10.00 10.00 Fluoride As Tested mg/L < 0.3 < 0.3 < 0.3 0.03 Water Soluble <100 Fluoride <100 <100 µg/sample

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF/HCL Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823183

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jun 25, 2025 Report Number: 3150781

Report Type: Final Report

Reference Number 1823183-4 1823183-5 1823183-6 Sample Date Jun 13, 2025 Jun 13, 2025 Jun 13, 2025 Sample Time NA NA NA

Sample Location

Sample Description Unit #2 HF/HCL Run Unit #2 HF/HCL Run Unit #2 HF/HCL Run 3 / 21.9 °C

1 / 21.9 °C 2 / 21.9 °C

Stack Samples Stack Samples Stack Samples Matrix Nominal Detection Units Results Analyte Results Results Limit Air Quality 373 387 Volume Sample mL 409 Dilution Factor chloride 10.00 10.00 10.00 Chloride As Tested mg/L 76.8 94.5 122 0.05 Chloride Water Soluble µg/sample 28600 38600 47300 **Dilution Factor** fluoride 10.00 10.00 10.00 Fluoride As Tested 0.03 mg/L < 0.3 <0.3 < 0.3 Fluoride Water Soluble µg/sample <100 <100 <100

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF/HCL Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823183

Control Number:

T: +1 (604) 514-3322

W: www.element.com

E: info.vancouver@element.com

Date Received: Jun 20, 2025 Date Reported: Jun 25, 2025 Report Number: 3150781

Report Type: Final Report

3 / 21.9 °C

Reference Number 1823183-7 1823183-8 1823183-9 Sample Date Jun 04, 2025 Jun 04, 2025 Jun 04, 2025 Sample Time NA NA NA

Sample Location

Sample Description Unit #3 HF/HCL Run Unit #3 HF/HCL Run Unit #3 HF/HCL Run

1 / 21.9 °C 2 / 21.9 °C

> Stack Samples Stack Samples

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						_
Volume	Sample	mL	358	360	365	
Dilution Factor	chloride		10.00	10.00	10.00	
Chloride	As Tested	mg/L	198	17.9	36.3	0.05
Chloride	Water Soluble	µg/sample	70800	6450	13300	
Dilution Factor	fluoride		10.00	10.00	10.00	
Fluoride	As Tested	mg/L	<0.3	<0.3	<0.3	0.03
Fluoride	Water Soluble	µg/sample	<100	<100	<100	

Approved by:

Carol Nam, Dipl. T.

Quality Assurance Coordinator

#104, 19575-55 A Ave. V3S 8P8, Canada

Surrey, British Columbia

Methodology and Notes

Bill To: A. Lanfranco & Associates #101, 9488 - 189 Street

Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE HF/HCL Samples

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823183

Control Number:

Date Received: Jun 20, 2025 Jun 25, 2025 Date Reported: Report Number: 3150781 Report Type: Final Report

Method of Analysis

Method Name Reference Method Date Analysis Location Started Anions by IEC in air (VAN) **EMC** Determination of Hydrogen Halide & Jun 24, 2025 **Element Vancouver** Halogen Emissions from Stationary

> Sources (Isokinetic), 26A * Reference Method Modified

References

EMC Emission Measurement Center of EPA

Comments:

• Reduction of analytical volume was necessary for anion analysis due to matrix effects in lot 1823183. Detection limits are adjusted accordingly.

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823126

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jun 27, 2025
Report Number: 3150697
Report Type: Final Report

Contact	Company	Address			
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street			
		Surrey, BC V4N 4W7			
		Phone: (604) 881-2582 Fax: (604) 881-2581			
		Email: mark.lanfranco@alanfranco.com			
Delivery	<u>Format</u>	<u>Deliverables</u>			
Email	PDF	COA / COC			
Email	PDF	COC / Test Report			
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street			
		Surrey, BC V4N 4W7			
		Phone: (604) 881-2582 Fax: (604) 881-2581			
		Email: missy@alanfranco.com			
Delivery	<u>Format</u>	<u>Deliverables</u>			
Email	PDF	Invoice			

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823126

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jun 27, 2025 Report Number: 3150697 Report Type: Final Report

Reference Number Sample Date Sample Time

1823126-1 Jun 05, 2025 NA

1823126-2 Jun 05, 2025

1823126-3 Jun 05, 2025

NA

NA

Sample Location

Sample Description Unit 1 Run 1 NH3 / 21.9 °C

Matrix

Unit 1 Run 2 NH3 / 21.9 °C

Unit 1 Run 3 NH3 / 21.9 °C

Stack Samples Stack Samples Stack Samples Nominal Detection Analyte Units Results Results Results Limit **Air Quality** Ammonium - N As Tested 19600 17800 18200 25 μg/L Dilution Factor 10.0 As Tested 10.0 10.0 Sample Volume Sample volume mL 342 382 360 Ammonium - N µg/sample 6710 6780 6560

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823126

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jun 27, 2025 3150697 Report Number:

Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location **Sample Description**

1823126-4 Jun 13, 2025 NA

1823126-5 Jun 13, 2025

1823126-6 Jun 13, 2025 NA

NA

Unit 2 Run 2 NH3 / Unit 2 Run 3 NH3 /

Unit 2 Run 1 NH3/ 21.9 °C

21.9 °C

21.9 °C Stack Samples

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units		Results Results		Nominal Detection Limit
Air Quality						
Ammonium - N	As Tested	μg/L	85900	12200	9640	25
Dilution Factor	As Tested		10.0	10.0	1.00	
Sample Volume	Sample volume	mL	312	368	350	
Ammonium - N		μg/sample	26800	4490	3370	

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location: LSD:

P.O.:

Proj. Acct. code:

Lot ID: 1823126

Control Number:

T: +1 (604) 514-3322

W: www.element.com

Date Received: Jun 20, 2025 Date Reported: Jun 27, 2025 Report Number: 3150697

Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location Sample Description

1823126-7 Jun 04, 2025 NA

Unit 3 Run 1 NH3 /

21.9 °C

1823126-8 Jun 04, 2025

1823126-9 Jun 04, 2025 NA

NA

Unit 3 Run 2 NH3/ 21.9 °C

Unit 3 Run 3 NH3/ 21.9 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						_
Ammonium - N	As Tested	μg/L	857	6680	5560	25
Dilution Factor	As Tested		1.00	1.00	1.00	
Sample Volume	Sample volume	mL	380	422	406	
Ammonium - N		µg/sample	326	2820	2260	

Approved by:

Misato Perry, B.Sc Biology **Operations Customer Support**

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Methodology and Notes

Attn: Missy

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By: Company:

Project ID: Metro Vancouver WTE

NH3 Samples Project Name:

LSD: P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1823126

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jun 27, 2025 Report Number: 3150697 Report Type: Final Report

Method of Analysis

Method Name Reference Method Date Analysis Location Started Ammonium in Impingers **APHA** Automated Phenate Method, 4500-NH3 Jun 26, 2025 Element Edmonton -G Roper Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

LABORATORY REPORT

June 27, 2025

Mark Lanfranco A. Lanfranco and Associates Inc. Unit 101 - 9488 189 St. Surrey, BC V4N 4W7

RE: Veolia (MV WTE)

Dear Mark:

Enclosed are the results of the samples submitted to our laboratory on June 18, 2025. For your reference, these analyses have been assigned our service request number P2502218.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

ALS | Environmental

By Sue Anderson at 3:49 pm, Jun 27, 2

Sue Anderson Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

Client: A. Lanfranco and Associates Inc. Service Request No: P2502218

Project: Veolia (MV WTE)

CASE NARRATIVE

The samples were received intact under chain of custody on June 18, 2025 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

C3 through C6 Hydrocarbons, Methane, Ethane and Ethylene Analysis

The samples were analyzed per modified EPA Method TO-3 for C3 through >C6 hydrocarbons and methane, ethane and ethylene using a gas chromatograph equipped with a flame ionization detector (FID). This procedure is described in laboratory SOP VOA-TO3C1C6. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AIHA-LAP, LLC accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	https://dec.alaska.gov/spar/csp/lab-approval/list-of-approved-labs	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental-laboratories/index.html	E871020
Louisiana DEQ (NELAP)	https://internet.deq.louisiana.gov/portal/divisions/lelap/accredited-laboratories	203013
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtm	CA012627
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	006-999-456
New Jersey DEP (NELAP)	https://dep.nj.gov/dsr/oqa/certified-laboratories/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oklahoma DEQ (NELAP)	labaccreditation.deq.ok.gov/labaccreditation/	2207
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	4068
Pennsylvania DEP	hhttp://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration only)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env lab accreditation.html	T104704413
Utah DOH (NELAP)	https://uphl.utah.gov/certifications/environmental-laboratory-certification/	CA01627
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

ALS ENVIRONMENTAL

DETAIL SUMMARY REPORT

Client: A. Lanfranco and Associates Inc.

Project ID: Veolia (MV WTE) Service Request: P2502218

Date Received: Time Received: Client Sample ID	6/18/2025 09:07	Matrix	Date Collected	Time Collected	Container ID	Pi1 (psig)	Pfl (psig)	TO-3 Modified - C1C6+ Can	TO-3 Modified - MEEPP Can	
Unit 1 Run 1	P2502218-001	Air	6/5/2025	10:18	SC02063	-4.07	4.98	X	X	
Unit 1 Run 2	P2502218-002	Air	6/5/2025	11:32	SC02317	0.74	5.02	X	X	
Unit 1 Run 3	P2502218-003	Air	6/5/2025	12:50	SC01063	-4.64	5.03	X	X	
Unit 2 Run 1	P2502218-004	Air	6/13/2025	10:20	SC02340	-3.92	5.07	X	X	
Unit 2 Run 2	P2502218-005	Air	6/13/2025	11:45	SC00271	-3.62	5.05	X	X	
Unit 2 Run 3	P2502218-006	Air	6/13/2025	12:55	SC01765	-3.69	5.00	X	X	
Unit 3 Run 1	P2502218-007	Air	6/4/2025	10:25	SC01591	-2.53	4.88	X	X	
Unit 3 Run 2	P2502218-008	Air	6/4/2025	11:45	SC02314	-4.82	4.74	X	X	
Unit 3 Run 3	P2502218-009	Air	6/4/2025	13:02	SC01848	-4.72	5.05	X	X	

Air - Chain of Custody Record & Analytical Service Request

	1	,
Page	of	

2655 Park Center Drive, Suite A

	r, CA 93065 5) 526-7161			Requested Turnard		-				ALS Project	882218
Company Name & Address (Reporting A. Lantonco E	ASGO	íates	Inc,	Project Name Vealia Project Number	(MV I	VTE)			ALS Contact Analysis	Method	
Phone 694 891 2582 Email Address for Result Reporting	nfranc Fax			P.O. # / Billing Infor		·			T0-3		Comments e.g. Actual Preservative or specific instructions
Client Sample ID	Laboratory ID Number	Date	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code # - FC #)	Canister Start Pressure "Hg	Canister End Pressure "Hg/psig	Sample Volume	EPA		
Unit 1 Rum 1	1	5 June 25		5002063	0A01313	~28	- jl		/		
Unit 1 Run 2	2	55me25	1032	5002317	0A01313	719	0		/		
Unit Run 3	3	5 Time 25	115-1250	5001063.	QAQ1313	-30	-11.5				
<u> </u>											
Unit 2 Run 1	4	13 Jane 25	003630	502340	0A01284	-29	-10				
Unit 2 Run 2	4	13 Fine 25	1045	500271	0A01294	-29	-9		/_		
Unit 2 Run 3	5	13 Jun 25	11851255	501765	DADIA84	-29	~8		V		
			224								
Unit 3 Run 1	7	+ June 25	1625	501591	0A00472	-28	-6		1		
Unit 3 Run 2	8	4 June 25	-1145	502314	0A01313	-24.5	-12		//		
Unit 3 Run 3	1	4 June 25	120302	5001848	040 1313	-29.5	-12				•
	100										
Repo Tier I - Results (Default if not specified) Tier II (Results + QC Summaries)	Tier III (s - please sele Results + QC & 0 Data Validation F	Calibration Sun	nmaries) Surcharge	EDD required Ye				Custody Sea BROKEN		Project Requirements (MRLs, QAPP)
Relinquished by: (Signature)			Date: 16 Tune 25	Time: 1400	Received by: (Signa	ture)			Date:	Time:	
Relinquished by: (Signature)	TO1 (5	Date:	Time:	Received by: (Signa	ture)			Date:	Time:	Cooler / Blank

Signature denotes acceptance of ALS Group USA, Corp. Terms and Conditions - Detailed Terms & Conditions can be reviewed at the link below: https://www.alsglobal.com/ALSGroupUSACorpTC

ALS Environmental Sample Acceptance Check Form

	Veolia (MV	and Associates Inc. WTE)					P2502218			
Sample	(s) received on	: 6/18/25		•	Date opened:	6/18/25	by:	ADAV	'ID	
Vote: This	form is used for a	all samples received by ALS	. The use of this f	orm for custody se	eals is strictly me	eant to indicate presen	ce/absence and no	ot as an ii	ndication	of
		. Thermal preservation and		-	-	_				
								<u>Yes</u>	<u>No</u>	<u>N/A</u>
1	_	e containers properly		ient sample ID	?			X		
2	-	containers arrive in go						×		
3		of-custody papers used						\boxtimes		
4	-	container labels and/o			ers?			X		
5	_	volume received adeq	-	is?				X		
6	-	within specified holdir	•					\boxtimes		
7	Was proper t	emperature (thermal	preservation) o	of cooler at reco	eipt adhered t	o?				X
0	W		1/D/C	4					X	
8	were custod	y seals on outside of c		tainer?			Cooling Lid9			X
	Wore signatu	Location of seal(s)? re and date included?					Sealing Lid?			X
	Were seals in									X
9		ers have appropriate p	recorvation a	ccording to me	athod/SOP or	Client specified in	formation?			X
9		ent indication that the		•		Chefit specified in	normation:			X
		vials checked for prese	•		escr ved:					X
	<u></u>	nt/method/SOP require			mnle nH and	if necessary alter	it?			×
10	Tubes:	Are the tubes cap	-		impie pri unu	ir necessary area				×
11	Badges:	Are the badges p	-							×
1.1		Are dual bed bad			y canned and	intact?				×
12		Are dual bed bad				mtact:				X
1 /	Lab Notificat	tion: Analyst and PM	were alerted of							
	Lab Notificat Client Notific	cion: Analyst and PM cation: Client has been n			es and/or other	CoC discrepancies	?			X
13	Client Notific	cation: Client has been n	otified regarding	g HT exceedance						
13		Container	Required	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13	Client Notific	Container Description	otified regarding	g HT exceedance			Recei		ervation	
13 Lab	Client Notific Sample ID 8-001.01	Container Description 6.0 L Source Can	Required	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13 Lab P2502211	Sample ID 8-001.01 8-002.01	Container Description	Required	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13 Lab 22502213 22502213 22502213	Sample ID 8-001.01 8-002.01 8-003.01	Container Description 6.0 L Source Can 6.0 L Source Can	Required	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13 Lab P2502211 P2502211 P2502211 P2502211 P2502211	Sample ID 8-001.01 8-002.01 8-003.01 8-004.01 8-005.01	Container Description 6.0 L Source Can 6.0 L Source Can 6.0 L Source Can	Required	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13 Lab P2502213 P2502213 P2502213 P2502213 P2502213	Sample ID 8-001.01 8-002.01 8-003.01 8-004.01 8-005.01 8-006.01	Container Description 6.0 L Source Can	Required	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13 Lab P2502213 P2502213 P2502213 P2502213 P2502213 P2502213	Sample ID 8-001.01 8-002.01 8-003.01 8-004.01 8-005.01 8-006.01 8-007.01	Container Description 6.0 L Source Can	Required	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13 Lab P2502213 P2502213 P2502213 P2502213 P2502213 P2502213 P2502213	Sample ID 8-001.01 8-002.01 8-003.01 8-004.01 8-005.01 8-006.01 8-007.01 8-008.01	Container Description 6.0 L Source Can	Required	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13 Lab P2502213 P2502213 P2502213 P2502213 P2502213 P2502213 P2502213	Sample ID 8-001.01 8-002.01 8-003.01 8-004.01 8-005.01 8-006.01 8-007.01 8-008.01	Container Description 6.0 L Source Can	Required	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13	Sample ID 8-001.01 8-002.01 8-003.01 8-004.01 8-005.01 8-006.01 8-007.01 8-008.01	Container Description 6.0 L Source Can	Required	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13 Lab P2502213 P2502213 P2502213 P2502213 P2502213 P2502213 P2502213	Sample ID 8-001.01 8-002.01 8-003.01 8-004.01 8-005.01 8-006.01 8-007.01 8-008.01	Container Description 6.0 L Source Can	Required	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13 Lab P2502211 P2502211 P2502211 P2502211 P2502211 P2502211 P2502211	Sample ID 8-001.01 8-002.01 8-003.01 8-004.01 8-005.01 8-006.01 8-007.01 8-008.01 8-009.01	Container Description 6.0 L Source Can	Required pH *	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	
13 Lab P2502211 P2502211 P2502211 P2502211 P2502211 P2502211 P2502211	Sample ID 8-001.01 8-002.01 8-003.01 8-004.01 8-005.01 8-006.01 8-007.01 8-008.01 8-009.01	Container Description 6.0 L Source Can	Required pH *	g HT exceedance	Adjusted	VOA Headspace	Recei	ot / Pres	ervation	

ALS ENVIRONMENTAL

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 1

Client Project ID: P2502218

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218-001

Test Code: EPA TO-3 Modified Date Collected: 6/5/25
Instrument ID: HP5890 II/GC8/FID Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/26/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02063

Initial Pressure (psig): -4.07 Final Pressure (psig): 4.98

Container Dilution Factor: 1.85

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	1.9	
C ₄ as n-Butane	ND	1.9	
C ₅ as n-Pentane	ND	1.9	
C ₆ as n-Hexane	ND	11	
C ₆ + as n-Hexane	ND	1.9	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 2

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-002

Test Code:EPA TO-3 ModifiedDate Collected: 6/5/25Instrument ID:HP5890 II/GC8/FIDDate Received: 6/18/25Analyst:Stephanie ReynosoDate Analyzed: 6/26/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02317

Initial Pressure (psig): 0.74 Final Pressure (psig): 5.02

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	0.64	1.3	J
C ₄ as n-Butane	ND	1.3	
C ₅ as n-Pentane	ND	1.3	
C ₆ as n-Hexane	ND	7.7	
C ₆ + as n-Hexane	ND	1.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The analyte was positively identified below the laboratory method reporting limit; the associated numerical value is considered estimate

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 3

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-003

Test Code: EPA TO-3 Modified Date Collected: 6/5/25
Instrument ID: HP5890 II/GC8/FID Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/26/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01063

Initial Pressure (psig): -4.64 Final Pressure (psig): 5.03

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	2.0	
C ₄ as n-Butane	ND	2.0	
C ₅ as n-Pentane	ND	2.0	
C ₆ as n-Hexane	ND	12	
C ₆ + as n-Hexane	ND	2.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1 ALS Project ID: P2502218
Client Project ID: Veolia (MV WTE) ALS Sample ID: P2502218-004

Test Code: EPA TO-3 Modified Date Collected: 6/13/25
Instrument ID: HP5890 II/GC8/FID Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/26/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02340

Initial Pressure (psig): -3.92 Final Pressure (psig): 5.07

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	1.8	
C ₄ as n-Butane	ND	1.8	
C ₅ as n-Pentane	ND	1.8	
C ₆ as n-Hexane	ND	11	
C ₆ + as n-Hexane	ND	1.8	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-005

Test Code:EPA TO-3 ModifiedDate Collected: 6/13/25Instrument ID:HP5890 II/GC8/FIDDate Received: 6/18/25Analyst:Stephanie ReynosoDate Analyzed: 6/26/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00271

Initial Pressure (psig): -3.62 Final Pressure (psig): 5.05

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	0.91	1.8	J
C ₄ as n-Butane	ND	1.8	
C ₅ as n-Pentane	ND	1.8	
C ₆ as n-Hexane	ND	11	
C ₆ + as n-Hexane	ND	1.8	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The analyte was positively identified below the laboratory method reporting limit; the associated numerical value is considered estimate

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-006

Test Code: EPA TO-3 Modified Date Collected: 6/13/25
Instrument ID: HP5890 II/GC8/FID Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/26/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01765

Initial Pressure (psig): -3.69 Final Pressure (psig): 5.00

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	1.8	
C ₄ as n-Butane	ND	1.8	
C ₅ as n-Pentane	ND	1.8	
C ₆ as n-Hexane	ND	11	
C ₆ + as n-Hexane	ND	1.8	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2502218
Client Project ID: Veolia (MV WTE) ALS Sample ID: P2502218-007

Test Code: EPA TO-3 Modified Date Collected: 6/4/25
Instrument ID: HP5890 II/GC8/FID Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/26/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01591

Initial Pressure (psig): -2.53 Final Pressure (psig): 4.88

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	1.6	
C ₄ as n-Butane	ND	1.6	
C ₅ as n-Pentane	ND	1.6	
C ₆ as n-Hexane	ND	9.7	
C ₆ + as n-Hexane	ND	1.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-008

Test Code: EPA TO-3 Modified Date Collected: 6/4/25
Instrument ID: HP5890 II/GC8/FID Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/26/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02314

Initial Pressure (psig): -4.82 Final Pressure (psig): 4.74

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	2.0	
C ₄ as n-Butane	ND	2.0	
C ₅ as n-Pentane	ND	2.0	
C ₆ as n-Hexane	ND	12	
C ₆ + as n-Hexane	ND	2.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-009

Test Code:EPA TO-3 ModifiedDate Collected: 6/4/25Instrument ID:HP5890 II/GC8/FIDDate Received: 6/18/25Analyst:Stephanie ReynosoDate Analyzed: 6/26/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01848

Initial Pressure (psig): -4.72 Final Pressure (psig): 5.05

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	2.0	
C ₄ as n-Butane	ND	2.0	
C ₅ as n-Pentane	ND	2.0	
C ₆ as n-Hexane	ND	12	
C ₆ + as n-Hexane	ND	2.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Method Blank
Client Project ID: P2502218
Client Project ID: Veolia (MV WTE)
ALS Sample ID: P250626-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 6/26/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	1.0	_
C ₄ as n-Butane	ND	1.0	
C ₅ as n-Pentane	ND	1.0	
C ₆ as n-Hexane	ND	6.0	
C ₆ + as n-Hexane	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Duplicate Lab Control Sample
Client Project ID: P2502218
ALS Project ID: P250626-DLCS
ALS Sample ID: P250626-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 6/26/25
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

Test Notes:

	Spike Amount	Re	sult			ALS			
Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
	ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
Propane	1,000	1,160	1,140	116	114	92-120	2	6	
n-Butane	1,000	1,160	1,140	116	114	91-121	2	6	
n-Pentane	1,000	1,130	1,110	113	111	89-118	2	6	
n-Hexane	1,000	1,190	1,160	119	116	92-125	3	6	

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 1

Client Project ID: P2502218

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218-001

Test Code: EPA TO-3 Modified Date Collected: 6/5/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/24/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02063

Initial Pressure (psig): -4.07 Final Pressure (psig): 4.98

Container Dilution Factor: 1.85

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m³	ppmV	ppmV	Qualifier
74-82-8	Methane	2.8	2.4	4.3	3.7	
74-85-1	Ethene	ND	1.3	ND	1.1	
74-84-0	Ethane	ND	1.4	ND	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 2

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-002

Test Code: EPA TO-3 Modified Date Collected: 6/5/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/24/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02317

Initial Pressure (psig): 0.74 Final Pressure (psig): 5.02

Container Dilution Factor: 1.28

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.1	1.7	3.2	2.6	
74-85-1	Ethene	ND	0.88	ND	0.77	
74-84-0	Ethane	ND	0.94	ND	0.77	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 3

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-003

Test Code: EPA TO-3 Modified Date Collected: 6/5/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/24/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01063

Initial Pressure (psig): -4.64 Final Pressure (psig): 5.03

Container Dilution Factor: 1.96

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.6	ND	3.9	
74-85-1	Ethene	ND	1.3	ND	1.2	
74-84-0	Ethane	ND	1.4	ND	1.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1 ALS Project ID: P2502218
Client Project ID: Veolia (MV WTE) ALS Sample ID: P2502218-004

Test Code: EPA TO-3 Modified Date Collected: 6/13/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/24/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02340

Initial Pressure (psig): -3.92 Final Pressure (psig): 5.07

Container Dilution Factor: 1.83

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.7	2.4	4.1	3.7	_
74-85-1	Ethene	ND	1.3	ND	1.1	
74-84-0	Ethane	ND	1.3	ND	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-005

Test Code: EPA TO-3 Modified Date Collected: 6/13/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/24/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00271

Initial Pressure (psig): -3.62 Final Pressure (psig): 5.05

Container Dilution Factor: 1.78

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.3	ND	3.6	
74-85-1	Ethene	ND	1.2	ND	1.1	
74-84-0	Ethane	ND	1.3	ND	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-006

Test Code: EPA TO-3 Modified Date Collected: 6/13/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/24/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01765

Initial Pressure (psig): -3.69 Final Pressure (psig): 5.00

Container Dilution Factor: 1.79

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.3	ND	3.6	_
74-85-1	Ethene	ND	1.2	ND	1.1	
74-84-0	Ethane	ND	1.3	ND	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2502218
Client Project ID: Veolia (MV WTE) ALS Sample ID: P2502218-007

Test Code: EPA TO-3 Modified Date Collected: 6/4/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/24/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01591

Initial Pressure (psig): -2.53 Final Pressure (psig): 4.88

Container Dilution Factor: 1.61

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.1	ND	3.2	
74-85-1	Ethene	ND	1.1	ND	0.97	
74-84-0	Ethane	ND	1.2	ND	0.97	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-008

Test Code: EPA TO-3 Modified Date Collected: 6/4/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/24/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02314

Initial Pressure (psig): -4.82 Final Pressure (psig): 4.74

Container Dilution Factor: 1.97

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.6	ND	3.9	_
74-85-1	Ethene	ND	1.4	ND	1.2	
74-84-0	Ethane	ND	1.5	ND	1.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218

ALS Sample ID: P2502218-009

Test Code: EPA TO-3 Modified Date Collected: 6/4/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 6/18/25
Analyst: Stephanie Reynoso Date Analyzed: 6/24/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01848

Initial Pressure (psig): -4.72 Final Pressure (psig): 5.05

Container Dilution Factor: 1.98

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.6	ND	4.0	
74-85-1	Ethene	ND	1.4	ND	1.2	
74-84-0	Ethane	ND	1.5	ND	1.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Method Blank
Client Project ID: P2502218
ALS Project ID: P250624-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID/TCD Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 6/24/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m³	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	1.3	ND	2.0	
74-85-1	Ethene	ND	0.69	ND	0.60	
74-84-0	Ethane	ND	0.74	ND	0.60	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Duplicate Lab Control Sample
Client Project ID: Veolia (MV WTE)

ALS Project ID: P2502218
ALS Sample ID: P250624-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID/TCD Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 6/24/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

Test Notes:

		Spike Amount	Re	sult			ALS			
CAS#	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
74-82-8	Methane	7.79	7.52	7.61	97	98	70-130	1	15	_
74-85-1	Ethene	7.74	7.31	7.42	94	96	70-130	2	15	
74-84-0	Ethane	7.68	7.47	7.56	97	98	70-130	1	15	

Appendix C - Particulate Analysis

Client:Metro VancouverSample Date:June 4-5th, 2025, June 13th, 2025

Source: Units 1, 2, and 3 Location: WTE (Burnaby, B.C)

A. Lanfranco & Associates Standard Operating Procedure:

SOP 1.2.1 Gravimetric determination of total particulate matter

	Filter	Collection:
--	--------	-------------

Filter Collection: Test #	Initia		Final	Difer	Net	Blank Adjusted	
	(grams)	1	(grams)	(gr	ams)	(grams)	
Unit 1 Blank	0.4453		0.4447	٠.	0006		
Unit 1 Run 1	0.4444		0.4448		0004	0.0010	
Unit 1 Run 2	0.4484		0.4484		0000	0.0006	
Unit 1 Run 3	0.4450		0.4451		0000	0.0007	
Onit i Run 3	0.4430		0.4431	0.	0001	0.0007	
Unit 2 Blank	0.4453		0.4454		0001		
Unit 2 Run 1	0.4456		0.4445	-0.	0011	ND	
Unit 2 Run 2	0.4504		0.4501		0003	ND	
Unit 2 Run 3	0.4499	l	0.4497	-0.	0002	ND	
Unit 3 Blank	0.4471		0.4459	-0	0012		
Unit 3 Run 1	0.4483		0.4486		0003	0.0015	
Unit 3 Run 2	0.4465		0.4487		0022	0.0034	
Unit 3 Run 3	0.4479		0.4487		8000	0.0020	
Front Half Washings:							
Test #	Initial		Final		Net	Blank	
				Difer	ence	Adjusted	
	(grams)		(grams)	(gr	ams)	(grams)	
Unit 1 Blank	87.4054		87.4059	0	0005		
Unit 1 Run 1	103.1169		03.1208		0039	0.0034	
Unit 1 Run 2	122.2428		22.2442		0014	0.0009	
Unit 1 Run 3	108.7372		08.7381		0009	0.0004	
Linit 2 Plank	06.0550		06 0555	0	0005		
Unit 2 Blank Unit 2 Run 1	96.0550 118.5691		96.0555 18.5706		0005 0015	0.0010	
Unit 2 Run 2	127.1421		27.1436		0015	0.0010	
Unit 2 Run 3	86.4747		86.4752		0005	0.0000	
Offit 2 Ruff 3	00.4747	•	00.4732	0.	0005	0.0000	
Unit 3 Blank	84.6654		84.6660	0.	0006		
Unit 3 Run 1	122.9338		22.9350		0012	0.0006	
Unit 3 Run 2	117.3467		17.3488		0021	0.0015	
Unit 3 Run 3	118.6531	1	18.6548	0.	0017	0.0011	
Task	Unit	Personnel		Date		Quality Control	Y/N
Filter Recovery:	Unit 1	J. Ching		5-Jun-25		Adequate PW volume:	Y
,	Unit 2	J. Ching		13-Jun-25		No sample leakage:	Y
	Unit 3	J. Ching		5-Jun-25		Filter not compromised:	Y
PW Initial Analysis:	Unit 1	J. Ching		16-Jun-25		•	
-	Unit 2	J. Ching		16-Jun-25			
	Unit 3	J. Ching		16-Jun-25			
PW, Filter Final Analysis:	Unit 1	S. Verby		18-Jun-25			
	Unit 2	S. Verby		18-Jun-25			
	Unit 3	S. Verby		18-Jun-25			
Data Entered to Computer:	All	C. Lanfranco		18-Jul-25			

Comments:

No problems encountered in sample analysis.

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823109

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jul 14, 2025
Report Number: 3150670
Report Type: Final Report

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Element

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823109

Control Number:

Date Received: Jun 20, 2025 Jul 14, 2025 Date Reported: Report Number: 3150670 Report Type: Final Report

Reference Number Sample Date Sample Time Sample Location

Sample Description

1823109-1 Jun 05, 2025 NA

Field Blank Unit 1

('MV Unit 1 Blank' +

4 Bottles) / 21.9 °C

1823109-2 Jun 13, 2025 NA

1823109-3 Jun 04, 2025 NA

Field Blank Unit 2

Field Blank Unit 3 ('MV Unit 2 Blank' + ('MV Unit 3 Blank' + 4 Bottles) / 21.9 °C 4 Bottles) / 21.9 °C

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Analyte Units Results Results Results Limit Front Half Metals Fraction 1A Aluminum μg <5 10 10 5 <2 10 2.5 Antimony <2 μg 7.1 Arsenic <1 <1 1 μg Cadmium < 0.3 < 0.3 < 0.3 0.25 μg Chromium < 0.2 <0.2 <0.2 0.2 μg Cobalt < 0.3 < 0.3 < 0.3 0.25 μg < 0.3 < 0.3 2 0.25 Copper μg Lead <2 <2 <2 1.5 μg 0.3 0.5 0.5 0.25 Manganese μg Nickel 1 1 2.7 0.5 μg 57 Phosphorus 62 58 2.5 μg Selenium <2 42.3 35.4 1.5 μg Tellurium <2 2 <2 <2 μg Thallium <2 <2 <2 1.5 μg Vanadium μg <1 <1 <1 1 Zinc 1 1 0.9 0.5 μg **Back Half Metals Fraction 2A** 7 5 Aluminum <5 <5 μg Antimony <2 <2 <2 2.5 μg < 0.9 13 < 0.9 Arsenic μg 1 Cadmium μg <0.2 <0.2 <0.2 0.25 Chromium <0.2 <0.2 <0.2 0.2 μg Cobalt <0.2 <0.2 <0.2 0.25 μg 3.1 2 0.25 Copper 1 μg 2.6 Lead μg <1 <1 1.5 Manganese 0.4 0.3 < 0.2 0.25 μg Nickel 2.5 <0.5 < 0.5 0.5 μg 6 7 2.5 Phosphorus 24 μg Selenium <1 24 1.5 <1 μg Tellurium μg <2 <2 <2 2 Thallium 28.2 6.4 21 1.5 μg Vanadium <0.9 <0.9 <0.9 1 μg 0.5 Zinc 0.5 <0.5 1.0 μg Volume Sample 398 320 341 mL aliquot volume 270 291 Volume mL 348 Mercury by CVAA Mercury As Tested μg/L < 0.05 < 0.05 < 0.05 0.05

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823109

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025 Report Number: 3150670 Report Type: Final Report

Reference Number 1823109-1 1823109-2 1823109-3 Sample Date Jun 05, 2025 Jun 13, 2025 Jun 04, 2025 Sample Time NA NA NA

4 Bottles) / 21.9 °C

Sample Location

Sample Description Field Blank Unit 1 ('MV Unit 1 Blank' +

Field Blank Unit 2 ('MV Unit 2 Blank' + 4 Bottles) / 21.9 °C

Field Blank Unit 3 ('MV Unit 3 Blank' + 4 Bottles) / 21.9 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	398	320	341	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	µg/sample	<0.2	<0.1	<0.1	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	97	96	96	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	< 0.008	<0.008	<0.008	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	µg/sample	<0.04	< 0.04	<0.04	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	<0.02	<0.02	<0.02	

Approved by:

Carol Nam, Dipl. T.

Quality Assurance Coordinator

Methodology and Notes

Attn: Missy

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Field Blanks Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823109

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025 Report Number: 3150670 Report Type: Final Report

Method of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 23, 2025	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 23, 2025	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823105

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jul 14, 2025
Report Number: 3150664
Report Type: Final Report

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

#104, 19575-55 A Ave. Surrey, British Columbia T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823105

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025 Report Number: 3150664 Report Type: Final Report

Reference Number Sample Date Sample Time

1823105-1 Jun 03, 2025 NA

Stack Samples

1823105-2 Jun 03, 2025

Stack Samples

1823105-3 Jun 03, 2025

NA

NA

Stack Samples

Sample Location

Matrix

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3 / 21.9 °C / 21.9 °C / 21.9 °C

		Width	Otack Gampies	Otack Gampies	Otack Gamples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	action 1A					
Aluminum		μg	<5	6	7	5
Antimony		μg	<2	10	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	<0.2	<0.2	<0.2	0.2
Cobalt		μg	<0.3	<0.3	0.9	0.25
Copper		μg	<0.3	<0.3	0.4	0.25
Lead		μg	<2	8.0	<2	1.5
Manganese		μg	0.4	1	1	0.25
Nickel		μg	<0.5	1	3.5	0.5
Phosphorus		μg	<2	30	20	2.5
Selenium		μg	<2	<2	15	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<2	<2	33.0	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	0.5	1.0	0.9	0.5
Back Half Metals Fra	action 2A					
Aluminum		μg	20	20	<5	5
Antimony		μg	<3	<3	<3	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	<0.2	<0.2	0.46	0.2
Cobalt		μg	1	<0.3	<0.3	0.25
Copper		μg	<0.3	4.6	4.4	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	0.5	0.7	<0.3	0.25
Nickel		μg	<0.5	<0.5	<0.5	0.5
Phosphorus		μg	7	<3	31	2.5
Selenium		μg	<2	34.0	<2	1.5
Tellurium		μg	3.4	<2	<2	2
Thallium		μg	<2	3.7	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	<0.5	1	2	0.5
Volume	Sample	mL	200	197	201	
Volume	aliquot volume	mL	150	147	151	
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	<0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823105

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025 Report Number: 3150664 Report Type: Final Report

Reference Number 1823105-1 1823105-2 1823105-3 Sample Date Jun 03, 2025 Jun 03, 2025 Jun 03, 2025 Sample Time NA NA NA

Sample Location

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3 / 21.9 °C

/ 21.9 °C / 21.9 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	0.05	0.06	0.07	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	197	201	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	0.09	0.09	0.1	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	94	98	97	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	< 0.008	<0.008	<0.008	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	< 0.04	< 0.04	< 0.04	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	<0.02	< 0.02	< 0.02	

Approved by:

Carol Nam, Dipl. T.

Quality Assurance Coordinator

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID:

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Metro Vancouver WTE

Reagent Blanks

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025 Report Number: 3150664

Lot ID: 1823105

Report Type: Final Report

Viethod	of	Ana	lysis
---------	----	-----	-------

Mothod of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Jul 10, 2025	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 23, 2025	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jun 23, 2025	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823102

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jul 14, 2025
Report Number: 3150662
Report Type: Final Report

Contact	Company	Address	
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 881-258	1
		Email: mark.lanfranco@alanfranco.com	
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	COA / COC	
Email	PDF	COC / Test Report	
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 881-258	1
		Email: missy@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	Invoice	

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Project Name:

LSD:

P.O.:

Metro Vancouver WTE

Filter Reagent Blanks

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025

Lot ID: 1823102

Report Number: 3150662 Report Type: Final Report

Proj. Acct. code:

Reference Number

Project Location:

1823102-1 Jun 03, 2025

1823102-2 Jun 03, 2025 1823102-3

NA

NA

Jun 03, 2025

NA

Sample Location

Sample Date

Sample Time

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3

Container 1 (filter) / Container 1 (filter) / Container 1 (filter) /

21.9 °C

21.9 °C

21.9 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	ction 1A					
Aluminum		μg	5	<5	9	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1	<1	11	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	<0.2	<0.2	<0.2	0.2
Cobalt		μg	<0.3	0.7	<0.3	0.25
Copper		μg	<0.3	<0.3	0.8	0.25
Lead		μg	15	14	<2	1.5
Manganese		μg	0.8	<0.3	0.4	0.25
Nickel		μg	<0.5	6.0	<0.5	0.5
Phosphorus		μg	27	41	32	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	2	21	<2	1.5
Vanadium		μg	1	<1	<1	1
Zinc		μg	2.6	<0.5	1	0.5
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	<0.02	< 0.02	

Approved by:

Carol Nam, Dipl. T.

Quality Assurance Coordinator

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID:

Project Name: **Project Location:**

LSD: P.O.:

Proj. Acct. code:

Metro Vancouver WTE

Filter Reagent Blanks

Lot ID: 1823102 Control Number:

Date Received: Jun 20, 2025 Date Reported: Jul 14, 2025

Report Number: 3150662 Report Type: Final Report

Method of Analysis

Method Name Reference Method Date Analysis Location Started Mercury in Air (VAN) - 1B **EMC** Metals Emissions from Stationary Jul 10, 2025 **Element Vancouver** Sources, 29 Metals in Stack Samples - Front half **EMC** * Metals Emissions from Stationary Jun 23, 2025 Element Vancouver (VAN) Sources, 29

References

EMC Emission Measurement Center of EPA

^{*} Reference Method Modified

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: HF/HCL Blanks

Project Location:

LSD: P.O.:

PDF

Proj. Acct. code:

Lot ID: 1823138

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jun 25, 2025
Report Number: 3150722
Report Type: Final Report

Contact Company Address #101, 9488 - 189 Street Mark Lanfranco A. Lanfranco & Associates Surrey, BC V4N 4W7 (604) 881-2581 Phone: (604) 881-2582 Fax: mark.lanfranco@alanfranco.com Email: Delivery **Deliverables Format** Email PDF COA / COC Email **PDF** COC / Test Report #101, 9488 - 189 Street Missy A. Lanfranco & Associates Surrey, BC V4N 4W7 Phone: (604) 881-2582 Fax: (604) 881-2581 Email: missy@alanfranco.com **Delivery Format Deliverables**

Invoice

Notes To Clients:

Email

• Reduction of analytical volume was necessary for anion analysis due to matrix effects in lot 1823138. Detection limits are adjusted accordingly.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF/HCL Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823138

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jun 25, 2025
Report Number: 3150722
Report Type: Final Report

Reference Number Sample Date Sample Time 1823138-1 Jun 05, 2025 NA 1823138-2 Jun 13, 2025 NA 1823138-3 Jun 04, 2025 NA

Д

Sample Location
Sample Description Unit #1 HF/HCL
Blank / 21.9 °C

Unit #2 HF/HCL Blank / 21.9 °C Unit #3 HF/HCL Blank / 21.9 °C

Matrix Stack Samples Stack

Stack Samples

Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Air Quality						
Volume	Sample	mL	229	229	234	
Dilution Factor	chloride		10.00	10.00	10.00	
Chloride	As Tested	mg/L	<0.5	<0.5	<0.5	0.05
Chloride	Water Soluble	μg/sample	<100	<100	<100	
Dilution Factor	fluoride		10.00	10.00	10.00	
Fluoride	As Tested	mg/L	<0.3	<0.3	<0.3	0.03
Fluoride	Water Soluble	μg/sample	<70	<70	<70	

Approved by:

Carol Nam, Dipl. T.

Quality Assurance Coordinator

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID:

Project Name: **Project Location:**

LSD: P.O.:

Proj. Acct. code:

Metro Vancouver WTE

Element

#104, 19575-55 A Ave. Surrey, British Columbia

V3S 8P8, Canada

HF/HCL Blanks

Lot ID: 1823138 Control Number:

Date Received: Jun 20, 2025

Jun 25, 2025 Date Reported: Report Number: 3150722

Report Type: Final Report

Method of Analysis

Method Name Reference Method Date Analysis Location Started Anions by IEC in air (VAN) **EMC** Determination of Hydrogen Halide & Jun 24, 2025 Element Vancouver

Sources (Isokinetic), 26A

Halogen Emissions from Stationary

* Reference Method Modified

References

EMC Emission Measurement Center of EPA

Comments:

• Reduction of analytical volume was necessary for anion analysis due to matrix effects in lot 1823138. Detection limits are adjusted accordingly.

Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823131

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jun 27, 2025
Report Number: 3150705
Report Type: Final Report

Contact	Company	Address						
Mark Lanfranco	A. Lanfranco & Associates	. ,						
		Surrey, BC V4N 4W7						
		Phone: (604) 881-2582 Fax: (604) 881-2581						
		Email: mark.lanfranco@alanfranco.com						
Delivery	<u>Format</u>	<u>Deliverables</u>						
Email	PDF	COA / COC						
Email	PDF	COC / Test Report						
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street						
		Surrey, BC V4N 4W7						
		Phone: (604) 881-2582 Fax: (604) 881-2581						
		Email: missy@alanfranco.com						
Delivery	<u>Format</u>	<u>Deliverables</u>						
Email	PDF	Invoice						

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

NH3 Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823131

Control Number:

Date Received: Jun 20, 2025 Date Reported: Jun 27, 2025 Report Number: 3150705 Report Type: Final Report

Reference Number Sample Date Sample Time

1823131-1 Jun 05, 2025 NA

1823131-2 Jun 13, 2025

1823131-3 Jun 04, 2025

NA

NA

Sample Location

Sample Description Unit #1 NH3 Blk / 21.9 °C

Unit #2 NH3 Blk / 21.9 °C

Unit #3 NH3 Blk / 21.9 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Ammonium - N	As Tested	μg/L	<25	<25	26	25
Dilution Factor	As Tested		1.00	1.00	1.00	
Sample Volume	Sample volume	mL	230	230	232	
Ammonium - N		μg/sample	<5.8	<5.8	6.0	

Approved by:

Misato Perry, B.Sc Biology **Operations Customer Support**

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks
Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1823131

Control Number:

Date Received: Jun 20, 2025
Date Reported: Jun 27, 2025
Report Number: 3150705
Report Type: Final Report

Method of Analysis

Method Name

Reference

Method

Date Analysis
Started

Ammonium in Impingers

APHA

* Automated Phenate Method, 4500-NH3
G

Date Analysis
Started

Location

Element Edmonton Roper Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

Your Project #: MVWTE Site#: C554766 Your C.O.C. #: na

Attention: Shanaz Akbar

Bureau Veritas 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2025/07/03

Report #: R8568698 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C571875 Received: 2025/06/18, 09:23

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Analytical Method
Nitrous Oxide	3	N/A	2025/06/1	8 CAM SOP-00203	GC/ECD

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: MVWTE Site#: C554766

Your C.O.C. #: na

Attention: Shanaz Akbar

Bureau Veritas 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2025/07/03

Report #: R8568698 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C571875

Received: 2025/06/18, 09:23

Encryption Key

Julian Tong Project Manager Assistant 03 Jul 2025 07:54:29

Please direct all questions regarding this Certificate of Analysis to:

Julian Tong, Project Manager Assistant Email: Julian.Tong@bureauveritas.com

Phone# (905) 817-5700

_______ This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Bureau Veritas Job #: C571875 Report Date: 2025/07/03 Bureau Veritas Client Project #: MVWTE

COMPRESSED GAS PARAMETERS (AIR)

Gas Nitrous Oxide	ppmv	2.0	1.9	5.5	5.3	0.1	9957580
	UNITS	DNG558-UNIT 2 BAG 1	DNG558-UNIT 2 BAG 1 Lab-Dup	DNG559-UNIT 2 BAG 2	DNG560-UNIT 2 BAG 3	RDL	QC Batc
COC Number		na	na	na	na		
Sampling Date		2025/06/13	2025/06/13	2025/06/13	2025/06/13		
Bureau Veritas ID		ASBC57	ASBC57	ASBC58	ASBC59		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas Job #: C571875

Report Date: 2025/07/03

Bureau Veritas

Client Project #: MVWTE

TEST SUMMARY

Bureau Veritas ID: ASBC57

Sample ID: DNG558-UNIT 2 BAG 1

Matrix: Air

Collected: 2025/06/13

Shipped:

Received: 2025/06/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Nitrous Oxide	GC/FCD	9957580	N/A	2025/06/18	Vasan Thiagarajah	

Bureau Veritas ID: ASBC57 Dup

Sample ID: DNG558-UNIT 2 BAG 1

Matrix: Air

Collected: 2025/06/13

Shipped:

Received: 2025/06/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9957580	N/A	2025/06/18	Vasan Thiagarajah

Bureau Veritas ID: ASBC58

Sample ID: DNG559-UNIT 2 BAG 2

Matrix: Air

Collected:

2025/06/13

Shipped: 2025/06/18 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9957580	N/A	2025/06/18	Vasan Thiagarajah

Bureau Veritas ID:

ASBC59 Sample ID: DNG560-UNIT 2 BAG 3

Matrix: Air

Collected: 2025/06/13 Shipped:

Received: 2025/06/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9957580	N/A	2025/06/18	Vasan Thiagarajah

Bureau Veritas Job #: C571875 Report Date: 2025/07/03 Bureau Veritas Client Project #: MVWTE

GENERAL COMMENTS

Sample ASBC57 [DNG558-UNIT 2 BAG 1]: The sample was analysed 4 days after the date of sampling. The recommended holding time is 2 days.

Sample ASBC58 [DNG559-UNIT 2 BAG 2]: The sample was analysed 4 days after the date of sampling. The recommended holding time is 2 days.

Sample ASBC59 [DNG560-UNIT 2 BAG 3]: The sample was analysed 4 days after the date of sampling. The recommended holding time is 2 days.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Bureau Veritas Client Project #: MVWTE

QC Limits N/A RPD Value (%) S UNITS ppmv **Method Blank** Value 40.1 0.1 2025/06/18 Date Nitrous Oxide Parameter QC Batch 9957580

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Bureau Veritas Client Project #: MVWTE

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Tom Mitchell, B.Sc, Supervisor, Compressed Gases

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

BUREAU VERITAS INTERLAB CHAIN OF CUSTODY RECORD

Sent to: Bureau Veritas Campobello Mississauga, ON, LSN 2L8 6740 Campobello Road Tel: (905) 817-5700

BUREAU

Page 01 of

5

COC # C554766-ONTV-01-01

Please Inform us if rush charges will be incurred RECEIVING LAB USE ONLY TURNAROUND TIME Rush Required Bureau Veritas Job # Date Required 2025/07/03 ADDITIONAL SAMPLE INFORMATION Augustyna Dobosz De M 18-Jun-25 09:23 Job Rorcode Laber **AIR-001** C571875 09.23 TIME: (HH:MM) National Excel (N001) REQUIRED EDDS (P: 01) (P: 01) (P: 01) 223/16/18 7, DATE: (YYYY/MM/DD) Please Inform Bureau Ventas immediately if you are not accredited for Temp: ŝ YES NO the requested test(s) or the hold time is approaching. Custody Seal Intact Cooling Media Present Custody Seal Present ANALYSIS REQUESTED COOLER ID: Sulum volute Sullewer SPECIAL INSTRUCTIONS RECEIVED BY: (SIGN & PRINT × Temp: Ş 7 TNOO # Incl. on Report? Yes / No SAMPLER YES NO INITIALS Shanaz, Akbar@bureauveritas.com, Customersolutionswest@bureauveritas.com REGULATORY CRITERIA DATE: (YYYY/MM/DD) TIME: (HH:MM) Custody Seal Present Custody Seal Intact Cooling Media Present SAMPLED (MH:MM) 09:20 10:45 11:55 TIME 15:00 (mm/mm/pp) 2025/06/13 2025/06/13 2025/06/13 SAMPLED COOLER ID: 4606 Canada Way, Burnaby, British Columbia, VSG 1KS DATE 2025/06/17 MATRIX A. LANFRANCO & ASSOCIATES INC. (1301) A LANERANCO & ASSOCIATES INC. (1301) AIR AIR AIR PO/AFE, TASK ORDER/SERVICE ORDER, LINE ITEM: 5 **Bureau Veritas** Pariso Shanaz Akbar YES NO CS54766 RELINQUISHED BY: (SIGN & PKINT) DNG558-UNIT 2 BAG 1 DNG559-UNIT 2 BAG 2 DNG560-UNIT 2 BAG 3 REPORT INFORMATION Cooling Media Present ustody Seal Present Lustody Seal Intact ANTHONY TORRING Client Invoice To: Client Report To: SAMPLEID SITE LOCATION: Contact Name: BV Project #: BURNABY, BC COOLER ID: PROJECT #: Company: Address: MVWTE Phone: SITE#: Email: * m 4 ٧'n 9 00 9

Your Project #: MVWTE

2025/06/10 CAM SOP-00203

Site#: C551948

Site Location: BURNABY, BC

Your C.O.C. #: C551948-ONTV-01-01

Attention: Shanaz Akbar

Bureau Veritas 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2025/06/20

GC/ECD

Report #: R8561946 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C567451 Received: 2025/06/10, 08:45

Sample Matrix: Tedlar Bag

Samples Received: 5

Date Date

Analyses

Quantity Extracted Analyzed Laboratory Method Analytical Method

Remarks:

Nitrous Oxide

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

N/A

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: MVWTE

Site#: C551948

Site Location: BURNABY, BC

Your C.O.C. #: C551948-ONTV-01-01

Attention: Shanaz Akbar

Bureau Veritas 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2025/06/20

Report #: R8561946

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C567451

Received: 2025/06/10, 08:45

Encryption Key

Julian Tong Project Manager Assistant 20 Jun 2025 17:10:19

Please direct all questions regarding this Certificate of Analysis to:

Julian Tong, Project Manager Assistant Email: Julian.Tong@bureauveritas.com

Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Bureau Veritas Job #: C567451 Report Date: 2025/06/20 **Bureau Veritas**

Client Project #: MVWTE

Site Location: BURNABY, BC

COMPRESSED GAS PARAMETERS (TEDLAR BAG)

Bureau Veritas ID		ARTE20	ARTE21	ARTE23		
Sampling Date		2025/06/04 09:25	2025/06/04 10:45	2025/06/06 09:18		
COC Number		C551948-ONTV-01-01	C551948-ONTV-01-01	C551948-ONTV-01-01		
	UNITS	DMO144-UNIT 3 BAG 1	DMO145-UNIT 3 BAG 2	DMO147-UNIT 1 BAG 1	RDL	QC Batch
Gas						
Nitrous Oxide	ppmv	3.2	4.8	2.6	0.1	9954120
RDL = Reportable Detec	tion Limit					
QC Batch = Quality Cont	trol Batch					

Bureau Veritas ID		ARTE24	ARTE25	ARTE25		
Sampling Date		2025/06/06 10:32	2025/06/06 11:50	2025/06/06 11:50		
COC Number		C551948-ONTV-01-01	C551948-ONTV-01-01	C551948-ONTV-01-01		
	UNITS	DMO148-UNIT 1 BAG 2	DMO149-UNIT 1 BAG 3	DMO149-UNIT 1 BAG 3 Lab-Dup	RDL	QC Batch
Gas						
Nitrous Oxide	ppmv	3.7	5.2	5.2	0.1	9954120

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas Job #: C567451 Report Date: 2025/06/20 **Bureau Veritas**

Client Project #: MVWTE Site Location: BURNABY, BC

TEST SUMMARY

Bureau Veritas ID: ARTE20

Sample ID: DMO144-UNIT 3 BAG 1

Matrix: Tedlar Bag

Collected: 2025/06/04

Shipped:

Received: 2025/06/10

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Nitrous Oxide
 GC/ECD
 9954120
 N/A
 2025/06/10
 Vasan Thiagarajah

Bureau Veritas ID: ARTE21

Sample ID: DMO145-UNIT 3 BAG 2

Matrix: Tedlar Bag

Collected: 2025/06/04

Shipped: Received: 2025/06/10

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Nitrous Oxide
 GC/ECD
 9954120
 N/A
 2025/06/10
 Vasan Thiagarajah

Bureau Veritas ID: ARTE23

Sample ID: DMO147-UNIT 1 BAG 1

Matrix: Tedlar Bag

Collected: 2025/06/06

Shipped:

Received: 2025/06/10

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystNitrous OxideGC/ECD9954120N/A2025/06/10Vasan Thiagarajah

Bureau Veritas ID: ARTE24

Sample ID: DMO148-UNIT 1 BAG 2

Matrix: Tedlar Bag

Tedlar Bag

Collected: 2025/06/06

Shipped:

Received: 2025/06/10

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Nitrous Oxide
 GC/ECD
 9954120
 N/A
 2025/06/10
 Vasan Thiagarajah

Bureau Veritas ID: ARTE25

Sample ID: DMO149-UNIT 1 BAG 3

Matrix: Tedlar Bag

Collected: 2025/06/06

Shipped:

Received: 2025/06/10

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Nitrous Oxide
 GC/ECD
 9954120
 N/A
 2025/06/10
 Vasan Thiagarajah

Bureau Veritas ID: ARTE25 Dup

Sample ID: DMO149-UNIT 1 BAG 3

Matrix: Tedlar Bag

Collected: 20 Shipped:

2025/06/06

Received: 2025/06/10

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystNitrous OxideGC/ECD9954120N/A2025/06/10Vasan Thiagarajah

Report Date: 2025/06/20

Bureau Veritas

Client Project #: MVWTE

Site Location: BURNABY, BC

GENERAL COMMENTS

Sample ARTE20 [DMO144-UNIT 3 BAG 1]: The sample was analysed 5 days after the date of sampling. The recommended holding time is 2 days.

Sample ARTE21 [DMO145-UNIT 3 BAG 2]: The sample was analysed 5 days after the date of sampling. The recommended holding time is 2 days.

Sample ARTE23 [DMO147-UNIT 1 BAG 1]: The sample was analysed 3 days after the date of sampling. The recommended holding time is 2 days.

Sample ARTE24 [DMO148-UNIT 1 BAG 2]: The sample was analysed 3 days after the date of sampling. The recommended holding time is 2 days.

Sample ARTE25 [DMO149-UNIT 1 BAG 3]: The sample was analysed 3 days after the date of sampling. The recommended holding time is 2 days.

Results relate only to the items tested.

Bureau Veritas Job #: C567451 Report Date: 2025/06/20

QUALITY ASSURANCE REPORT

Bureau Veritas Client Project #: MVWTE

Client Project #: MVW IE
Site Location: BURNABY, BC

			Method Blan	ank	RPD	
2C Batch	Parameter	Date	Value	UNITS	Value (%)	QC Limits
9954120	Nitrous Oxide	2025/06/10	<0.1	hpmv	NC	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Report Date: 2025/06/20

Bureau Veritas

Client Project #: MVWTE

Site Location: BURNABY, BC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Tom Mitchell, B.Sc, Supervisor, Compressed Gases

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

APPENDIX - D COMPUTER GENERATED RESULTS

Client: Metro Vancouver Date: 4-Jun-25

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time:** 10:31 - 12:34

Concentrations:

Particulate 1.47 mg/dscm 0.00064 gr/dscf

0.83 mg/Acm 0.00036 gr/Acf

1.51 mg/dscm (@ 11% O2) 0.00066 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.116 Kg/hr 0.256 lb/hr

Flue Gas Characteristics:

Flow 1317 dscm/min 46496 dscf/min

 21.94 dscm/sec
 775 dscf/sec

 2323 Acm/min
 82041 Acf/min

Velocity 15.201 m/sec 49.87 f/sec

Temperature 154.6 oC 310.3 oF

Moisture 14.1 %

Gas Analysis 11.2 % O2

8.8 % CO2

29.856 Mol. Wt (g/gmole) Dry 28.181 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.9959 dscm 105.800 dscf

Sample Time 120.0 minutes Isokineticity 99.7 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client:Metro VancouverDate:4-Jun-25

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time**: 08:30 - 10:34

Control L	Jnit (Y)	0.9630	Collection:		Gas Analys	sis (Vol. %):	Condensate Collection:	
Nozzle D	iameter (in.)	0.3092	Filter (grams) 0.00100		CO2	02	Impinger 1	243.0
Pitot Fac	tor	0.8505	Washings (grams) 0.00340	Traverse 1	8.83	11.23	Impinger 2	98.0
Baro. Pre	ess. (in. Hg)	30.10		Traverse 2	8.75	11.25	Impinger 3	0.0
Static Pre	ess. (in. H20)	-17.50	Total (grams) 0.00440				Impinger 4	10.0
Stack He	eight (ft)	30					Impinger 5	4.0
Stack Dia	ameter (in.)	70.90					Impinger 6	2.0
Stack Are	ea (sq.ft.)	27.417			8.79	11.24	Gel	13.0
Minutes I	Per Reading	5.0						
Minutes I	Per Point	5.0					Gain (grams)	370.0

					Dry Gas Temperature			Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Traverse 1	0.0	563.552								
1	5.0	567.610	0.38	2.10	74	74	3	308	1.5	100.8
2	10.0	571.980	0.44	2.43	76	76	3	310	4.7	100.7
3	15.0	576.870	0.55	3.04	76	76	3	310	8.4	101.0
4	20.0	581.750	0.55	3.04	77	77	3	312	12.5	100.7
5	25.0	586.780	0.58	3.20	78	78	3	312	17.7	100.9
6	30.0	591.970	0.62	3.42	78	78	3	313	25.2	100.9
7	35.0	596.760	0.53	2.93	78	78	3	312	45.6	100.5
8	40.0	601.640	0.55	3.04	78	78	3	312	53.2	100.5
9	45.0	606.120	0.46	2.54	80	80	3	308	58.3	100.2
10	50.0	610.490	0.44	2.43	81	81	3	308	62.5	99.7
11	55.0	614.760	0.42	2.32	81	81	3	308	66.1	99.7
12	60.0	618.930	0.40	2.21	82	82	3	309	69.4	99.6
	•	•	,	•		•		•	·	•
raverse 2	0.0	618.930								
1	5.0	623.150	0.41	2.26	82	82	3	310	1.5	99.6
2	10.0	627.560	0.45	2.48	82	82	3	312	4.7	99.6
3	15.0	632.310	0.52	2.87	83	83	3	312	8.4	99.7
4	20.0	637.320	0.58	3.20	84	84	3	310	12.5	99.3
5	25.0	642.330	0.58	3.20	85	85	3	311	17.7	99.2
6	30.0	647.430	0.60	3.31	86	86	3	312	25.2	99.2
7	35.0	652.410	0.57	3.15	86	86	3	312	45.6	99.3
8	40.0	657.070	0.50	2.76	87	87	3	312	53.2	99.0
9	45.0	661.720	0.50	2.76	88	88	4	313	58.3	98.6
10	50.0	666.460	0.52	2.87	88	88	4	313	62.5	98.6
11	55.0	670.790	0.43	2.37	88	88	4	305	66.1	98.4
12	60.0	674.900	0.39	2.15	89	89	4	302	69.4	97.7
A			0.400	0.750	00.0	00.0	2.0	240.2		00.7
Average:			0.499	2.753	82.0	82.0	3.2	310.3		99.7

Client: Metro Vancouver Date: 5-Jun-25

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 1 **Run Time:** 08:33 - 10:34

Concentrations:

Particulate 0.49 mg/dscm 0.00021 gr/dscf

0.28 mg/Acm 0.00012 gr/Acf

Emission Rates:

Particulate 0.040 Kg/hr 0.088 lb/hr

Flue Gas Characteristics:

Flow 1348 dscm/min 47615 dscf/min

 22.47 dscm/sec
 794 dscf/sec

 2328 Acm/min
 82217 Acf/min

Velocity 15.234 m/sec 49.98 f/sec

Temperature 153.6 oC 308.5 oF

Moisture 12.0 %

Gas Analysis 11.1 % O2

8.3 % CO2

29.767 Mol. Wt (g/gmole) Dry 28.355 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 3.0547 dscm 107.877 dscf

Sample Time 120.0 minutes Isokineticity 101.2 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 5-Jun-25 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 1 Run Time: 08:33 - 10:34 Control Unit (Y) 0.9630 Collection Gas Analysis (Vol. %): Condensate Collection: 0.3063 Filter (grams) 0.00060 8.00 Impinger 1 Impinger 2 178.0 Nozzle Diameter (in.) Pitot Factor 0.8367 Washings (grams) 0.00090 Baro. Press. (in. Hg) 30.06 Traverse 2 8.55 10.90 Impinger 3 13.0 Total (grams) 0.00150 Static Press. (in. H20) -19.00 Impinger 4 8.0 Stack Height (ft) 30 7.0 Impinger 5 70.90 Stack Diameter (in.) 3.0 Impinger 6 27.417 15.5 Stack Area (sq.ft.) Gel 8.28 11 08 Gain (grams) 312 5 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Time Dry Gas Meter Pitot ^P Traverse / Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 5.0 677.394 101.3 0.59 3.08 307 1.5 682.360 10.0 687.490 0.63 3.29 307 101.3 3 15.0 692,740 0.66 3.45 71 71 307 8.4 101.3 20.0 25.0 698.070 4 0.68 2.55 71 307 12.5 101.1 3.34 17.7 703.250 0.64 72 10 309 101.4 30.0 708.350 0.62 3.24 10 309 101.2 35.0 713.370 0.60 3.14 309 45.6 101.3 40.0 718.310 0.58 3.04 308 53.2 101.3 45.0 50.0 55.0 9 723.220 3.00 74 74 306 58.3 101.2 10 727.600 0.45 2.37 305 62.5 101.2 731.780 2.16 75 305 66.1 11 0.41 75 101.1 12 60.0 735.590 0.34 1.80 75 75 303 69.4 101.0 Traverse 2 0.0 5.0 735.590 740.370 101.2 2.94 2.67 10.0 745.250 0.56 76 76 309 4.7 101.3 311 15.0 749.900 0.51 76 76 8.4 101.2 20.0 754.420).48 101.2 5 25.0 758 940 0.48 2.52 77 77 312 17.7 101.2 30.0 35.0 6 763.410 0.47 2.47 77 9 312 25.2 101.2 768.070).51 2.68 313 45.6 101.2 8 40.0 772.690 0.50 2.63 78 78 310 53.2 101.1 45.0 2.59 9 777.270 0.49 78 78 309 58.3 101.2 50.0 781.620 0.44 2.33 309 101.1 10 62.5 55.0 60.0 785.720 0.39 2.06 1.91 79 79 308 66.1 101.1 789.660 79 79 308 12 0.36 69.4 101.1 2.692 Average: 0.521 75.1 75.1 8.3 308.5 101.2

Client: Metro Vancouver Date: 5-Jun-25

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 1 **Run Time:** 10:47 - 12:48

Concentrations:

Particulate 0.4 mg/dscm 0.0002 gr/dscf

0.2 mg/Acm 0.0001 gr/Acf

Emission Rates:

Particulate 0.029 Kg/hr 0.063 lb/hr

Flue Gas Characteristics:

Flow 1310 dscm/min 46263 dscf/min

 21.83 dscm/sec
 771 dscf/sec

 2323 Acm/min
 82033 Acf/min

Velocity 15.200 m/sec 49.87 f/sec

Temperature 155.6 oC 312.1 oF

Moisture 13.9 %

Gas Analysis 11.1 % O2

8.4 % CO2

29.792 Mol. Wt (g/gmole) Dry 28.153 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 3.0212 dscm 106.694 dscf

Sample Time 120.0 minutes Isokineticity 103.0 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 5-Jun-25 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 1 Run Time: 10:47 - 12:48 Control Unit (Y) 0.9630 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3063 Filter (grams) 0.00070 8.20 O2 11.40 Impinger 1 Impinger 2 209.0 Pitot Factor 0.8376 Washings (grams) 0.00040 117.0 Baro. Press. (in. Hg) 30.06 Traverse 2 8.67 10.73 Impinger 3 6.0 12.0 4.0 Total (grams) 0.00110 Static Press. (in. H20) -19.00 Impinger 4 Stack Height (ft) 30 Impinger 5 70.90 1.0 Stack Diameter (in.) Impinger 6 27.417 17.0 Stack Area (sq.ft.) Gel 8.43 11 07 Gain (grams) 366.0 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 0.0 790.240 75 102.9 0.53 2.77 75 311 1.5 5.0 794.970 75 314 10.0 799.780 0.55 2.87 75 103.0 3 15.0 804,450 0.52 2.71 75 315 8.4 102.9 313 312 4 20.0 808.960 0.48 2.51 76 76 12.5 103.0 25.0 2.46 76 17.7 813.420 0.47 102.9 76 30.0 817.830 0.46 2.41 76 313 102.9 35.0 822.440 0.50 2.62 45.6 103.0 40.0 827.100 2.68 53.2 103.0 45.0 831.670 0.49 2.57 78 78 314 58.3 103.0 50.0 55.0 10 835.990 0.44 2.30 78 78 6.5 316 62.5 102.8 840.070 0.39 79 66.1 11 2.04 79 6.5 316 102.9 12 60.0 843.950 0.35 1.85 79 79 6.5 310 69.4 102.9 Traverse 2 843.950 0.0 848.860 85 103.1 2.98 3.18 85 83 312 312 853.810 0.56 85 83 4.7 103.0 858.920 103.2 15.0 0.60 8.4 864.110 0.62 12.5 103.1 5 25.0 869,250 0.61 3.23 82 82 9 311 17.7 103.0 6 30.0 874.260 0.58 3.08 82 9 311 25.2 103.0 35.0 879.190 0.56 2.97 45.6 103.0 40.0 884.190 0.58 3.07 81 53.2 103.0 312 311 9 45.0 889.080 0.55 2.92 83 83 8 58.3 103.0 0.47 50.0 893.600 2.50 83 10 102.9 83 11 55.0 60.0 898.040 0.45 2.40 2.19 84 84 308 309 66.1 102.8 902.280 85 85 69.4 102.7 12 0.41

80.0

80.0

7.9

0.510

2.689

312.1

103.0

Average:

Client: Jobsite: Source: Metro Vancouver WTE (Burnaby,B.C) Unit 1

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date	(min.)	5-Jun-25	5-Jun-25	5-Jun-25
Test Time		09:18 - 10:18	10:32 - 11:32	11:50 - 12:50
Test Duration		60	60	60
Baro. Press.	(in. Hg)	29.94	29.94	29.94
DGM Factor	(Y)	1.0229	1.0229	1.0229
Initial Reading	(m ³)	165.815	166.228	166.647
Final Reading	(m ³)	166.222	166.643	167.064
Temp. Outlet	(Avg. oF)	66.7	70.5	73.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.42	0.42	0.42
HF	(mg)	0.053	0.053	0.053
Oxygen	(Vol. %)	11.2	11.1	11.1
HF	(mg/Sm³)	0.126	0.125	0.125
HF	(mg/Sm³ @ 11% O2)	0.129	0.126	0.125
Moisture	(Vol. %)	12.0	12.0	13.9

Pstd. (in. Hg)

29.92

Tstd. (oF)

Metro Vancouver WTE (Burnaby,B.C) Unit 1

Client: Jobsite: Source:

Sample Type: HCI

Parameter	HCI	Test 1	Test 2	Test 3
Test Date		5-Jun-25	5-Jun-25	5-Jun-25
Test Time		09:18 - 10:18	10:32 - 11:32	11:50 - 12:50
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	29.94	29.94	29.94
DGM Factor	(Y)	1.0229	1.0229	1.0229
Initial Reading	(m ³)	165.815	166.228	166.647
Final Reading	(m ³)	166.222	166.643	167.064
Temp. Outlet	(Avg. oF)	66.7	70.5	73.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.42	0.42	0.42
HCI	(mg)	5.685	26.831	15.831
Oxygen	(Vol. %)	11.2	11.1	11.1
нсі	(mg/Sm³)	13.6	63.5	37.4
HCI	(mg/Sm ³ @ 11% O2)	13.9	64.0	37.7
Moisture	(Vol. %)	12.0	12.0	13.9

Tstd. (oF) Pstd. (in. Hg) 29.92

Client: Jobsite: Source: Metro Vancouver WTE (Burnaby,B.C) Unit 1

Sample Type: Parameter	NH ₃	Test 1	Test 2	Test 3
Test Date	(min.)	5-Jun-25	5-Jun-25	5-Jun-25
Test Time		09:18 - 10:18	10:32 - 11:32	11:50 - 12:50
Test Duration		60	60	60
Baro. Press.	(in. Hg)	29.94	29.94	29.94
DGM Factor	(Y)	0.9880	0.9880	0.9880
Initial Reading	(m³)	670.718	671.182	671.642
Final Reading	(m³)	671.175	671.637	672.095
Temp. Outlet	(Avg. oF)	66.5	70.0	72.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.45	0.45	0.45
NH ₃	(mg)	8.2	8.2	8.0
Oxygen	(Vol. %)	11.2	11.1	11.1
NH ₃	(mg/Sm³)	18.0	18.3	17.9
NH ₃	(mg/Sm³ @ 11% O2)	18.5	18.5	18.0
Moisture	(Vol. %)	12.0	12.0	13.9

Tstd. (oF) 68 Pstd. (in. Hg) 29.92 Client: Metro Vancouver Date: 12-Jun-25

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 2 **Run Time:** 10:53 - 12:56

Concentrations:

Particulate0.6 mg/dscm0.0003 gr/dscf

0.3 mg/Acm 0.0002 gr/Acf

Emission Rates:

Particulate 0.040 Kg/hr 0.089 lb/hr

Flue Gas Characteristics:

Flow 1092 dscm/min 38574 dscf/min

 18.20 dscm/sec
 643 dscf/sec

 1926 Acm/min
 68013 Acf/min

Velocity 12.602 m/sec 41.34 f/sec

Temperature 152.1 oC 305.8 oF

Moisture 13.6 %

Gas Analysis 10.6 % O2

10.7 % CO2

30.139 Mol. Wt (g/gmole) Dry 28.485 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 1.7077 dscm 60.306 dscf

Sample Time 120.0 minutes Isokineticity 104.8 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 12-Jun-25 1 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 2 Run Time: 10:53 - 12:56 Control Unit (Y) 0.9805 Collection Gas Analysis (Vol. %): Condensate Collection: 0.2500 Nozzle Diameter (in.) Filter (grams) 0.00005 129.0 Impinger 1 Pitot Factor 0.8376 Washings (grams) 0.00100 Traverse 1 Impinger 2 42.0 Baro. Press. (in. Hg) 29.97 Traverse 2 10.90 10.40 Impinger 3 6.0 Static Press. (in. H20) Total (grams) 0.00105 -20.00 Impinger 4 2.0 Stack Height (ft) 30 2.0 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 20.2 Minutes Per Reading 10.72 10.63 Gain (grams) 202.2 5.0 Minutes Per Point 5.0 Wall Dry Gas Temperature Stack Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 100.202 310 104.9 0.30 0.72 69 1.5 5.0 102.554 69 0.74 104.7 10.0 0.31 69 309 3 15.0 107.290 0.30 0.72 69 69 309 8.4 104.6 105.0 20.0 109.487 0.26 0.62 70 70 310 12.5 5 111.487 0.62 70 310 25.0 0.26 95.6 30.0 113.955 0.28 0.67 310 25.2 113.9 35.0 117.000 0.50 1.20 306 45.6 104.8 40.0 120.155 0.54 1.29 308 104.6 45.0 123.463 0.59 1.42 308 58.3 104.8 10 50.0 126.821 0.60 1.46 300 62.5 105.0 1.33 66.1 11 55.0 130.030 0.54 72 290 104.8 12 60.0 133.100 0.49 1.20 72 5 291 69.4 105.3 Traverse 2 0.0 133.100 135.924 0.43 1.03 104.6 10.0 73 73 138.820 0.45 1.08 73 312 4.7 104.9 312 15.0 141.685 0.44 1.05 8.4 104.9 20.0 144.484 0.42 1.01 12.5 104.9 5 25.0 147.042 0.36 0.86 73 311 17.7 103.4 6 30.0 149.555 0.33 0.27 0.79 73 311 25.2 106.1 35.0 151.803 0.68 310 45.6 8 40.0 153.972 0.25 0.61 74 74 305 104.6 9 45.0 156.114 0.24 0.58 74 301 58.3 105.1 158.161 0.22 0.54 10 50.0 300 62.5 104.8 55.0 160.110 0.20 0.49 74 74 298 66.1 104.5 74 12 60.0 161.908 0.17 74 295 69.4 0.42 104.4 0.365 0.880 305.8 Average: 71.8 71.8 4.2 104.8

Client: Metro Vancouver Date: 13-Jun-25

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 2 **Run Time:** 09:06 - 11:08

Concentrations:

Particulate 0.44 mg/dscm 0.00019 gr/dscf

0.25 mg/Acm 0.00011 gr/Acf

Emission Rates:

Particulate 0.026 Kg/hr 0.058 lb/hr

Flue Gas Characteristics:

Flow 995 dscm/min 35140 dscf/min

 16.58 dscm/sec
 586 dscf/sec

 1755 Acm/min
 61987 Acf/min

Velocity 11.485 m/sec 37.68 f/sec

Temperature 154.3 oC 309.7 oF

Moisture 14.6 %

Gas Analysis 9.4 % O2

9.9 % CO2

29.951 Mol. Wt (g/gmole) Dry 28.208 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.3662 dscm 83.562 dscf

Sample Time 120.0 minutes Isokineticity 107.5 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 13-Jun-25 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 2 Run Time: 09:06 - 11:08 Control Unit (Y) 0.9805 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3092 Filter (grams) 0.00005 CO2 10.00 173.0 Impinger 1 Pitot Factor 0.8376 Washings (grams) 0.00100 Impinger 2 Baro. Press. (in. Hg) 29.98 Traverse 2 9.70 9.57 Impinger 3 13.0 Total (grams) 0.00105 Static Press. (in. H20) -14.0 Impinger 4 5.0 Stack Height (ft) 30 1.0 Impinger 5 Stack Diameter (in.) 70.90 Impinger 6 1.0 27.417 16.1 Stack Area (sq.ft.) Gel Minutes Per Reading 9.85 9 37 Gain (grams) 303 1 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Dry Gas Meter Pitot ^P Vacuum Time Orifice ^H Inlet Outlet Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 168.825 67 104.3 0.36 2.00 67 312 1.5 5.0 172,720 10.0 176.720 67 67 0.36 2.11 313 107.3 3 15.0 180.830 0.40 2.22 68 68 313 8.4 104.4 20.0 184.940 0.40 2.22 68 69 68 313 12.5 104.4 2.17 69 313 17.7 25.0 192.000 0.39 181.2 30.0 195.860 0.35 1.95 313 104.3 35.0 199.250 0.27 1.54 313 45.6 104.0 40.0 202.520 1.40 312 53.2 45.0 205.730 0.24 1.34 72 72 312 58.3 104.2 10 50.0 208.800 0.22 1.23 313 62.5 104.1 55.0 211.730 0.20 1.12 73 312 11 73 66.1 103.9 3 12 60.0 214.590 0.19 1.07 73 73 312 69.4 104.0 0.0 5.0 214.590 Traverse 2 217.680 1.24 104.2 0.22 75 75 75 75 10.0 220.910 0.24 1.36 309 4.7 104.0 15.0 224.070 0.23 1.30 309 103.9 8.4 227.170 0.22 308 104.0 5 25.0 230.270 0.22 1.25 76 76 307 17.7 103.9 6 30.0 233.450 0.23 1.31 76 76 306 25.2 104.2 237.260 0.33 1.88 305 104.3 8 40.0 241.510 0.41 2.34 77 77 305 53.2 104.3 2.23 9 45.0 245.660 0.39 78 78 305 58.3 104.2 249.710 0.37 50.0 305 104.4 62.5 11 55.0 253.640 0.35 2.00 78 78 78 306 66.1 104.2 78 12 60.0 257.460 306 69.4 104.3 1.88 0.299 Average: 1.689 73.3 73.3 3.0 309.7 107.5

Client: Metro Vancouver Date: 13-Jun-25

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 2 **Run Time:** 11:18 - 13:20

Concentrations:

Particulate0.0 mg/dscm0.0000 gr/dscf

0.0 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.00 Kg/hr 0.003 lb/hr

Flue Gas Characteristics:

Flow 1010 dscm/min 35683 dscf/min

 16.84 dscm/sec
 595 dscf/sec

 1782 Acm/min
 62935 Acf/min

Velocity 11.661 m/sec 38.26 f/sec

Temperature 153.0 oC 307.4 oF

Moisture 14.8 %

Gas Analysis 9.3 % O2

10.1 % CO2

29.985 Mol. Wt (g/gmole) Dry 28.209 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.4100 dscm 85.110 dscf

Sample Time 120.0 minutes Isokineticity 104.5 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 13-Jun-25 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Unit 2 Run Time: 11:18 - 13:20 Source: Control Unit (Y) 0.9805 Collection Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3092 Filter (grams) 0.00005 CO2 10.33 Impinger 1 Impinger 2 219.0 Pitot Factor 0.8376 Washings (grams) 0.00000 Traverse 1 Baro. Press. (in. Hg) 29.98 Traverse 2 9.83 9.70 Impinger 3 12.0 Total (grams) 0.0001 Static Press. (in. H20) -14.00 Impinger 4 10.0 30 Stack Height (ft) 3.0 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 14.7 Minutes Per Reading 10.08 9 32 Gain (grams) 314 7 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Time Dry Gas Meter Pitot ^P Traverse / Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 258.082 79 79 104.4 0.23 1.32 305 1.5 5.0 261,280 264.550 10.0 0.24 1.38 80 80 306 104.4 3 15.0 267.750 0.23 1.32 79 79 305 8.4 104.5 12.5 4 20.0 270.880 0.22 1.26 80 80 305 104.3 0.23 80 17.7 25.0 274.080 1.32 80 305 104.3 30.0 277.350 0.24 1.38 80 80 305 104.4 281.240 35.0 0.34 1.95 305 45.6 104.3 40.0 285.630 0.43 2.47 305 53.2 45.0 289.960 0.42 2.41 81 81 306 58.3 104.6 10 50.0 294.190 0.40 2.30 81 81 305 62.5 104.6 298.310 0.38 2.18 305 11 55.0 81 81 66.1 104.5 12 60.0 302.380 0.37 2.13 81 81 305 69.4 104.6 Traverse 2 0.0 302.380 5.0 306.350 2.02 304 104.6 82 82 10.0 310.420 0.37 2.13 82 306 4.7 104.5 308 15.0 314.700 0.41 8.4 104.6 2.35 318.760 0.37 2.12 310 104.5 5 25.0 323.000 0.40 2.29 83 83 311 17.7 104.9 327.180 6 30.0 0.39 2.23 83 83 311 25.2 104.7 35.0 330.660 310 45.6 40.0 334.010 0.25 1.43 84 84 104.4 337.290 9 45.0 0.24 1.38 84 84 311 58.3 104.3 340.500 0.23 1.32 83 83 104.5 10 50.0 62.5 11 55.0 343.570 0.21 1.20 84 84 311 66.1 104.3 12 60.0 346.570 1.15 84 84 311 0.20 69.4 104.5 Average: 0.309 1.775 81.7 81.7 3.0 307.4 104.5

Client: Jobsite: Source: Metro Vancouver WTE (Burnaby,B.C) Unit 2

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date	(min.)	13-Jun-25	13-Jun-25	13-Jun-25
Test Time		09:36 - 10:36	10:45 - 11:45	11:55 - 12:55
Test Duration		60	60	60
Baro. Press.	(in. Hg)	29.98	29.98	29.98
DGM Factor	(Y)	0.9880	0.9880	0.9880
Initial Reading	(m ³)	672.099	672.676	673.271
Final Reading	(m ³)	672.673	673.267	673.848
Temp. Outlet	(Avg. oF)	62.7	65.3	67.3
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.57415	0.58837	0.57264
HF	(mg)	0.053	0.053	0.053
Oxygen	(Vol. %)	10.6	9.4	9.3
HF	(mg/Sm³)	0.092	0.089	0.092
HF	(mg/Sm³ @ 11% O2)	0.088	0.077	0.079
Moisture (isokinetic)	(Vol. %)	13.6	14.6	14.8

*Wet Basis Calculated on mo Tstd. (oF)

Pstd. (in. Hg) 29.92

Client: Jobsite: Source: Metro Vancouver WTE (Burnaby,B.C) Unit 2

Sample Type: HCI

Parameter		Test 1	Test 2	Test 3
Test Date	(min.)	13-Jun-25	13-Jun-25	13-Jun-25
Test Time		09:36 - 10:36	10:45 - 11:45	11:55 - 12:55
Test Duration		60	60	60
Baro. Press.	(in. Hg)	29.98	29.98	29.98
DGM Factor	(Y)	0.9880	0.9880	0.9880
Initial Reading	(m ³)	672.099	672.676	673.271
Final Reading	(m ³)	672.673	673.267	673.848
Temp. Outlet	(Avg. oF)	62.7	65.3	67.3
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.57415	0.58837	0.57264
HCI	(mg)	29.401	39.681	48.624
Oxygen	(Vol. %)	10.6	9.4	9.3
HCI	(mg/Sm³)	51.2	67.4	84.9
HCI	(mg/Sm³ @ 11% O2)	49.3	57.9	72.6
Moisture (isokinetic)	(Vol. %)	13.6	14.6	14.8

*Wet Basis Calculated on moisture from isokinetic tests Tstd. (oF) 68

Pstd. (in. Hg)

Metro Vancouver WTE (Burnaby,B.C) Client: Jobsite: Source: Unit 2

Sample Type: Parameter	NH ₃	Test 1	Test 2	Test 3
Test Date Test Time		13-Jun-25 09:36 - 10:36	13-Jun-25 10:45 - 11:45	13-Jun-25 11:55 - 12:55
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	29.98	29.98	29.98
DGM Factor	(Y)	1.0229	1.0229	1.0229
Initial Reading	(m ³)	167.068	167.447	167.818
Final Reading	(m ³)	167.444	167.814	168.172
Temp. Outlet	(Avg. oF)	66.0	70.7	70.7
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.38753	0.37432	0.36166
NH ₃	(mg)	32.59	5.46	4.10
Oxygen	(Vol. %)	10.6	9.4	9.3
NH ₃	(mg/Sm³)	84.1	14.6	11.3
NH ₃	(mg/Sm ³ @ 11% O2)	81.0	12.5	9.68
Moisture (isokinetic)	(Vol. %)	13.6	14.6	14.8

*Wet Basis Calculated on moisture from isokinetic tests Tstd. (oF) 68

Pstd. (in. Hg)

Client: Metro Vancouver Date: 3-Jun-25

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 3 **Run Time:** 11:40 - 13:42

Concentrations:

Particulate 0.86 mg/dscm 0.00038 gr/dscf

0.49 mg/Acm 0.00021 gr/Acf

Emission Rates:

Particulate 0.055 Kg/hr 0.120 lb/hr

Flue Gas Characteristics:

Flow 1053 dscm/min 37192 dscf/min

 17.55 dscm/sec
 620 dscf/sec

 1867 Acm/min
 65920 Acf/min

Velocity 12.214 m/sec 40.07 f/sec

Temperature 156.7 oC 314.0 oF

Moisture 14.0 %

Gas Analysis 10.6 % O2

9.6 % CO2

29.957 Mol. Wt (g/gmole) Dry 28.282 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.4290 dscm 85.782 dscf

Sample Time 120.0 minutes Isokineticity 103.0 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

 Client:
 Metro Vancouver
 Date:
 3-Jun-25

 Jobsite:
 WTE (Burnaby, B.C)
 Run:
 1 - Particulate / Metals

 Source:
 Unit 3
 Run Time:
 11:40 - 13:42

Control Unit (Y)

1.0010

Collection:

Sas Analysis (Vol. %):

Condensate

Filter (grams) 0.00150

CO2

O2

Implied

CO2

O2

Implied

CO2

O2

Implied

CO3

Implied

Control Unit (Y)	1.0010	Collection:		Gas Analys	sis (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.3063	Filter (grams) 0.00150		CO2	O2	Impinger 1	125.0
Pitot Factor	0.8376	Washings (grams) 0.00060	Traverse 1	9.55	10.60	Impinger 2	103.0
Baro. Press. (in. Hg)	30.18		Traverse 2	9.60	10.65	Impinger 3	30.0
Static Press. (in. H20)	-19.00	Total (grams) 0.00210				Impinger 4	16.0
Stack Height (ft)	30					Impinger 5	6.0
Stack Diameter (in.)	70.90					Impinger 6	5.0
Stack Area (sq.ft.)	27.417					Gel	12.0
Minutes Per Reading	5.0			9.58	10.63	Gain (grams)	297.0
Minutes Per Point	5.0						

					Dry Gas	Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Fraverse 1	0.0	664.100	r	T /			T J		ì	
1	5.0	667.460	0.29	1.76	75	75	4	307	1.5	102.8
2	10.0	670.750	0.28	1.68	75	75	5	314	4.7	102.9
3	15.0	673.970	0.27	1.62	74	74	5	314	8.4	102.7
4	20.0	677.260	0.28	1.68	75	75	5	314	12.5	102.9
5	25.0	680.430	0.26	1.56	75	75	4	315	17.7	102.9
6	30.0	683.540	0.25	1.50	75	75	5	315	25.2	103.0
7	35.0	687.520	0.41	2.46	75	75	5	315	45.6	103.1
8	40.0	691.750	0.46	2.77	77	77	5	314	53.2	103.1
9	45.0	696.210	0.51	3.07	77	77	6	314	58.3	103.3
10	50.0	700.730	0.52	3.16	78	78	6	309	62.5	103.2
11	55.0	704.940	0.45	2.73	78	78	6	309	66.1	103.2
12	60.0	709.060	0.43	2.62	78	78	6	308	69.4	103.2
		*	•					•	•	•
Traverse 2	0.0	709.060								
1	5.0	713.130	0.42	2.55	80	80	6	312	1.5	103.0
2	10.0	717.290	0.44	2.66	80	80	6	316	4.7	103.2
3	15.0	721.460	0.44	2.66	81	81	6	316	8.4	103.3
4	20.0	725.580	0.43	2.60	82	82	6	317	12.5	103.1
5	25.0	729.650	0.42	2.54	82	82	6	317	17.7	103.0
6	30.0	733.870	0.45	2.73	82	82	6	316	25.2	103.2
7	35.0	737.590	0.35	2.12	82	82	6	317	45.6	103.0
8	40.0	740.860	0.27	1.64	82	82	6	317	53.2	103.0
9	45.0	743.940	0.24	1.46	82	82	6	316	58.3	102.8
10	50.0	746.300	0.14	0.85	83	83	6	316	62.5	102.8
11	55.0	748.490	0.12	0.73	83	83	5	314	66.1	102.8
12	60.0	750.380	0.09	0.55	83	83	5	314	69.4	102.4
										122
Average:	1		0.343	2.071	78.9	78.9	5.5	314.0		103.0

Client: Metro Vancouver Date: 4-Jun-25

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 3 **Run Time:** 08:45 - 10:47

Concentrations:

Particulate1.91 mg/dscm0.00083 gr/dscf

1.08 mg/Acm 0.00047 gr/Acf

1.61 mg/dscm (@ 11% O2) 0.00070 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.128 Kg/hr 0.281 lb/hr

Flue Gas Characteristics:

Flow 1114 dscm/min 39329 dscf/min

 18.56 dscm/sec
 655 dscf/sec

 1969 Acm/min
 69523 Acf/min

Velocity 12.882 m/sec 42.26 f/sec

Temperature 156.7 oC 314.0 oF

Moisture 13.8 %

Gas Analysis 9.2 % O2

10.6 % CO2

30.056 Mol. Wt (g/gmole) Dry 28.394 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5677 dscm 90.680 dscf

Sample Time 120.0 minutes Isokineticity 103.0 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 4-Jun-25 Run: 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Source: Unit 3 Run Time: 08:45 - 10:47 Control Unit (Y) 1.0010 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.3063 Filter (grams) 0.00340 CO2 10.58 Impinger 1 Impinger 2 110.0 Nozzle Diameter (in.) Pitot Factor 0.8376 Washings (grams) 0.00150 Baro. Press. (in. Hg) 30.18 Traverse 2 10.53 9.20 Impinger 3 40.0 Total (grams) 0.00490 11.0 Static Press. (in. H20) -19.00 Impinger 4 30 10.0 Stack Height (ft) Impinger 5 70.90 Stack Diameter (in.) 8.0 Impinger 6 13.0 Stack Area (sq.ft.) 27.417 Gel 10.56 9 18 Gain (grams) 308.0 Minutes Per Reading 5.0 Minutes Per Point 5.0 Stack Dry Gas Temperature Wall Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 751.894 103.0 0.45 2.69 313 1.5 5.0 756.040 10.0 760.410 0.50 4.7 2.99 72 313 103.0 3 15.0 764.870 0.52 3.10 73 73 316 8.4 103.2 3.16 3.16 4 20.0 769.370 316 12.5 103.3 25.0 0.53 317 17.7 773.880 103.2 6 30.0 778.080 0.46 74 317 103.1 35.0 781.650 0.33 1.98 76 76 316 45.6 102.8 40.0 0.24 1.46 306 53.2 102.8 45.0 50.0 55.0 0.22 9 787.640 1.32 76 313 58.3 102.6 10 790.500 1.27 313 62.5 102.7 0.15 314 66.1 11 792.920 0.90 102.8 12 60.0 795.090 0.12 0.73 78 78 313 69.4 102.7 Traverse 2 0.0 5.0 795.090 798.580 0.31 1.88 102.8 10.0 802.010 0.30 1.81 79 79 315 4.7 102.9 15.0 805.610 0.33 1.99 79 315 8.4 103.0 3 20.0 809.160 0.32 314 102.9 5 25.0 812.820 0.34 2.06 80 80 314 17.7 102.9 6 30.0 816.430 0.33 2.00 80 80 313 25.2 103.0 35.0 820.920 0.51 3.10 45.6 103.2 8 40.0 825.370 0.50 3.03 314 53.2 103.3 45.0 9 829.910 0.52 3.16 82 82 315 58.3 103.2 50.0 0.53 315 834.490 62.5 103.1 10 3.22 55.0 60.0 838.810 0.47 2.86 82 82 314 66.1 103.2 12 842.840 0.41 2.49 82 82 314 102.9 69.4 0.380 2.294 77.7 Average: 77.7 4.7 314.0 103.0

Client: Metro Vancouver Date: 4-Jun-25

Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals

Source: Unit 3 **Run Time:** 11:38 - 13:40

Concentrations:

Particulate 1.21 mg/dscm 0.00053 gr/dscf

0.68 mg/Acm 0.00030 gr/Acf

Emission Rates:

Particulate 0.079 Kg/hr 0.175 lb/hr

Flue Gas Characteristics:

Flow 1087 dscm/min 38389 dscf/min

 18.12 dscm/sec
 640 dscf/sec

 1952 Acm/min
 68926 Acf/min

Velocity 12.771 m/sec 41.90 f/sec

Temperature 153.2 oC 307.8 oF

Moisture 15.8 %

Gas Analysis 9.9 % O2

9.8 % CO2

29.970 Mol. Wt (g/gmole) Dry 28.079 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5532 dscm 90.167 dscf

Sample Time 120.0 minutes Isokineticity 104.8 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Metro Vancouver Date: 4-Jun-25 3 - Particulate / Metals Jobsite: WTE(Burnaby,B.C) Run: 11:38 - 13:40 Source: Unit 3 Run Time: Control Unit (Y) 1.0010 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3063 Filter (grams) 0.00200 150.0 Impinger 1 Pitot Factor 0.8376 Washings (grams) 0.00110 Impinger 2 119.0 Baro. Press. (in. Hg) 30.18 Traverse 2 9.77 9.68 Impinger 3 44.0 Total (grams) 0.00310 Static Press. (in. H20) -19.00 Impinger 4 19.0 Stack Height (ft) 30 9.0 Impinger 5 Stack Diameter (in.) 70.90 Impinger 6 5.0 27.417 Stack Area (sq.ft.) Gel 13.5 9.84 9 89 Gain (grams) 359 5 Minutes Per Reading 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Time Dry Gas Meter Pitot ^P Traverse / Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 0.0 846.056 104.7 2.11 80 80 316 1.5 5.0 849.760 0.35 853.470 104.9 10.0 0.35 2.11 80 80 3 15.0 857.120 0.34 2.05 80 80 316 8.4 104.7 104.7 20.0 860.770 0.34 2.05 80 80 317 12.5 5 0.32 80 316 17.7 104.9 864.320 1.93 80 25.0 25.2 45.6 30.0 868.000 0.34 310 104.9 35.0 872.520 877.150 0.51 3.13 81 81 305 105.2 40.0 0.53 82 300 53.2 105.2 45.0 882.000 0.58 3.60 298 58.3 105.2 10 50.0 886.630 0.53 3.29 82 82 299 62.5 105.1 0.46 299 104.9 11 55.0 890.950 2.86 83 83 66.1 12 60.0 895.080 0.42 2.61 83 83 10 298 69.4 104.9 0.0 5.0 895.080 Traverse 2 898.800 84 300 104.8 84 84 10.0 902.820 0.40 2.47 84 305 4.7 104.8 0.41 305 15.0 2.53 104.9 906.890 8.4 911.010 0.42 2.59 308 12.5 104.9 5 25.0 915 280 0.45 2.78 85 85 308 17.7 105.1 6 30.0 919.400 0.42 2.59 86 86 310 25.2 104.9 922.700 0.27 1.66 311 45.6 104.6 8 40.0 925.810 0.24 1.48 86 86 53.2 104.5

87

87

87

83.4

87

87

87

83.4

7.1

311 310

310

306

307.8

58.3

62.5

66.1

69.4

104.5

104.7

104.6

104.4

104.8

9

10

11

12

Average:

45.0

50.0

55.0

60.0

928.990

932.050

934.830

937.460

0.25

0.23

0.19

0.17

0.369

1.54

1.42

1.17

1.05

2.270

Client: Jobsite: Source: Metro Vancouver WTE (Burnaby,B.C) Unit 3

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date	(min.)	4-Jun-25	4-Jun-25	4-Jun-25
Test Time		09:25 - 10:25	10:45 - 11:45	12:02 - 13:02
Test Duration		60	60	60
Baro. Press.	(in. Hg)	30.18	30.18	30.18
DGM Factor	(Y)	1.0229	1.0229	1.0229
Initial Reading	(m ³)	164.417	164.897	165.349
Final Reading	(m ³)	164.892	165.344	165.805
Temp. Outlet	(Avg. oF)	73.0	75.5	78.0
Orifice Press.	(ΔH in.H2O)	0.30	0.30	0.30
Gas Volume	(Sm³)	0.48534	0.45498	0.46178
HF	(mg)	0.051	0.051	0.051
Oxygen	(Vol. %)	10.6	9.2	9.9
HF	(mg/Sm³)	0.106	0.113	0.111
HF	(mg/Sm³ @ 11% O2)	0.102	0.095	0.100
Moisture (isokinetic)	(Vol. %)	14.0	13.8	15.8

*Wet Basis Calculated on Tstd. (oF)

Pstd. (in. Hg) 29.92

Client: Jobsite: Metro Vancouver WTE (Burnaby,B.C) Unit 3 Source:

Sample Type: Parameter	HCI	Test 1	Test 2	Test 3
Test Date		4-Jun-25	4-Jun-25	4-Jun-25
Test Time		09:25 - 10:25	10:45 - 11:45	12:02 - 13:02
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	30.18	30.18	30.18
DGM Factor	(Y)	1.0229	1.0229	1.0229
Initial Reading	(m ³)	164.417	164.897	165.349
Final Reading	(m ³)	164.892	165.344	165.805
Temp. Outlet	(Avg. oF)	73.0	75.5	78.0
Orifice Press.	(ΔH in.H2O)	0.30	0.30	0.30
Gas Volume	(Sm ³)	0.48534	0.45498	0.46178
HCI	(mg)	72.782	6.631	13.672
Oxygen	(Vol. %)	10.6	9.2	9.9
нсі	(mg/Sm³)	150.0	14.6	29.6
HCI	(mg/Sm ³ @ 11% O2)	144.5	12.3	26.6
Moisture (isokinetic)	(Vol. %)	14.0	13.8	15.8

*Wet Basis Calculated on moisture from isokinetic tests Tstd. (oF) 68

Pstd. (in. Hg) 29.92

Client: Jobsite: Source: Metro Vancouver WTE (Burnaby,B.C) Unit 3

Sample Type: Parameter	NH ₃	Test 1	Test 2	Test 3
Test Date	(min.)	4-Jun-25	4-Jun-25	4-Jun-25
Test Time		09:25 - 10:25	10:45 - 11:45	12:02 - 13:02
Test Duration		60	60	60
Baro. Press.	(in. Hg)	30.18	30.18	30.18
DGM Factor	(Y)	0.9880	0.9880	0.9880
Initial Reading	(m³)	669.267	669.728	670.221
Final Reading	(m³)	669.723	670.203	670.708
Temp. Outlet	(Avg. oF)	74.0	76.0	77.5
Orifice Press.	(ΔH in.H2O)	0.30	0.30	0.30
Gas Volume	(Sm³)	0.45006	0.46704	0.47710
NH ₃	(mg)	0.39	3.42	2.74
Oxygen	(Vol. %)	10.6	9.2	9.9
NH ₃	(mg/Sm ³)	0.86	7.33	5.74
NH ₃	(mg/Sm ³ @ 11% O2)	0.83	6.19	5.16
Moisture (isokinetic)	(Vol. %)	14.0	13.8	15.8

*Wet Basis Calculated on moisture from isokinetic tests
Tstd. (oF) 68

Pstd. (in. Hg)

29.92

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Parameter: N₂O

Molecular Weight: 44.00 grams/mol Reportable Detection

Lab Detection Limit: 0.1 ppm Limit: 0.18 mg/Sm³

Sample ID	Date	Time	N₂O ppm	N₂O mg/Sm³	N₂O mg/Sm³ @ 11% O₂
Unit 1 - Run 1 Unit 1 - Run 2 Unit 1 - Run 3 Average	5-Jun-25 5-Jun-25 5-Jun-25	09:18 - 10:18 10:32 - 11:32 11:50 - 12:50	2.60 3.70 5.2	4.76 6.77 9.52	4.88 6.83 9.59 7.10
Unit 2 - Run 1 Unit 2 - Run 2 Unit 2 - Run 3 Average	13-Jun-25 13-Jun-25 13-Jun-25	09:20 - 10:20 10:45 - 11:45 11:55 - 12:55	1.95 5.50 5.30	3.57 10.07 9.70	3.44 8.65 8.30 6.80
Unit 3 - Run 1 Unit 3 - Run 2 Unit 3 - Run 3 Average	4-Jun-25 4-Jun-25 4-Jun-25	09:25 - 10:25 10:45 - 11:45 12:02 - 13:02	3.20 4.80	5.86 8.79	5.65 7.43 6.54

Date:	5-Jun-25			13-Jun-25			4-Jun-25		
	Unit 1	D 0	D 0	Unit 2	D 0	D 0	Unit 3	D 0	D 0
	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
Test Times:	09:18 - 10:18	10:32 - 11:32	11:50 - 12:50	09:45 - 10:45	10:56 - 11:56	12:07 - 13:07	09:35 - 10:35	10:46 - 11:46	11:58 - 12:58
Methane (ppmv)	4	3.2	ND	4.1	ND	ND	ND	ND	ND
Ethane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethene (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3 as Propane (ppmv)	ND	0.64	ND	ND	0.91	ND	ND	ND	ND
C4 as n-Butane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C5 as n-Pentane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C6 as n-Hexane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C6+ as n-Hexane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
Detection Limits:									
Methane	2.8	3.1	3	3.1	3.5	3.1	3.3	2.9	3.1
Ethane	0.84	0.92	0.89	0.94	1.1	0.93	0.99	0.88	0.94
Ethene	0.84	0.92	0.89	0.94	1.1	0.93	0.99	0.88	0.94
C3 as Propane	0.70	0.77	0.74	0.78	0.89	0.78	0.83	0.73	0.78
C4 as n-Butane	0.70	0.77	0.74	0.78	0.89	0.78	0.83	0.73	0.78
C5 as n-Pentane	0.70	0.77	0.74	0.78	0.89	0.78	0.83	0.73	0.78
C6 as n-Hexane	0.70	0.77	0.74	0.78	0.89	0.78	0.83	0.73	0.78
C6+	4.2	4.6	4.4	4.7	5.3	4.7	5	4.4	4.7
Using 1/2 DL Convention									
Sample Date:	5-Jun-25 Unit 1			13-Jun-25 Unit 2			4-Jun-25 Unit 3		
Sample Date:		Run 2	Run 3		Run 2	Run 3		Run 2	Run 3
Sample Date: Test Times:	Unit 1	Run 2 10:56 - 11:56	Run 3 12:10 - 13:10	Unit 2	Run 2 10:56 - 11:56	Run 3 12:07 - 13:07	Unit 3	Run 2 10:46 - 11:46	Run 3 11:58 - 12:58
Test Times:	Unit 1 Run 1			Unit 2 Run 1			Unit 3 Run 1		
·	Unit 1 Run 1 09:25 - 10:25	10:56 - 11:56	12:10 - 13:10	Unit 2 Run 1 09:45 - 10:45	10:56 - 11:56	12:07 - 13:07	Unit 3 Run 1 09:35 - 10:35	10:46 - 11:46	11:58 - 12:58
Test Times: Methane (ppm)	Unit 1 Run 1 09:25 - 10:25	10:56 - 11:56 3.20	12:10 - 13:10 1.50	Unit 2 Run 1 09:45 - 10:45 4.10	10:56 - 11:56 1.75	12:07 - 13:07 1.55	Unit 3 Run 1 09:35 - 10:35	10:46 - 11:46 1.45	11:58 - 12:58 1.55
Test Times: Methane (ppm) Ethane (ppm)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42	10:56 - 11:56 3.20 0.46	12:10 - 13:10 1.50 0.45	Unit 2 Run 1 09:45 - 10:45 4.10 0.47	10:56 - 11:56 1.75 0.55	12:07 - 13:07 1.55 0.47	Unit 3 Run 1 09:35 - 10:35 1.65 0.50	10:46 - 11:46 1.45 0.44	11:58 - 12:58 1.55 0.47
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35	10:56 - 11:56 3.20 0.46 0.46 0.64 0.39	12:10 - 13:10 1.50 0.45 0.45 0.37 0.37	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39	10:56 - 11:56 1.75 0.55 0.55	12:07 - 13:07 1.55 0.47 0.47 0.39 0.39	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42	10:46 - 11:46 1.45 0.44 0.44	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35	10:56 - 11:56 3.20 0.46 0.46 0.64 0.39 0.39	1.50 0.45 0.45 0.37 0.37 0.37	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39	10:56 - 11:56 1.75 0.55 0.55 0.91 0.45 0.45	12:07 - 13:07 1.55 0.47 0.47 0.39 0.39 0.39	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42	10:46 - 11:46 1.45 0.44 0.44 0.37 0.37 0.37	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35 0.35	10:56 - 11:56 3.20 0.46 0.46 0.64 0.39 0.39 0.39	1.50 0.45 0.45 0.37 0.37 0.37 0.37	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39 0.39	10:56 - 11:56 1.75 0.55 0.55 0.91 0.45 0.45 0.45	1.55 0.47 0.39 0.39 0.39 0.39	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42 0.42	10:46 - 11:46 1.45 0.44 0.37 0.37 0.37 0.37	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39 0.39
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35	10:56 - 11:56 3.20 0.46 0.46 0.64 0.39 0.39	1.50 0.45 0.45 0.37 0.37 0.37	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39	10:56 - 11:56 1.75 0.55 0.55 0.91 0.45 0.45	12:07 - 13:07 1.55 0.47 0.47 0.39 0.39 0.39	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42	10:46 - 11:46 1.45 0.44 0.44 0.37 0.37 0.37	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35 0.35 0.35	10:56 - 11:56 3.20 0.46 0.46 0.64 0.39 0.39 0.39 2.30	1.50 0.45 0.45 0.37 0.37 0.37 0.37 2.20	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39 0.39 2.35	10:56 - 11:56 1.75 0.55 0.55 0.91 0.45 0.45 0.45 0.45	1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 2.50	10:46 - 11:46 1.45 0.44 0.37 0.37 0.37 0.37 2.20	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39 0.39 0.39 2.35
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35 0.35 2.10	10:56 - 11:56 3.20 0.46 0.46 0.64 0.39 0.39 0.39 2.30	1.50 0.45 0.45 0.37 0.37 0.37 0.37 2.20	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39 0.39 2.35	10:56 - 11:56 1.75 0.55 0.55 0.91 0.45 0.45 0.45 2.65	1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 1.10	10:46 - 11:46 1.45 0.44 0.37 0.37 0.37 0.37 2.20	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35 2.10	10:56 - 11:56 3.20 0.46 0.46 0.64 0.39 0.39 0.39 2.30 2.14	1.50 0.45 0.45 0.37 0.37 0.37 0.37 2.20	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39 2.35 2.74	10:56 - 11:56 1.75 0.55 0.55 0.91 0.45 0.45 0.45 2.65	1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 1.10 0.33	10:46 - 11:46 1.45 0.44 0.37 0.37 0.37 0.37 2.20 0.97 0.29	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) Ethene (mg/m³ as CH ₄)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35 2.10 2.87 0.28 0.28	10:56 - 11:56 3.20 0.46 0.46 0.39 0.39 0.39 2.30 2.14 0.31 0.31	1.50 0.45 0.45 0.37 0.37 0.37 0.37 2.20 1.00 0.30 0.30	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39 2.35 2.74 0.31 0.31	10:56 - 11:56 1.75 0.55 0.55 0.91 0.45 0.45 0.45 2.65 1.17 0.37 0.37	1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 1.10 0.33 0.33	10:46 - 11:46 1.45 0.44 0.37 0.37 0.37 0.37 2.20 0.97 0.29 0.29	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35 1.03 0.31
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) Ethene (mg/m³ as CH ₄) C3 as Propane (mg/m³ as CH ₄)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35 2.10 2.87 0.28 0.28 0.23	10:56 - 11:56 3.20 0.46 0.46 0.64 0.39 0.39 2.30 2.14 0.31 0.31 0.43	1.50 0.45 0.45 0.37 0.37 0.37 0.37 2.20 1.00 0.30 0.30 0.25	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39 2.35 2.74 0.31 0.31 0.26	10:56 - 11:56 1.75 0.55 0.55 0.91 0.45 0.45 0.45 2.65 1.17 0.37 0.37 0.61	1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 2.50 1.10 0.33 0.33 0.28	10:46 - 11:46 1.45 0.44 0.37 0.37 0.37 0.37 2.20 0.97 0.29 0.29 0.24	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35 1.03 0.31 0.31 0.26
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35 2.10 2.87 0.28 0.28	10:56 - 11:56 3.20 0.46 0.46 0.39 0.39 0.39 2.30 2.14 0.31 0.31	1.50 0.45 0.45 0.37 0.37 0.37 0.37 2.20 1.00 0.30 0.30	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39 2.35 2.74 0.31 0.31	10:56 - 11:56 1.75 0.55 0.55 0.91 0.45 0.45 0.45 2.65 1.17 0.37 0.37	1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 1.10 0.33 0.33	10:46 - 11:46 1.45 0.44 0.37 0.37 0.37 0.37 2.20 0.97 0.29 0.29	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35 1.03 0.31
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) Ethene (mg/m³ as CH ₄) C3 as Propane (mg/m³ as CH ₄)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35 2.10 2.87 0.28 0.28 0.23	10:56 - 11:56 3.20 0.46 0.46 0.64 0.39 0.39 2.30 2.14 0.31 0.31 0.43	1.50 0.45 0.45 0.37 0.37 0.37 0.37 2.20 1.00 0.30 0.30 0.25	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39 2.35 2.74 0.31 0.31 0.26	10:56 - 11:56 1.75 0.55 0.55 0.91 0.45 0.45 0.45 2.65 1.17 0.37 0.37 0.61	1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 2.50 1.10 0.33 0.33 0.28	10:46 - 11:46 1.45 0.44 0.37 0.37 0.37 0.37 2.20 0.97 0.29 0.29 0.24	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35 1.03 0.31 0.31 0.26
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35 2.10 2.87 0.28 0.28 0.23 0.23	10:56 - 11:56 3.20 0.46 0.46 0.39 0.39 0.39 2.30 2.14 0.31 0.31 0.43 0.26	1.50 0.45 0.45 0.37 0.37 0.37 0.37 2.20 1.00 0.30 0.30 0.25 0.25	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39 2.35 2.74 0.31 0.31 0.26 0.26	1.75 0.55 0.55 0.91 0.45 0.45 0.45 2.65 1.17 0.37 0.37 0.37	1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35 1.03 0.31 0.31 0.26 0.26	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42 0.42 0.42 2.50 1.10 0.33 0.33 0.28 0.28	10:46 - 11:46 1.45 0.44 0.37 0.37 0.37 0.37 2.20 0.97 0.29 0.29 0.24 0.24	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35 1.03 0.31 0.31 0.26 0.26
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) Ethene (mg/m³ as CH ₄) C3 as Propane (mg/m³ as CH ₄) C4 as n-Butane (mg/m³ as CH ₄) C5 as n-Pentane (mg/m³ as CH ₄)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35 2.10 2.87 0.28 0.28 0.28 0.23 0.23 0.23	10:56 - 11:56 3.20 0.46 0.46 0.64 0.39 0.39 2.30 2.14 0.31 0.31 0.43 0.26 0.26	1.50 0.45 0.45 0.37 0.37 0.37 0.37 2.20 1.00 0.30 0.30 0.25 0.25	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39 2.35 2.74 0.31 0.31 0.26 0.26 0.26	1.75 0.55 0.55 0.91 0.45 0.45 0.45 2.65 1.17 0.37 0.37 0.37 0.30 0.30	1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35 1.03 0.31 0.31 0.26 0.26	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42 0.42 2.50 1.10 0.33 0.33 0.28 0.28 0.28	10:46 - 11:46 1.45 0.44 0.37 0.37 0.37 0.37 2.20 0.97 0.29 0.29 0.24 0.24	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35 1.03 0.31 0.31 0.26 0.26 0.26
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) Ethene (mg/m³ as CH ₄) C3 as Propane (mg/m³ as CH ₄) C4 as n-Butane (mg/m³ as CH ₄) C5 as n-Pentane (mg/m³ as CH ₄) C6 as n-Hexane (mg/m³ as CH ₄)	Unit 1 Run 1 09:25 - 10:25 4.30 0.42 0.42 0.35 0.35 0.35 2.10 2.87 0.28 0.28 0.28 0.23 0.23 0.23 0.23	10:56 - 11:56 3.20 0.46 0.46 0.64 0.39 0.39 2.30 2.14 0.31 0.31 0.43 0.26 0.26 0.26	1.50 0.45 0.45 0.37 0.37 0.37 0.37 2.20 1.00 0.30 0.30 0.25 0.25 0.25	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.39 0.39 2.35 2.74 0.31 0.31 0.26 0.26 0.26 0.26	1.75 0.55 0.55 0.91 0.45 0.45 0.45 2.65 1.17 0.37 0.37 0.37 0.30 0.30	1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35 1.03 0.31 0.31 0.26 0.26 0.26	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 0.42 0.42 2.50 1.10 0.33 0.33 0.28 0.28 0.28 0.28	1.45 1.45 0.44 0.37 0.37 0.37 2.20 0.97 0.29 0.29 0.24 0.24 0.24 0.24 0.24	11:58 - 12:58 1.55 0.47 0.47 0.39 0.39 0.39 0.39 2.35 1.03 0.31 0.31 0.26 0.26 0.26 0.26

All data is corrected to standard conditions (S) of 20 °C, 101.325 kPa (dry) unless otherwise noted.

APPENDIX - E FIELD DATA SHEETS

1658 5.62

SOURCE: Up. The No. 1 Co. 2 Co	000	Inna 444	-	(i)	
STATIC PRESSURE, IN.		#Jump. #J		147	()
STATIC PRESSURE, IN. AH® Acter R Third AP		lmp. #2	0	9.6	
## STACK DIAMETER ### STACK HEIGHT ### STACK H	17.50	lmp. #3	_	0	
Action of the continue of the	0,00	lmp. #4	0	C	
Action 20 Stack TeST	30.	lmp. #5	01 000	- +	
Stack Test	3	lmp. #6	21 001	13	
15 FINAL LEAK TEST or Gas Meter R. Pitot ΔP Orifice ΔH	5015	Upstream Diameters	ameters	7	
Dry Gas Meter ft	30 c 50 "	Downstream Diameters	Diameters	1	
State of the All Nr. H ₂ O Ortice All Ortice				1	
N. H.O. DAY CASA STRUCTURE		<u>ц</u>	yrıtes		0
STREET STATES CHAINSTANDS SELECTIONS OF SELECTIONS S	obe Box Impinger Exit	er IN. Hg	CO ₂	Vol. %	3
STUDIES CHARLES CHARLE	8 05 0	r()			
TON TOTAL TO THE THE STATE OF T			90	0 %	Z
Charles and Charle	0 250 63	3			
STATION OF THE STATE OF THE STA					
The second secon	0 220 63	3			
CHARTE THE STATE OF THE STATE O)			
THE STANDARD STANDS THE STANDARD STANDS THE STANDARD STANDARD THE STANDARD THE STANDARD THE STANDARD THE STANDARD THE STANDARD THE STANDARD THE STANDARD THE STANDARD THE STANDARD STANDARD THE STANDARD THE STANDARD STANDARD THE STANDARD STANDARD THE STAND	88 B	n	85 11	2 80	R
THE THEORY STATES)		
Hac chairman of the chairman o	0 250 62	W			
THE THE SUCCESSION OF THE SUCC		,			
C Trucking the control of the contro	0 200 00	3			
Chairman of a ch)	2.0	5 3	2
		-			
	20 00%	7		+	
		,			
	200	0	an	7	171
	1	4	1	0	
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200			1	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 50	7			
5 20 20 20 20 20 20 20 20 20 20 20 20 20					
25 25 25 25 25 25 25 25 25 25 25 25 25 2	50 250 60	7	11 06	0 40	9
25 25 88 325 25 88 325 26 88 325 27 88 325 27 88 325 27 88 325					-
2.15 84 3.20	0 20 62				
The state of the s					

658

CLIENT	1700			NOZZLE &	12/5 4	DIAMETER, IN	ER, IN.	5003	IMPINGER,	INITIAL	FINAL	TOTAL GAIN
-	5			PROBE	7	පි	257	9	VOLUMES	(mL)	(mL)	(mL)
SOURCE: OA + +	F (13		HTSN3 TaOa					Imp. #1	0	1/8	178
DATE 5 1,00	104100	AMEDIAS 10		STATIC PRE	STATIC PRESSURE, IN. H20	1 20	6		Imp. #3	100	122	24
NTOR: A	1100			STACK DIAMETER	AETER	7	000		Imp. #4	90	8	Ø
CONTROL UNIT	AC AL	7 96.	20	STACK HEIGHT	SHT	17	0		lmp. #5	100	6	7
		DH@ /28	245						lmp. #6	00/	103	7
BAROMETRIC PRESSURE, IN. Hg	ssure, IN. Hg $-3n$			INITIAL LEAK TEST	K TEST	NOIBIN	200		Upstream Diameters	ameters		
ASSUMED MOISTURE, Bw	RE, Bw	2010		FINAL LEAK TEST	TEST , 00	1010	1		Downstream Diameters	Diameters		
	,	4			* ⊘				-	#		
Clock Time	Dry Gas Meter ft	Pitot AP	Orifice AH		T	Temperature °F			Pump Vac.		Fyrites	
Point 8:33	MS: 249	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Box	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	
	1082 36	153	1,08%	14	307	250	1537	89	2,2			
2 60	783.49.	591	3.25	K	307						-	
m	811	000	2,65	7	207	259	257	89	0 %	3,0	11.3	
2	からたると	168	1256	7	307	(1		L			
2	としてのかり	1001	434	12	100	7.520	252	23	20			
20	かがってい	100	アルア	70	1000	"0"	3	1	000			
40	イングルー	36	200	The	1000	000	3	7	2010			
	12.17	4	7.00	286	200	130	757	83	0.6	8		
10 50	177.60	11/2	237	75	2007					80	11.2	
M	331 38	141	7/7	3	П	250	757	29	C'£			
17 100	35.	134	1.20	がか	303							
	47.374	24	206	H	500	757	151	2	6			
2	ナルシャ	100	2,94	24	189			1	1	8,5	811	
3	249.90	o.	2067	36	J.	252	280	29	818			
200	11/12	198	12/12	4	in			- 6				
+	でなった	120	インプ		200	251	2	27	200			
30	1000 P	12.6	11/2	7/1	イカ	130	0	200	0 0			
2	Del 124	0	250	*	210		7	,			19	
ď	47.44	1.46	450	78	705	5/2	137	58	75	518	501	
05 00	29 185	3	2.33	4	509'	-						
,	1000	200	2.06	3	208	212	120	S	27.0			
10:01	14 1 0 B	45.	129	1	201				er er			
70:00	1524 1673											

TOTAL GAIN (mL) 0,1 Vol. % FINAL (mL) 3.01 o 2.0 Downstream Diameters IMPINGER, INITIAL Vol. % CO 0 (mL) Upstream Diameters 85 hesto # VOLUMES 9.0 Imp. #4 lmp. #1 lmp. #2 lmp. #5 0 07 lmp. #3 lmp. #6 IN. Hg Impinger 2 SX 28 N 222 250 250 Box DIAMETER, IN. 00/6/5 200 @ 15 C ဌ Temperature °F 1 282 Probe STATIC PRESSURE, IN. H2O 2/2 5 0 308 Stack STACK DIAMETER INITIAL LEAK TEST FINAL LEAK TEST NOZZLE STACK HEIGHT PORT LENGTH Dry Gas Outlet IN. H₂O Orifice AH 267 IN. H2O Pitot AP ØH@ Dry Gas Meter ft SOURCE: (9AA + TE | PARAMETER / RUN No DA A C 0 BAROMETRIC PRESSURE, IN. Hg ASSUMED MOISTURE, Bw JUNE Clock Time 8 7,0 30 9 9 20 CONTROL UNIT 0 2 S 90 0 OPERATOR: SOURCE: CLIENT: DATE Point

A. Lanfranco and Associates Inc.

LMU-C (2029) 0000 83 ΔP IN. H₂O Run 3 R_2 ď 꼰 <u>교</u> (교 교 (교 0,000 Run 3 Run 2 OF OF Operator Temperature (°F) Pbar Stack Down DGM Outlet 89 9122.99 81:01 73 89 2822.99/28:01 165-814266 Run 2 1000 0001 12:50/167.0636 9269.991 28:11 21.50/166,6472 DGM Volume (cu ft) / (m³) Run 1 Run 1 81.6 Time (hhmm) Leak Check Parameter Date . Stack Dia CP CP Client Ç Ç Initial Run No. Final 2 3 O_2 7 O. 98997 R3 0.0001 ΔP IN. H₂O 22 Static 조 . Д ХоГ. П _ Run 3 Run 2 Operator Pbar Down Stack Temp (°F) 26 263, 15328:11 DGM Outlet 10 32671 1315 69 10:18 671.1746 68 11:50 671. 6424 71 25 Run 2 4560 740c. 2 DGM Volume (cu ft) / (m³) Run 1 9 18 670 7182 Run 1 Time (hhmm) Leak Check Parameter Stack Dia Source Client Date CO_2 Initial Final Run No. 2 \overline{O} 3 $\overline{}$ Sile (Bellettin)

NOZIE WUNTE NOZIE NOZI	JENT MULT DURCE IN THE NRAMETER / RUN NO ATE 12 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	The Hals IN. Hg (3.7)											157	
Figure F	NUM TO SURCE (IN THE AMERICAL NUM TO SURCE (IN THE AMERICAL SURVE) SOUNDETRIC PRESSURED MOISTURE, Clock Time	7 Netads In. Hg 13.7			NOZZLE O	200	DIAMETE	R. IN. /24	500	IMPINGER.	INITIAL	FINAL	AOTAL GAIN	ころがん
Continue Divige Mean Fig. Divige Divig	NURCE (IN THE INTERPRETATION NO NOTE 12 TO NOTE IN THE INTERPRETATION OF THE INTERPRETAT	Aretads IN. Hg (3.7)		-	PROBE 🕏		රී	83	9	VOLUMES	(mL)	(ml.)	(mL)	П
Color Transport Color Tran	A Clock Time Clock Time Clock Time	Netals IN. Hg (3.)								lmp. #1	TON E	大	200	T
STANDAY STAN	ERATOR: INTROL UNITCA. ROMETRIC PRESSU SUMED MOISTURE.	IN. Hg			PORT LENG	ᆵ				- 1	00)	120 T	なおころ	\$ /
N. Hig 24.97 STACK HEIGHT Imp. 46 1.00 N. Hig 24.97 INTAL EAK TEST COL & (1.5 × 1.00 N. Hig 24.97 INTAL EAK TEST COL & (1.5 × 1.00 N. Hig 24.97 INTAL EAK TEST Imp. 46 1.00 N. Hig 24.97 INTAL EAK TEST Imp. 46 1.00 N. Hig 24.97 INTAL EAK TEST Imp. 46 1.00 N. Hig 24.97 INTAL EAK TEST Imp. 46 1.00 N. Hig 24.97 Intal EAK TEST Imp. 46 1.00 N. Hig 24.97 Imp. 47 Imp. 47 N. Hig 27 Imp.	ROMETRIC PRESSU SUMED MOISTURE,	IN. Hg			STATIC PRE	SSURE, IN. H	į	2		- 1	Q	19	100 Jah	T
N. Hig 24.97 NITIAL LEAK TEST OLD & Constraint District Cons	ROMETRIC PRESSU SUMED MOISTURE, Clock Time	IN. Hg 73.7			STACK DIAM	ETER				_	(2000)		6	
N. Hg	ROMETRIC PRESSU SUMED MOISTURE, Clock Time	IN. Hg			STACK HEIG	Ή		,			007		407	
Ni High 24.97 NIVITAL LEAK TEST Co. 1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.	SUMED MOISTURE, Clock Time	IN. Hg		7						lmp. #6	Sec.		0	
13.4. Pito AP Pito A	SUMED MOISTURE, Clock Time	Bw (3%. Dry Gas Meter ft	66			'	0	1		Upstream Di	ameters		,	
Cock Time Dry Gas Meter if Prior AP N. H.O Dry Gas Stack Probe Brox Invitigent Property		Dry Gas Meter ft			FINAL LEAK		4 1			Downstream	Diameters			
Cock Time Div Gas Meter if Pinot & Divide Alt Div		Dry Gas Meter ff								160		7		
(0.55)			Pitot AP	Orifice AH		T	emperature °F			Pump Vac.	Fyı	S		
10 (04.344 30 774 69 300 127 260 67 3.5 Mail.) 10 (04.344 31 31 314 69 3.09 126 260 68 3 20 (17.681 30 32 32 72 310 365 121 68 3 40 (20.155 59 1.20 70 30 30 126 260 04 5 40 (20.155 59 1.20 70 30 30 126 260 04 5 40 (20.155 59 1.20 70 30 30 126 260 04 5 40 (20.155 59 1.40 70 30 30 126 260 04 5 40 (20.155 59 1.40 70 30 30 126 260 60 4.5 16.80 40 (20.155 59 1.40 70 30 30 126 260 60 4.5 16.80 40 (33.100 30 49 7.20 72 312 265 260 60 4.5 16.80 40 (41.040 30 12 12 69 72 310 266 260 67 4 16.80 40 (41.040 30 17 12 12 12 12 12 12 12 12 12 12 12 12 12	-10,1	-	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Вох	Impinger	IN. Hg	CO ₂	O ₂		
10 (04.947 .31 .74 64 309 766 260 (8 3 20 (09.22) .30 .31 .31 .31 .31 .30 .31 .31 .30 .31 .31 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30		00 55%		29	67	1	267	260	27	40	10.61	000		T
20 (103 487 30 37 50 310 865 160 68 3 30 (17.621 30 30 17.0 310 865 161 68 3 40 (12.621 50 17.0 70 70 30 80 60 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60	2	1	10	24	600	T						1		Γ
20 (09.487 .26 .61 70 310 B65 161 C8 3 30 111.030 .50 1.20 70 310 B65 161 C8 3 40 (20.155 .54 1.29 70 508 265 261 C0 67 5 60 (33.100 .49 1.29 70 508 265 261 C0 45 16.84 80 (44.484 .42 1.00 72 312 265 260 C7 4 14.556 .31 25 .61 73 312 265 260 C7 4 14.556 .31 25 .61 73 312 265 260 C7 4 14.556 .31 25 .61 73 312 265 260 C7 4 14.556 .31 25 .61 73 312 265 260 C7 4 14.556 .31 25 .61 74 308 26 25 0C 7 15.803 .11 25 .61 74 308 26 25 0C 7 16.100 .10 20 .42 74 308 26 25 0C 7 16.100 .10 20 .42 74 308 26 25 0C 7 10.10 16.10			300	.72	60	T	266	260	89	B				П
30 111.681 26 .62 70 310 365 161 GB 3 40 (20.155 .54 1.29 70 508 166 260 04 S 40 (20.155 .54 1.29 70 508 165 261 60 S 60 (33.100 .49 (.20 11 19) 19 19 19 19 19 19 19 19 19 19 19 19 19		109 4AT	26	62				П						
30 117.955 128 -67 69 310 106 260 04 5 40 (25.463 .54 1.41 10 308 125 261 60 5 60 (25.463 .54 1.41 10 308 125 261 60 5 60 (33.100 .49 (.20 72 290 126 250 60 4.5 10 (38.810 .45 1.03 72 290 126 250 60 4.5 80 (47.09 .41 10 20 .42 20 .42 10 20 26 26 60 60 3.5 10 (47.09 .21 10 20 .44 10 20 .20 26 26 60 60 3.5 10 (41.09 .21 10 20 .44 10 20 .20 26 26 60 .4 2 .20 10 .20 10 .45 10 (41.09 .21 10 .22 10 .44 10 .20 .20 126 26 60 .4 2 .20 10 .20		111.68	58	62	П	Н	П	П	88	6				Ī
40 (20.155 : 54 1.29 70 70 8 20 8 70 0 0 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-	113.955	,23	67	63	300		\dashv		1				T
60 (23.463 : 54 () 10 300 () 60 () 60 () 60 () 72 290 () 261 6.0 5 4.75 60 () 60 () 72 290 () 261 6.0 5 4.75 60 () 72 290 () 261 6.0 5 4.75 60 () 72 290 () 72 290 () 72 290 () 74 290 () 74 290 () 74 290 () 75 312 6.0 50 4.5 10.84 60 () 75 312 6.0 50 60 4.5 10.84 60 () 75 312 6.0 50 60 4.5 10.84 60 () 75 312 6.0 50 60 4.5 10.84 60 () 75 312 6.0 50 60 4.5 10.84 60 () 75 312 6.0 50 60 4.5 10.84 60 () 75 312 6.0 50 60 60 60 60 60 60 60 60 60 60 60 60 60		۲,	200	02.7	100	306	200	+	9	n				T
60 126.321 60 1.46 71 300 20 150 150 150 150 150 150 150 150 150 15	1	150.155	ומ		70	200	200	200	3	V		8 </td <td></td> <td>T</td>		T
60 (33, 100 .49 (.20 72 270 161 .59 4.75 10 (33, 100 .49 (.20 72 270 161 .59 4.75 10 (35, 93, 100 .49 (.20 72 270 161 .59 4.75 10 (35, 93, 100 .49 (.20 72 270 161 .59 4.75 10 (35, 93, 100 .49 (.20 161 .49 1	1	126 22	3	01	ì	200	+	9	7	3				Γ
60 133, 100 .49 (.20 72 310 26c 2.51 CO 455 (10 135.974 .45 1.00) 72 312 26c 2.51 CO 455 (10 14.55 1.00) 73 312 26c 2.51 CO 455 (10 14.55 1.00) 73 312 26c 2.51 CO 455 (10 14.55 1.00) 73 312 26c 2.60 (6.7 4 14.55 1.00) 73 311 2.65 2.60 (6.7 4 14.55 1.00) 73 311 2.65 2.60 (6.7 4 14.55 1.00) 74 300 2.60 2.60 (6.7 4 14.55 1.00) 74 300 2.60 2.60 (6.7 4 14.55 1.00) 74 300 2.60 2.60 (6.7 4 14.55 1.00) 74 300 2.60 2.60 (6.7 4 14.55 1.00) 74 300 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 (6.7 4 14.55 1.00) 74 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60	_	0	25	, 33	72	290	~	261	65	7.7				
10 (35.974 + 43 (.03) 72 312 266 2551 CO 455 [6.84] 80 (44,484 + 42 (.08) 73 312 265 265 60 4.5 [6.84] 90 (44,585 37 37 79 73 311 265 265 62 45 [6.84] 90 (44,585 37 37 79 73 311 265 265 62 45 [6.84] 90 (53.972 32 79 73 311 265 265 63 3.5 [6.84] 150 (53.972 32 74 350 26 261 64 3.5 [6.84] 150 (6.96) 17 42 38 26 26 261 64 3.5 [6.84] 150 (6.96) 17 42 38 26 26 261 64 3.5 [6.84]			49	(.20	72	291								T
10 135.874 73 1.03 73 312 66 2551 60 45 16.84 80 194.484 41 105 73 312 265 260 60 45 16.84 80 194.484 41 105 73 312 265 260 60 45 16.84 90 194.555 33 79 73 311 265 260 62 45 16.84 100 155.803 21	L		47.		,					,				T
10 (30.8/20 45 1.05 73 312 265 260 60 4.5 (0.8) 80 (44.48.4 42 42 73 312 265 260 60 4.5 (0.8) 90 (44.48.55) 31 79 73 311 265 260 62 35 90 (44.55) 31 79 73 311 265 260 63 35 90 (51.803 .27 .25 .61 74 .205 266 261 64 .3.5 (0.0) 10 (61.900 .27 .28 .44 .300 .26 .26 64 .3.5 (0.0) 10 (61.900 .27 .29 .44 .300 .26 .26 64 .3.5 (0.0) 10 (61.900 .27 .42 .30 .20 .20 .44 .30 .20 .20 .20 .44 .30 .20 .20 .44 .30 .20 .20 .20 .44 .30 .20 .20 .20 .44 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20	,	135 924	43	(0)	12	250	166	283	d	36	1			T
80 141,484 41 105 73 312 265 60 00 45 40 141, 484 41 141 175 312 265 260 62 4 47 64 55 65 65 65 65 65 65 65 65 65 65 65 65	+	٦,	45		2	312	100	ò		10	16 8%	5.0		T
90 141.545 31 125 311 265 260 62 4 90 141.555 31 79 73 311 266 260 63 3.6 151.803 31 79 73 310 266 267 67 3.6 158.10 22 69 74 301 266 267 67 3.6 158.10 22 69 74 301 266 267 67 3.6 10.01 609 17 42 245 245 306 306 306 306 306 306 306 306 306 306	+	14: 600	41	5	100	100	000	100	2	^				T
90 144.555 .37 .79 73 .311 26 260 63 3.6 150 161.803 .27 .68 .74 .300 .26 .260 63 3.6 150 161.909 .17 .48 .74 .300 .26 .261 .48 .300 .10 .351 .201 .202 .202 .202 .201 .202 .202 .20	_	147 000	1 10	10%	13	1-	265	260	63	7				T
151 803 .17 .68 73 310 266 260 63 3.5 10 151 803 .17 .28 .68 .26 .26 .26 .27 .28 .26 .26 .26 .26 .26 .26 .26 .26 .26 .26	200	さらかか	37	7.9	73	2								
100 (53.972 25 264 74 300 100 100 100 100 100 100 100 100 100	7	(4/803	.27	\sim	73	210	266	260	63	38				
26 47 192 -97 102 42 26 77 60b 191 93.71 60b 191 93.71 65 67 67 67 69 69 191 93.71 65 67 67 69 69 69 69 69 69 69 69 69 69 69 69 69		~	25	19.	74	300								
300 20 10 202 202 20 206 191 33.01 200 191 33.01 200 191 33.01 200 200 191 33.01 200 200 200 191 33.01 200 200 200 200 200 200 200 200 200 2	Ц	156 114	24	, 8,3	46	301	266	289	5)	3				T
35.01 C 4.0 10.00 20 44 14 200 20 10.00 10	Ц	158.16	22.	78	74	300								T
St. 27 27 20 20 20 20 20 20 20 20 20 20 20 20 20	+	(60/10	07	40	77	208	760	7,6	49	0	10	-		T
		306	,	45	+	235					7	+		T
	_													
														1

CLIENT: Ven in	- MV WTF			NOZZLE 6	6 3083	DIAMETER, IN.	ER IN 0	2063	IMPINGER, VOLUMES	INITIAL (mL)	FINAL (mr)	TOTAL GAIN (mL)
SOURCE: Uni	9						1	2	lmp. #1	0	173.	
METER / R	No Metals/Martic	ic Runz		PORT LENGTH	H.				lmp. #2	901	461	
DATE 13	0			STATIC PRE	STATIC PRESSURE, IN. H2O	H2O - 14	100		lmp. #3	001	113	
OPERATOR:	A			STACK DIAMETER	1ETER	7091			lmp. #4	G	2	
CONTROL UNIT 35	roke 1	Y 0.951	15	STACK HEIGHT	H.	30			lmp. #5	004	194	
		2H@ 1.67	7			NO 1			lmp.#6	100	101	
BAROMETRIC PRESSURE, IN. Hg	IN. Hg	29.98	,	INITIAL LEAK TEST	< TEST	0 00 1011	7216		Upstream Diameters	ameters	3	
ASSUMED MOISTURE, BW	₹E, Bw	3		FINAL LEAK TEST	TEST	0.0010	1810		Downstream Diameters	Diameters		
										0	ento 2	
Clock Time	Dry Gas Meter ft	Pitot AP	Orifice AH		. 1	Temperature °F			Pump Vac.	Fyr	Fyrites	
Point 0906	168.835	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	N. Hg	CO ₂ Vol. %	O ₂ Vol. %	
	172,73		000	67	313	2.55	480	63	2			
0	116.27	0.08	2.16	67	212					0.01	9.5	
·6	180,83		222	68	353	235	253	7	60			
B	184.94	0. 00	2 23	28	313)	,				
15	00 631	0 39	2118	69	518	78x	クンサ	09	h			
9	198.86	0.35	1,95	20	313))	10.0	9.0	
7	188,25	0.37	151	27	313	288	235	09	r		9	
85	287, 52	0 25	047	7.1	312)			
8	05.	40,0	1.34	73	317	786	926	No.	3			
Q	208 80	0,93	1.23	72	51.9					10.0	6.0	
		08.0	6	73	202	755	255	20	3			
2	214 50	6/0	1007	73	30)		,			
	4 .0	0		3	9		0	Date of				
	1	7.00	1.47	12	25.6	127	423	36	3	- 10		
ζ,	220, 9	500	1.06	0	5000		0	1		25	0,0	
63	19.4.69	200	30	22	202	722	707	2 /	0			
\s	230.27	200	200	76	207	Suct	251	FR	or			
20	239.48	6.23	6	76	30%				>	10.1	9.7	
-	237.26	0.22	1.88	76	308	252	020	58	re			
8		0,4,0	237	11	305							
0	248 66	0.39	223	78	202	284	ンカル	58	r			
01	24g. 71	1001	2.13	78	305					95	6.0	
.=	253 6r	0 35	2 00	28	306	くらい	282	20	r)		
12 1108	257.46	0.33	1 88	78	306			- ·				

	₹	scociates Inc.							-	MITIAL	FINAL	TOTAL GAIN
Colin	A. Lantranco and A.			K	5	JIAMETER, IN	1	IME	_1_	- -	(HE)	(mL)
				5	D	පි	1	VOL.	_ _		919	
COLID MIN MI				1				<u>E</u>	+	1	127	
		(트	1	00	100	
15 Aug	POLIBCE.	きたる	E	PORT LENGTH		17/1		ml lm	np. #3	00	9	
Cold Matter Mat	DADAMETER / RUN	Portio/M		STATIC PRESSU		- 1		III	1p. #4	0	+	
1 2 2 2 2 2 2 2 2 2	Ī	2025		STACK DIAMETE		- 4		ul lu	np. #5	00	1	
NIT \$\frac{5}{1} \int \text{CAE} \tag{0.000} \text{ with \$\text{MITAUL LEAK TEST } \text{QOLIDE (\$\text{in} \text{MITAUL LEAK TEST } \text{QOLIDE (\$\text{MITAUL LEAK TEST } \te	ATOR:	TG 5V	V	STACK HEIGHT				드	np. #6	00	- I	
RESSURE. IN 19 Wild and Will and Will are Wil	E	CAEZ	1877	1	1	3		SdO	stream Dian	neters iameters		
Final Leak Est Final Co. Fin		000		INITIAL LEAK IE	*	121		Dov	Mustream	S C S C S C S C S C S C S C S C S C S C	000	
Note of the Ali	BAROMETRIC PRE	TIME		FINAL LEAK 1E	3	7				Fvri	200	
75. Correct II Pring AP Orifice All Dry Class Stack Protein Blook Impringer N. High N. High Orifice All Stack Protein Estimate N. High Orifice All Stack Protein Estimate N. High Stack Stac	ASSUMED MOISTU	JRE, BW			H	Po Stute		P.	ımp Vac.			_
1.13 A58.083 N. H.O N. H.O Only one of the continue of		ry Gas Meter ft	F	6	1	Probe		-	N. Hg	Vol. %	Vol. %	
		200	-	Dry Gas Outlet		\dashv	+	Exit	£			
261.27		1358,082 1	+	t	6x	+	+	27		10 13	80	
254.55 214.05 214.05 214.05 225.05 226.05 227.05		261,28	-		9	6	6	20	7			
267 75 0083 134 80 305 253 252 55 5 10.5 8.8 274.05 000 135 80 305 253 252 55 6 10.0 9.5 281.05 000 145 8.15 80 305 254 251 57 6 10.0 9.5 281.05 000 145 8.15 81 305 855 250 57 7 10.0 9.5 290.00 000 000 8.15 80 306 855 850 56 7 10.0 9.5 290.00 000 000 000 000 000 000 000 000 00		,55	+	79	-	200	1	-	-			
274.08 0.24 28 20 203 25 25 25 6 0.0 9.5 23 25 25 25 25 25 25 25 25 25 25 25 25 25	1	75	411	80	305	-	000	8 17	ķ		0	
274.0\$ 0.24	0	0.88	1	0.8	308	253	424	300		10.5	20	
256, 355 0.25 3.4.7 21 3.05 3.5.4 2.5.1 5.7 6 10.0 9.3 256, 345 0.4.2 3.4.7 21 3.05 3.5.5 3.5.0 5.7 7 256, 35 0.25 3.4.0 2.1 3.05 3.5.5 3.5.0 5.7 7 256, 35 0.25 3.4.0 2.1 3.05 3.05 3.5.5 3.5.0 5.7 7 256, 35 0.25 3.4.0 2.1 3.05 3.05 3.5.5 3.5.0 5.5 7 256, 35 0.25 3.4.0 2.1 3.05 3.05 3.5.5 3.5.0 5.5 7 256, 35 0.25 3.4.0 2.1 3.25 2.5.5 3.5.0 5.5 7 256, 35 0.25 3.4.0 2.5 2.1 2.5.5 2.5 1.0.0 4.4 256, 35 0.25 3.4.0 2.5 2.1 2.5 2.5 1.0.0 4.4 256, 35 0.25 3.4.0 2.5 2.1 2.5 2.5 1.0.0 4.4 256, 54 0.27 3.1 2.2 2.1 2.5 2.5 1.0 2.5 2.5 1.0 257, 54 0.27 3.1 2.2 2.1 2.5 2.5 1.0 257, 54 0.27 3.1 2.2 2.5 2.5 1.0 257, 54 0.27 3.1 2.5 2.5 1.0 257, 54 0.27 3.1 2.5 2.5 1.0 257, 54 0.27 3.1 2.5 2.5 1.0 257, 54 0.27 3.1 2.5 2.5 1.0 257, 54 0.27 3.1 2.5 2.5 1.0 257, 54 0.27 3.1 2.5 2.5 1.0 257, 54 0.27 3.1 2.5 2.5 1.0 257, 54 0.27 3.1 2.5 2.5 1.0 257, 54 0.27 3.1 2.5 2.5 1.0 257, 55 0.27 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.5 2.5 1.0 257, 57 0.20 3.1 2.0 257, 57 0.20 3.1 2.0 257, 57 0.20 3.1 2.0 257, 57 0.20 3.1 2.0 257, 57 0.20 3.1 2.0 257, 57 0.20 3.1 2.0 257, 57 0.20 3.1 2.0 257, 57 0.20 3.1 2.0 257, 57 0.20 3.1 2.0 257, 57 0.20 3.1 2.0 258, 57 0.20 3.1 2.0 259, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20 3.1 2.0 250, 57 0.20	3	0	†	80	202	+	1	13	Y			
268 347 647 81 308 355 250 57 6 10.0 9.5 298 51 34	n	77:35	1	08	308	+	127	1				
245.67 042 241 71 205 400 60 000 400 000 400 000 400 000 000	q	81.94	*	18	2000	1	000	27	4			
298, 96 046 3:30 81 305 250 57 7 298, 36 046 3:30 81 305 25 250 57 7 298, 36 025 3:02 81 305 25 250 57 7 306, 42 037 3:35 82 306 356 350 55 7 218, 76 0.27 3:35 82 306 355 55 7 218, 76 0.27 3:35 82 310 255 25 5 7 230, 42 0.27 3:35 82 310 255 25 5 7 230, 42 0.27 3:35 82 310 255 55 6 9.5 10.0 9.2 230, 56 0.27 3:23 82 31 255 250 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 31 255 250 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 31 255 250 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 31 255 250 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 5 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 5 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 5 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 32 350 55 5 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 350 55 5 7 230, 56 0.27 3:35 82 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 350 55 6 9.5 10.0 9.2 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 350 55 7 230, 56 0.27 3:35 82 55 7 230, 56 0.27 3:35 82 55 7 230, 56 0.27 3:35 82 55 7 230, 56 0.27 3:35 82 55 7 230, 56 0.27 3:35 82 55 7 230, 56 0.27 3:35 82 55 7 230, 56 0.27 3:35 82 55 7 230, 56 0.27 3:35 82 7	R	85.63	40	- Se	306	7	424			00	4	-
248:31 9:36 2:18 81 5:05 85 7 10:0 4.4 205.35 0:35 7:02 83 3:06 856 850 86 7 10:0 4.4 306.35 0:35 7:35 83 3:06 856 850 85 7 10:0 4.4 314.76 0:37 7:33 83 3:10 855 85 7 10:0 4.4 323:06 6 6 6 7:3 8:4 3:1 255 850 85 6 6 8:5 10. 323:0.6 6 6 7:3 8:4 3:1 255 850 85 6 8:5 10. 323:0.6 6 6 7:3 8:4 3:1 255 850 85 6 8:5 10. 323:0.6 6 6 7:3 8:4 3:1 255 850 85 6 8:5 10. 323:0.6 6 6 7:3 8:4 3:1 255 850 85 6 8:5 10.	9	4.90	76.6	8	363		000	57	1		1	
305.38	04	0 1000	7 7	+	2000			,				
306.35 0.35 4.03 83 306 456 55 7 10.0 4.4 310.42 0.31 3.35 82 306 456 55 7 10.0 4.4 314.76 0.31 3.35 82 319 255 251 54 7 10.0 9.4 323.66 0.31 3.23 82 319 255 251 54 7 10.0 9.4 323.66 0.31 5.5 84 31 256 250 55 6 6 6.5 10. 323.66 0.31 5.5 84 31 256 250 55 6 6.5 10. 323.5 20 50 50 50 50 50 50 50 50 50 50 50 50 50		0 200	7 3.1		200			1	1			
306.35 0.35 3.03 82 306 350 55 7 300 300 42 0.37 3.35 87 3.06 350 55 7 300 9.37 3.35 87 3.06 350 55 7 300 9.37 3.35 87 3.00 350 350 55 6 9.3 314 2.3 82 350 350 55 6 9.5 10.00 9.2 321, 28 924 21 225 350 55 6 9.5 10.00 9.2 321, 28 924 21 225 350 55 6 9.5 10.00 9.2 321, 28 924 21 225 350 55 6 9.5 10.00 9.2 321, 28 924 21 2.5 320 55 6 9.5 10.00 9.2 321, 28 924 21 225 250 55 6 9.5 10.00 9.2 321, 28 924 21 225 250 55 6 9.5 10.00 9.2 321 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 5 924 21 2.5 320 57 57 57 57 57 57 57 57 57 57 57 57 57	7	07:		000	さつら	250	A50	26	1	0.0		
319, 42 0.37 3.35 82 3.05 3.50 3.50 3.50 3.50 3.50 3.50 3.50		A 35 6	50.60	+	200			2	1	2		
34, 76 0.46 3.25 321 24 7 10.0 9.0 321.48 0.31 4.35 8.3 310 255 251 54 7 10.0 9.0 321.48 0.31 4.35 8.4 21 2.55 5.5 6 321.48 0.31 4.35 8.4 21 2.55 5.5 6 6 8.5 10.0 321.48 50 0.31 4.35 8.4 21 2.55 2.50 57 5 10.0) なれ、ひ	1 8.1	1	308		250	2				+
318, 76 0:37 323 321 255 221 5.00 4.7. 323-325 321 325 320 55 6 9.5 10.00 4.7. 324 324 321 325 320 55 6 9.5 10.00 4.7. 325 324 321 325 325 325 52 10.00 4.5 324 325 325 325 325 52 10.00 4.5 324 325 325 325 325 325 52 10.00 4.5 324 325 325 325 325 325 52 10.00 4.5 324 325 325 325 325 325 52 10.00 4.5 325 325 325 325 52 10.00 4.5 325 325 325 325 325 325 325 325 325 32	Q	4 70	18	+	210			44	1			
232,029 0.46 3.23 83 31 255 55 6 232,66 0.21 55 84 31 255 350 56 6 9.5 10 234,0 0 0 27 1.35 84 31 256 250 57 5 349,57 0.30 1.32 84 30 256 250 57 5 12 1320 346,57 0.30 1.15 84 30 256 250 57 5	5	97,76	7	+	10		143	1		10.0	7.6	
237, 48 627 6.55 43 340 250 56 6 95 10. 2336, 56 6 45 132 84 34 356 350 57 5 10. 2340, 50 6.33 1.32 84 34 356 350 57 5 10. 245, 57 6.30 1.32 84 34 356 350 57 5 10. 245, 57 6.30 1.32 84 34 356 350 57 5	5 (23.0	50	-	31	1	0.00		4			1
330, 66 0.45 1.43 64 21 255 250 56 6 95 10. 334, 24 0.45 64 21 25 85 25 10. 334, 24 0.45 1.32 83 34 25 25 5 10. 346, 57 0.30 1.15 84 34 36 250 57 5	n	11/1	6		210	823	1436				1	
237.29 84 1.38 84 26 250 57 5 45 45 36 330 346 57 630 346 346 346 346 346 346 346 346 346 346	10	330.66 0	// -		20	9	020		9		0	
237.29 67 132 83 31 256 250 57 346.57 830 15 84 34 35 346.57	3		+	-	30	200	800			5	0.0	
2 1320 346 57 0.20 1.30 84 20 0.00 2.15 84 20	00	5	-	C	200	1	のなっ	12	4	-	+	
346.57 6.30 1.15 84	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5	200	0	35	5	200			1	+	1
	2	d	2	100	36						+	
	15.132	0	200							+	+	
						-				+	+	
					1				-	-	1	
					1							

CMU-C 1.0239 R3 ΔP IN. H₂O Run 3 0001 1000 R2 29.98 Static g 쮼 Run 3 Run 2 000 10001 Operator Temperature (°F) Stack Pbar Down 2 DGM Outlet 10:45/67,44778 69 2 9:36 167.06.78 162 00 7:55 18 1722 F 11.35+167.8180 69 10:36 169,4446 70 Run 2 10 DGM Volume (cu ft) / (m³) Run 1 1000 10001 Run 1 Time (hhmm) Leak Check Parameter Stack Dia Source Client Date Initial $\frac{7}{2}$ Final Run No. 2 \tilde{O} 3 $\overline{}$ V (MU-4,980) 83 ΔP IN. H₂O Run 3 10001 10000 \mathbb{Z} Static ф 꼰 Pbar 29.98 MP. (mE) Run 3 Run 2 ,000 0001 Operator Stack Down Temp (°F) DGM Outlet 000 20 1.45 673 2668 67 1135673,2706 65 1036 1721,726 66 1045 672,676264 099260 49645EA Run 2 e DGM Volume (cu ft) / (m³) Run 1 10001 10001 672 Run 1 36 Time (hhmm) Leak Check Parameter Stack Dia Source Client Date Initial CO_2 Final Run No. 2 Õ 3 $\overline{}$

Canister	samp	ling	sheet
----------	------	------	-------

Client File No.	MU WIE		Date overy Date	13 Jc	ne 2	5	
Source: (ルナ#2	21	152	123			
Pbar in hg	5	79,98	29.98	29,98 901765 0401284			
Canister n		SCOZZYO	SC00 271	901765			
Controlle		0401284	OA-01289	0401284			
Initial:	Start time	9:20	10:48	//.55			
	Flask Vac. (in Hg)	-29	- 29	-29			
Final:	Finish time	10:20	11:45	(65)			
	Flask Vac. (in Hg)	-10	1-9	-0			
Source:							
Pbar in h	g						
Canister	number						
Controlle	er number						
Initial:	Start time						
	Flask Vac. (in Hg)						
Final:	End time						
L	Flask Vac. (in Hg)						
Source:							
Pbar in hg	3						
Canister r	number						
Controlle							
Initial:	Start time						
	Flask Vac. (in Hg)						
Final:	End time						
	Flask Vac. (in Hg)						
Source:							
Pbar in h							
Canister 1							
Controlle			- ''				
Initial:	Start time						
Einel.	Flask Vac. (in Hg) End time						
Final:	End time Flask Vac. (in Hg)						
	riask vac. (III rig)		1	1			

A. Lanfranc	o and As	A. Lanfranco and Associates Inc.			6	12/2/2/		2	3063				*
CLIENT: 1/4	100 (NOZZLE	2	DIAMETER, IN	14		IMPINGER	INITIAL	FINAL	TOTAL GAIN
	7	* * * * * * * * * * * * * * * * * * *			PROBE 7	S	පි	25%	202	VOLUMES	(mL)	(mL)	(mL)
PARAMETER	R/RUN No	MOTALS/6	MAKE P		PORT LENGTH	王				lmp. #2	001	203	
DATE 3	Jume	27			STATIC PRE	STATIC PRESSURE, IN. H2O	120	101		lmp. #3	007	130	
OPERATOR:	100	07		- 1	STACK DIAMETER	1ETER	1	20		Imp. #4	0	9	
CONTROL UNIT		7 3	/00·/ ×	اك	STACK HEIGHT	노 	u.	30		lmp. #5	007	90)	
GTUNCO	20000		7, @HV	07	INITIALITA			200		lmp. #6	00)	105	
KOME IK	C PRES	BAROME I RIC PRESSURE, IN. Hg	20.00		INITIAL LEAK TEST	1	510100	0		Upstream Diameters	ameters		
ASSUMED MOISTURE, BW	AOISION A	E, BW	12/2/0		FINAL LEAK 1ES1	IESI	001615			Downstream Diameters	Diameters		
Clox	Clock Time	Dry Gas Meter ft	Pitot AP	Orifice AH		T	Temperature °F			Pump Vac.	Fyr	Fyrites	
Point	11,40	164,100	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	
	,	10/2-10	67	1.76	37	307.	750	7%7	38	0%			
7 7	01	670,75	250	1.68	F	377	i	136	001	1	28%	03.07	
	00	12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	124	190	A A	7	2	200	7	77			
	0	450,02	26	1,82	24	2/2	28	253	8	O'M			
	30	683,54	125	1,50	35	365				,			
147	-	487 53	1/5/	2 26	77	770	3	252	25	200			
	012	696.23	176	1 to	14	2/2	35%	756	25	6			
0	0.5	1	12.5	3.16	8t.	309					9,60	10,605	
- c	0.0	200	100	2 73	200	7000	257	282	28	0.0			
_	9	00 1-04	7	70.7	10	200		,					
	C	123	2/2'	2,5	000	2/5	252	7.87	288	09	018	K &	
36		- Tr. VI	777	2000	200	360	200	2,7	85	6-0	2.00	0/10/	
	02	35. 52E	143	2,60	28	3/7	Š	(
7.00	GAL.	12.30	12/4/	220	200	7	0 0	22	20	0,0			
7		117.89	135	2,17	28	784	257	249	28	6.0			
9	Oh	26036	:27	1.60	200	4150		-)	1		<u> </u>		
5.4		にあった。	124	1,76	200	3/6	573	7.52	38	5.15	25.75	(0,100	
		17.87	3	43	83	25	727	247	28	71/2			
2	2/13	CNN tox	700	1	50	25/2							
-													

AA . HADI Y				NOZZLE	-3/2/	DIAMETER, IN.	3	690	IMPINGER!	INITIAL	FINAL	TOTAL GAIN
CELINI:				PROBE 7		С	.83.	20	VOLUMES	(mL)	(mL)	(mL)
SOURCE: UA?	+#3			+					Imp. #1	0	011	10
PARAMETER / RUN No MR	N NO METAC/	Athe Rz		PORT LENG	E				lmp. #2	100	91°C	116
DATE 1/5UM	1625			STATIC PRE	STATIC PRESSURE, IN. H2O	120	19		Imp. #3	100	041	OҺ
OPERATOR:	16 FCD			STACK DIAMETER	IETER	1	06.00		Imp. #4	0		
CONTROL UNIT	Su14	V 1.00/0		STACK HEIGHT	Ĥ	1.1	30		lmp. #5	007	110	01
		0H@	_						lmp. #6	₹	108	B
BAROMETRIC PRESSURE, IN. Hg	2	20 mg	18	INITIAL LEAK TEST	(TEST	10016	11/211		Upstream Diameters	ameters		
ASSUMED MOISTURE, BW	140			FINAL LEAK TEST	TEST	100/0	1121		Downstream Diameters	Diameters		
									ちなけず	から		
Clock Time	le Dry Gas Meter ft		Orifice AH		L	Temperature °F			Pump Vac.		Fyrites	
Point GUS	NB3/25-	IN. H ₂ O	IN. H ₂ 0	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	
	786,02	3/5'	6007	7	513	250	282	24	3,0		,	
2 10	14001	, 50	2.99	25	413					1056	216	
7	100 50 KM	22	0.0	7	210	250	57	>	8,0			
2	4077	122	2.0	111	2007	1	1		- 1.			
2	変を光	1,5,3	2.16	Fi	25.7	157	777	25	2,0			
20	1000	200	100	277	1	1	7	0	4			
4	1222	1,24	2	26	200	0	12	1	0			
a	70 486	111	2 h	200	200	200	222	28	4.5			
05 07	750,56	121	12,	ti	213							
17	797.97	18	190	4	518	257	151	85	01/2	07'0	1,15	
12 60	775,00	112	33	25	373							
	248.48	12	1780	H	218	2000	27.0	35	0			
2 10	802, 67	.30	181	15	28				-	,	(
ay	865,61	.33	1,99	Z	35	02	252	25	40	10.54	0216	
8	1000 P	132,	16,	9	77.7		,	0	0.77			
~	7:	120	300	O P	200	200	7	27	010			
ar a	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4,10	×	212	000	200	84	M. C.			
047 8	- V	1,50	3,03	Ċ,	214					25.0	0,20	
	829,91	125	2.16	જ	イント	080	72	S.F.	(4,0)			
08 00	937,179	~	3.27	83	315	,	,		, ,			
7	4.35.8	200	2,00	200	214	127	28	\ \ \	000			
(2	822,82	77	442	22	7/2		li li	•				
77.0	54111465 F											
								3				

TIENT	-			NOZZLE 6	13121	DIAMETER, IN	R, IN. , 3	590	IMPINGER,	INITIAL	FINAL	TOTAL GAIN
				PROBE	y	පි	833	200	VOLUMES	(mL)	(JE)	(mL)
SOURCE: DA	147	Ct	1	Taga					Imp. #1		250	150
DATE WITH THE	10 10 10 1 10 1 10 10 10 10 10 10 10 10	448 10		STATIC PRE	STATIC PRESSURE, IN. H20	20	6		Imp. #3	las	170	10
OPERATOR:	CHE			STACK DIAMETER	ETER	4	000		Imp. #4	Ð	16	19
CONTROL UNIT	rata	Y 1,001	0	STACK HEIGHT	HT	7	2		lmp. #5	100	(04	0
R	,	1,2 @H∆	20	-		1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		lmp. #6	00)	105	5
BAROMETRIC PRE	BAROMETRIC PRESSURE, IN. Hg 30, CS			INITIAL LEAK TEST	3	30 (A 1 S	4		Upstream Diameters	ameters		
ASSUMED MOISTURE, Bw	RE, Bw /1/9/2			FINAL LEAK TEST		000 00 CV	ĵ		Downstream Diameters	Diameters		
						4			163 to	42		_
	Dry Gas Meter ft	Pitot AP	Orifice AH		£	Temperature °F			Pump Vac.	Fyr	Fyrites	
Point 1(-35	950.018	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	
,	9t 6h8	135	2,11	40	3110	252	751	28	5,8			
2 (0	143	35	2.11	08	42			,		-		
2	887.12	134	2,05	80	316	22	222	20	0.0	010	10,40	_
20	800,37	,34	2,05	80	424	21						
\ \?\	+	-22	1:47	80	310	787	253	20	0			
20	X100 00	1.34	407	700	200	. (,		4			
+	25 25 8	Į.	3,33	20	30%	250	18	N.	Dee			
R	1	*	4/5	100	2000	153	123	8	6			
200	AAC 200	مرک	1:50	200	190	000		X	3	28.0	9.80	
	0	17(6	2.86	78	667	200	121	25	2,2	à		
12 60	u	\triangle	266	83	366				}			
	5	30	116	BO	7007	130	0	200	200			
0	987.82	02,	クで、オー	25	20%		1	3		a. Fr	9/2	
S	000 Se	ב	1.53	178	305	152	249	88	6,5			
200		200	250	22	308	6		1000				
2	20.00	227	y X	\$20	20%	330		28	20			
2 He	37,720	40.	11/2/2	200	2/2	17.4	286	7	210			
25	20,0	m'	1,78	86	7		3		-	6.32	9.95	
6	978,999	,25	1,54	A. A.	311	256	125	25	10.5	_		
05 07	972,05	23	1,47	15	200			•				
17	9.74.83	6)	41.	8+	310	252	W.	8	0.7			
2	937 YL	1	1:05	25	200							
13:MD	FAUD HOSA											

LMU-C 1.0229 23 ΔP IN. H₂O 408 Run 3 72 7.18 Static 9 꼾 <u>тр</u> М. УоГ. J. Caro, Run 3 Run 2 Operator Temperature (°F) Pbar Stack Down DGM Outlet 10.25/BH ,8915 78 1145 145, 3438 76 00 13:02 165. 8045 8 Run 2 13800 12.02/65.3480 1045/64.8969 DGM Volume (cu ft) / (m³) Run 1 164.4170 Run 1 Time (hhmm) 975 Leak Check Parameter Stack Dia Client CO_2 Date Initial Run So. 2 Final 3 o CMC - A . 4860 83 ΔP IN. H₂O Pbar 20.18 Static Run 3 R_2 g $\overline{\epsilon}$ m Vol. Run 3 Run 2 Operator Down Stack Temp (°F) DGM Outlet 145 670.2032 76 10.25 849, 7232 79 13:02 /70 JOBO BO 51 0122.01920:21 Run 2 1847 1848 0.0001 Run 1 DGM Volume (cu ft) / (m³) Run 1 9.18 Time (hhmm) Leak Check Parameter Stack Dia Source Client Date CO_2 Initial Final 2 Run No. 3 ${\stackrel{7}{\circ}}$ 7

Plant <u>Veolia (MVWTE)</u> File No.	Reco	Date overy Date	04 Jur			
Source: Unit #3	R-1	2-2	R-3			
bar in hg	30.18	30 18	30.18			
anister number	Sc01591	5002314	SCOLDYB			
ontroller number		DA DIRIS	OA 1313			
nitial: Start time	0015	1045	1202			32
Flask Vac. (in Hg)	200	-29.5	24			100
	1025	1145	1302		1	
inal: Finish time Flask Vac. (in Hg)	-6	-12	-12			
Source:						>
Phar in hg						
Canister number	502314				+	+
Controller number	0,401313	-		_	_	-
Initial: Start time	1045					$\overline{}$
Flask Vac. (in Hg)	29.5					
	1145	-				
Flask Vac. (in Hg)	1145					
Flask Vac. (in Hg) Source: Un + #1	R-1	2-2	ρ-3 29.94			
Flask Vac. (in Hg) Source: Un + # 1 Phar in hg	29.94 SCO 2063	29.94	29.94 5001063		4 %	
Flask Vac. (in Hg) Source: Un + 1 Phar in hg Canister number	29.94 SCO 2063	29.94	29.94 5001063			
Flask Vac. (in Hg) Source: Un + 1 Phar in hg Canister number Controller number	29.94 SCO 2063	29.94 38C02317 040/3/3	29.94 5001063			
Flask Vac. (in Hg) Source: Un + # 1 Phar in hg Canister number Controller number Initial: Start time	29.94 SCO 2063 OA 8 U313 O9 (8)	29.94	29.94 500.063 09.01313			
Flask Vac. (in Hg) Source: Un + 1 Pbar in hg Canister number Controller number Initial: Start time Flask Vac. (in Hg)	29.94 SCO 2063 DA 0 1313 D9 18 -18	29.94 38023 7 040/3/3 1032	29.94 500.043 04.01313 11.50		7 N	
Flask Vac. (in Hg) Source: Un + 1 Pbar in hg Canister number Controller number Initial: Start time Flask Vac. (in Hg)	29.94 SCO 2063 OA 8 U313 O9 (8)	29.94 3802317 040/3/3 1032 -29	29.94 50.1063 09.01313 1150 -30			
Flask Vac. (in Hg) Source: Un + 1 Pbar in hg Canister number Controller number Initial: Start time Flask Vac. (in Hg) Final: End time	29.94 SCO 2063 OA 8 US13 OT 18 -18	29.94 3602317 040/343 1032 -29	29.94 50.063 09.033 1150 -30 1250			
Flask Vac. (in Hg) Source: Un + 1 Pbar in hg Canister number Controller number Initial: Start time Flask Vac. (in Hg) Final: End time Flask Vac. (in Hg) Source:	29.94 SCO 2063 OA 8 US13 OT 18 -18	29.94 3602317 040/343 1032 -29	29.94 50.063 09.033 1150 -30 1250			
Flask Vac. (in Hg) Source: Un + 1 Pbar in hg Canister number Controller number Initial: Start time Flask Vac. (in Hg) Final: End time Flask Vac. (in Hg) Source: Pbar in hg	29.94 SCO 2063 OA 8 US13 OT 18 -18	29.94 3602317 040/343 1032 -29	29.94 50.063 09.033 1150 -30 1250			11/2
Flask Vac. (in Hg) Source: Un + 1 Phar in hg Canister number Controller number Initial: Start time Flask Vac. (in Hg) Final: End time Flask Vac. (in Hg) Source: Phar in hg Canister number	29.94 SCO 2063 OA 8 US13 OT 18 -18	29.94 3602317 040/343 1032 -29	29.94 50.063 09.033 1150 -30 1250			
Flask Vac. (in Hg) Source: Un + 1 Pbar in hg Canister number Controller number Initial: Start time Flask Vac. (in Hg) Final: End time Flask Vac. (in Hg) Source: Pbar in hg Canister number Controller number	29.94 SCO 2063 OA 8 US13 OT 18 -18	29.94 3602317 040/343 1032 -29	29.94 50.063 09.033 1150 -30 1250			
Flask Vac. (in Hg) Source: Un + 1 Pbar in hg Canister number Controller number Initial: Start time Flask Vac. (in Hg) Final: End time Flask Vac. (in Hg) Source: Pbar in hg Canister number Controller number Initial: Start time	29.94 SCO 2063 OA 8 US13 OT 18 -18	29.94 3602317 040/343 1032 -29	29.94 50.063 09.033 1150 -30 1250			
Flask Vac. (in Hg) Source: Un + 1 Pbar in hg Canister number Controller number Initial: Start time Flask Vac. (in Hg) Final: End time Flask Vac. (in Hg) Source: Pbar in hg Canister number Controller number	29.94 SCO 2063 OA 8 US13 OT 18 -18	29.94 3602317 040/343 1032 -29	29.94 50.063 09.033 1150 -30 1250			

APPENDIX – F CALIBRATION SHEETS and TECHNICIAN CERTIFICATES

A.Lanfranco & Associates inc.

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: CAE AL1 Serial #: 0028-070611-1 7-Jan-25

Barometric Pressure: 30.41 (in. Hg) Theoretical Critical Vacuum: 14.34 (in. Hg)

!!!!!!!!!!

IMPORTANT

4.906

138.9

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)/3*(deg R)/0.5/((in.Hg)*(min)).

			DRY GA	S METER READII	NGS	-				-CF	RITICAL ORIF	ICE READING	SS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial T Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Tempera Final (deg F)	iture Averag (deg F
3.85	15.00	272.003	288.409	16.406	58.0	58.0	61.0	61.0	73	0.8185	18.0	62.0	68.0	65.0
1.95	15.00	288.409	300.290	11.881	61.0	61.0	70.0	63.0	63	0.5956	20.5	70.0	75.0	72.5
1.20	15.00	300.290	309.535	9.245	64.0	64.0	66.0	66.0	55	0.4606	22.0	74.0	78.0	76.0
0.67	15.00	309.535	316.560	7.025	67.0	67.0	69.0	69.0	48	0.3560	23.5	78.0	80.0	79.0
0.32	15.00	316,560	321,403	4.843	69.0	69.0	71.0	71.0	40	0.2408	25.0	79.0	83.0	81.0
						00.0		7 1.0				70.0		01.0
DRY GA	S METER		******	**************************************	*******		-	*********				ORIFICE		
VOLUME	S METER VOLUME CORRECTED		******	******	VOLUME NOMINAL		ULTS ******* DRY GAS CALIBRATIO	S METER ON FACTOR		**************************************	 IBRATION FA dH@	ORIFICE		
VOLUME	VOLUME		***********	**************************************	**************************************		ULTS ******* DRY GAS	**************************************		*****	IBRATION FA	ORIFICE		Ko (value
VOLUME DRRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vor(std)	VOLUME NOMINAL Vcr		ULTS ******* DRY GAS CALIBRATIO Value	S METER ON FACTOR Y Variation		CAL	 IBRATION FA dH@ Value	ORIFICE CTOR Variation		Ko
VOLUME DRRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vc(std) (liters)	VOLUME NOMINAL Vcr (cu ft)		ULTS ******* DRY GAS CALIBRATIO Value (number)	S METER DN FACTOR Y Variation (number)		CAL Value (in H2O)	 IBRATION FA dH@ Value (mm H2O)	CTOR Variation (in H2O)		Ko (valu
VOLUME CORRECTED Vm(std) (cu ft) 17.098	VOLUME CORRECTED Vm(std) (liters) 484.2		VOLUME CORRECTED Vor(std) (cu ft) 16.295	VOLUME CORRECTED Vcr(std) (liters) 461.5	VOLUME NOMINAL Vor (cu ft) 15.947		DRY GAS CALIBRATIC Value (number) 0.953	S METER ON FACTOR Y Variation (number) -0.010		CAL Value (in H2O) 1.896	IBRATION FA dH@ Value (mm H2O) 48.15	ORIFICE CTOR Variation (in H2O) 0.053		Ko (valu 0.70

0.963

Average Y-----> 0.9630

0.000

Average dH@---->

				TEMPERATU	RE CALIBRA	TION				
Calibration Stand	lard>	Omega Model	CL23A S/N:T-21	18768						
Reference				Ten	nperature Devic	e Reading				
Set-Point	Sta	ack	Hot	Box	Pro	be	Imp	Out	A	ux
(deg F)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)
32	32	0.00%	32	0.00%	33	0.20%	32	0.00%	32	0.00%
100	100	0.00%	100	0.00%	101	0.18%	100	0.00%	101	0.18%
300	300	0.00%	300	0.00%	301	0.13%	300	0.00%	300	0.00%
500	499	-0.10%	499	-0.10%	501	0.10%	500	0.00%	500	0.00%
1000	999	-0.07%	999	-0.07%	1001	0.07%	999	-0.07%	999	-0.07%

4.763

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02.
For Orfice Calibration Factor dH8, the orfice differential pressure in inches of H20 that equates to 0.75 direct air 48 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +0.2.
For Temperature Devices, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

4.722

133.7

Signature: Carter Lanfranco

Calibrated by: Liam Forrer

Date: January 7, 2025

1.839

1.842

46.71

46.8

-0.004

Average Ko---->

0.709

0.707

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU A Date: 7-Jan-25

Serial #: Kimmon 186 Barometric Pressure: 30.41 (in. Hg)

Theoretical Critical Vacuum: 14.34 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)³*(deg R)⁰.5/((in.Hg)*(min)).

!!!!!!!!!!

			DRY GA	S METER READII	NGS					-Cl	RITICAL ORIF	ICE READING	GS-	
dH (in H2O) 0.00 0.00 0.00	Time (min) 15.00 15.00 15.00	Volume Initial (m³) 634.455 634.652 634.851	Volume Final (m³) 634.652 634.851 635.049	Volume Total (cu ft) 6.957 7.028 6.992	Initial T Inlet (deg F) 63.0 68.0 70.0	emps. Outlet (deg F) 63.0 68.0 70.0	Final Inlet (deg F) 69.0 71.0 73.0	Temps. Outlet (deg F) 69.0 71.0 73.0	Orifice Serial# (number) 48 48 48	K' Orifice Coefficient (see above) 0.3560 0.3560	Actual Vacuum (in Hg) 20.0 20.0 20.0	Am Initial (deg F) 70.0 77.0 78.0	bient Tempera Final (deg F) 79.0 81.0 79.0	Ature Average (deg F) 74.5 79.0 78.5
DRY GA	S METER			****************************		****** RES		***************	******	*******		ORIFICE		
VOLUME CORRECTED Vm(std) (cu ft) 7.095	VOLUME CORRECTED Vm(std) (liters) 200.9		VOLUME CORRECTED Vcr(std) (cu ft) 7.024	VOLUME CORRECTED Vcr(std) (liters) 198.9	VOLUME NOMINAL Vcr (cu ft) 6.999		CALIBRATION Value (number) 0.990	ON FACTOR Y Variation (number) 0.002		CAI Value (in H2O) 0.000	LIBRATION FA dH@ Value (mm H2O) 0.00	Variation (in H2O)		
7.120 7.057	201.6 199.9		6.995 6.998	198.1 198.2	7.028 7.025		0.982 0.992	-0.006 0.004		0.000 0.000	0.00 0.00	0.000 0.000		
					Aver	age Y>	0.9880	Avera	age dH@>	0.0000	0.00			

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2. For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer Signature: Date: January 7, 2025

A.Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: ST CAE2 Date: 06-Jan-25

 Serial #:
 0028-072911-1
 Barometric Pressure:
 30.40
 (in. Hg)

 Theoretical Critical Vacuum:
 14.34
 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)/3*(deg R)/0.5/((in.Hg)*(min)).

			DRY GA	S METER READI	NGS	-				-CF	RITICAL ORIF	ICE READING	GS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial To Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Aml Initial (deg F)	bient Temperat Final (deg F)	ure Average (deg F)
3.90	15.00	485,415	501.694	16.279	66.0	66.0	67.0	67.0	73	0.8185	15.5	67.0	68.0	67.5
2.05	15.00	501.694	513.489	11.795	67.0	67.0	69.0	69.0	63	0.5956	18.0	69.0	73.0	71.0
1.20	15.00	513,489	522.669	9.180	70.0	70.0	71.0	71.0	55	0.4606	19.5	72.0	74.0	73.0
0.69	15.00	522,669	529.633	6.964	70.0	71.0	70.0	72.0	48	0.3560	20.5	74.0	76.0	75.0
0.34	15.00	529.633	534.423	4.790	71.0	71.0	72.0	72.0	40	0.2408	22.0	77.0	78.0	77.5
			******	******	*******	******* RES	ULTS *****	******	******	******	****			
DRY GA	S METER			ORIFICE			DRY GAS	S METER				ORIFICE		
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR		CAL	IBRATION FA	ACTOR		
Vm(std) (cu ft)	Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		Ko (value
16.737	474.0		16.251	460.2	15.985		0.971	-0.010		1.904	48.37	0.028		0.700
12.039	340.9		11.786	333.8	11.671		0.979	-0.001		1.898	48.20	0.021		0.697
9.307	263.6		9.098	257.6	9.042		0.978	-0.003		1.856	47.13	-0.021		0.707
9.307	199.6		7.018	198.8	7.002		0.996	0.015		1.789	45.45	-0.087		0.706
7.048			4 700	134.1	4.747		0.979	-0.001		1.936	49.18	0.060		0.691
	137.0		4.736	134.1	4.747		0.070	0.001			10.10	0.000		0.031

				TEMPERATU	RE CALIBRA	TION				
Calibration Stand	lard>	Omega Model	CL23A S/N:T-2		nperature Devic	e Reading				
Set-Point	Sta	ck	Hot	Box	Pro	be	Imp	Out	A	ux
(deg F)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)
32	33	0.20%	32	0.00%	32	0.00%	33	0.20%	33	0.20%
100	100	0.00%	100	0.00%	99	-0.18%	101	0.18%	101	0.18%
300	300	0.00%	300	0.00%	300	0.00%	301	0.13%	300	0.00%
500	500	0.00%	499	-0.10%	499	-0.10%	500	0.00%	500	0.00%
1000	999	-0.07%	999	-0.07%	999	-0.07%	1000	0.00%	1000	0.00%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.
For Orlifice Calibration Factor drt (@), the orlifice differential pressure in inches of H20 that equates to 0.75 dm of air at 88 F and 59.29; inches of Hg, acceptable tolerance of individual values from the average is +-0.2.
For Temperature Devices, the reading must be within 1.5% to certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer

Signature: Date: January 6, 2025

A.Lanfranco & Associates inc.

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: JU 14

0028-030615-1

Calibrated by: Liam Forrer

8-Jan-25 30.43

Barometric Pressure: Theoretical Critical Vacuum: 14.35 (in. Hg) (in. Hg)

!!!!!!!!!

Serial #:

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

			DRY GA	S METER READII	NGS	-				-CF	RITICAL ORIF	ICE READING	GS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial To Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Temperat Final (deg F)	ure Average (deg F)
4.15	15.00	922.156	937.700	15.544	68.0	68.0	70.0	70.0	73	0.8185	15.5	71.0	75.0	73.0
2.25	15.00	937.700	949.240	11.540	70.0	70.0	72.0	72.0	63	0.5956	17.0	72.0	77.0	74.5
1.35	15.00	949.240	958.128	8.888	72.0	72.0	73.0	73.0	55	0.4606	18.5	76.0	80.0	78.0
0.83	15.00	958.128	965.090	6.962	69.0	73.0	69.0	74.0	48	0.3560	20.0	79.0	81.0	80.0
0.39	19.00	965.090	971.095	6.005	68.0	74.0	69.0	74.0	40	0.2408	21.5	79.0	82.0	80.5
			VOLUME	VOLUME	VOLUME									
			VOLUME	VOLUME	VOLUME									
VOLUME	VOLUME		VOLUME	VOLUME	VOLUME		CALIBRATIO	ON FACTOR		CAL	JBRATION FA	CTOR		
CORRECTED	CORRECTED		CORRECTED	CORRECTED	NOMINAL			Υ			dH@			.,
CORRECTED Vm(std)	CORRECTED Vm(std)		CORRECTED Vcr(std)	CORRECTED Vcr(std)	NOMINAL Vcr		Value	Y Variation		Value	dH@ Value	Variation		Ko (value
CORRECTED	CORRECTED		CORRECTED	CORRECTED	NOMINAL			Υ			dH@			Ko (value 0.660
CORRECTED Vm(std) (cu ft)	CORRECTED Vm(std) (liters)		CORRECTED Vcr(std) (cu ft)	CORRECTED Vcr(std) (liters)	NOMINAL Vcr (cu ft)		Value (number)	Y Variation (number)		Value (in H2O)	dH@ Value (mm H2O)	Variation (in H2O)		(value
CORRECTED Vm(std) (cu ft) 15.931	CORRECTED Vm(std) (liters) 451.2		CORRECTED Vcr(std) (cu ft) 16.183	CORRECTED Vcr(std) (liters) 458.3	NOMINAL Vcr (cu ft) 16.068		Value (number) 1.016	Y Variation (number) 0.015		Value (in H2O) 2.036	dH@ Value (mm H2O) 51.71	Variation (in H2O) -0.084		(value 0.660
CORRECTED Vm(std) (cu ft) 15.931 11.729	CORRECTED Vm(std) (liters) 451.2 332.2		CORRECTED Vcr(std) (cu ft) 16.183 11.759	CORRECTED Vcr(std) (liters) 458.3 333.0	NOMINAL Vcr (cu ft) 16.068 11.709		Value (number) 1.016 1.003	Y Variation (number) 0.015 0.002		Value (in H2O) 2.036 2.083	dH@ Value (mm H2O) 51.71 52.90	Variation (in H2O) -0.084 -0.037		(value 0.660 0.663
CORRECTED Vm(std) (cu ft) 15.931 11.729 8.989	CORRECTED Vm(std) (liters) 451.2 332.2 254.6		CORRECTED Vcr(std) (cu ft) 16.183 11.759 9.064	CORRECTED Vcr(std) (liters) 458.3 333.0 256.7	NOMINAL Ver (cu ft) 16.068 11.709 9.085		Value (number) 1.016 1.003 1.008	Y Variation (number) 0.015 0.002 0.007		Value (in H2O) 2.036 2.083 2.097	dH@ Value (mm H2O) 51.71 52.90 53.27	Variation (in H2O) -0.084 -0.037 -0.023		0.660 0.663 0.658

				TEMPERATU	RE CALIBRA	TION				
Calibration Stand	lard>	Omega Model	CL23A S/N:T-2		nperature Devic	e Reading				
Set-Point	Sta	ck	Hot	Box	Pro	be	Imp	Out	A	ux
(deg F)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff
32	33	0.20%	31	-0.20%	30	-0.41%	33	0.20%	33	0.20%
100	101	0.18%	99	-0.18%	98	-0.36%	101	0.18%	101	0.18%
300	301	0.13%	299	-0.13%	298	-0.26%	301	0.13%	301	0.13%
500	501	0.10%	499	-0.10%	498	-0.21%	501	0.10%	501	0.10%
1000	1000	0.00%	998	-0.14%	997	-0.21%	1001	0.07%	1000	0.00%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02. For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2. For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Signature:

Date: January 8, 2025

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-C Date: 07-Jan-25

Serial #: Wizit 4615 Barometric Pressure: 30.41 (in. Hg)

Theoretical Critical Vacuum: 14.34 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

!!!!!!!!!!

			DRY GA	S METER READIN	NGS	-				-CI	RITICAL ORIF	ICE READING	S-	
		Volume	Volume	Volume	Initial To			Temps.	Orifice	K' Orifice	Actual		bient Tempera	
dH (in H2O)	Time (min)	Initial (m³)	Final (m³)	Total (cu ft)	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	Serial# (number)	Coefficient (see above)	Vacuum (in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)
0.00	15.00	157.492	157.684	6.780	71.0	71.0	73.0	73.0	48	0.3560	20.0	75.0	77.0	76.0
0.00	15.00	157.684	157.877	6.816	72.0	72.0	74.0	74.0	48	0.3560	20.0	76.0	79.0	77.5
0.00	15.00	157.877	158.070	6.816	73.0	73.0	73.0	73.0	48	0.3560	20.0	78.0	76.0	77.0
				******		******* RES			******	******				
DRY GA	S METER			ORIFICE			DRY GAS	S METER				ORIFICE		
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y		CAL	IBRATION FA.	CTOR		
Vm(std) (cu ft)	Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		
6.837	193.6		7.014	198.6	7.008		1.026	0.003		0.000	0.00	0.000		
0.007			7.004	198.4	7.018		1.021	-0.002		0.000	0.00	0.000		
6.860	194.3							0.004		0.000	0.00	0.000		
	194.3 194.3		7.008	198.5	7.015		1.022	-0.001		0.000	0.00	0.000		
6.860			7.008	198.5	7.015		1.022	-0.001		0.000	0.00	0.000		

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH @, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer Signature: Date: January 7, 2025

Pitot Tube Calibration

 Date:
 8-Jan-25
 Temp (R): 539

 Pbar (in.Hg):
 30.41
 Dn (in.): 0.25

Pitot ID: 7A-1

רווטו וט.	/ A-1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot Pitot		Coeff.	(absolute)
(in H2O) (in H2O)		(ft/s)	Ср	
0.220	0.310	31.1	0.8340	0.0030
0.310	0.430	36.9	0.8406	0.0036
0.400	0.560	41.9	0.8367	0.0003
0.480	0.670	45.9	0.8380	0.0010
0.570	0.800	50.0	0.8357	0.0013
		Average:	0.8370	0.0018

Pitot ID: ST 8A

	TROUB: OT GA											
	Reference	S-Type	Air	Pitot	Deviation							
	Pitot	Pitot	Velocity	Coeff.	(absolute)							
	(in H2O) (in H2O)		(ft/s)	Ср								
	0.220	0.300	31.1	0.8478	0.0128							
	0.340	0.340 0.480		0.8332	0.0018							
	0.430	0.610	43.4	0.8312	0.0038							
	0.520	0.740	47.8	0.8299	0.0051							
0.630 0.890		0.890	52.6	0.8329	0.0021							
			Average:	0.8350	0.0051							

Pitot ID: 7B

PILOLID.	<i>1</i> D				
Reference	S-Type	Air	Pitot	Deviation	
Pitot	Pitot Pitot		Coeff.	(absolute)	
(in H2O) (in H2O)		(ft/s)	Ср		
0.180	0.240	28.1	0.8574	0.0084	
0.290	0.400	35.7	0.8430	0.0060	
0.390	0.530	41.4	0.8492	0.0003	
0.480	0.650	45.9	0.8507	0.0018	
0.560	0.770	49.6	0.8443	0.0046	
		Average:	0.8489	0.0042	

Pitot ID: ST 8B

	T ROLID.	0.00			
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot Pitot		Coeff.	(absolute)
	(in H2O) (in H2O)		(ft/s)	Ср	
	0.200	0.280	29.6	0.8367	0.0030
	0.310	0.310 0.440		0.8310	0.0027
	0.390	0.550	41.4	0.8337	0.0000
	0.520	0.730	47.8	0.8356	0.0019
0.670		0.950	54.2	0.8314	0.0023
			Average:	0.8337	0.0020

Pitot ID: **7 AL GVRD-1**

	Reference	S-Type	Air	Pitot	Deviation	
	Pitot	Pitot	Velocity	Coeff.	(absolute)	
	(in H2O)	(in H2O)	(ft/s)	Ср		
	0.200	0.270	16.3	0.8521	0.0016	
	0.290	0.400	19.9	0.8430	0.0075	
	0.390	0.530	25.3	0.8492	0.0012	
	0.480	0.650	35.8	0.8507	0.0003	
0.570		0.760	48.4	0.8574	0.0069	
			Average:	0.8505	0.0035	

Pitot ID: ST 8C

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.210	0.290	14.9	0.8425	0.0063
0.310	0.440	19.4	0.8310	0.0052
0.430	0.600	29.0	0.8381	0.0019
0.520	0.730	43.1	0.8356	0.0006
0.610	0.860	52.8	0.8338	0.0024
		Average:	0.8362	0.0033

Pitot ID: 7C

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.200	0.280	29.6	0.8367	0.0009
0.300	0.420	16.3	0.8367	0.0009
0.430	0.600	43.4	0.8381	0.0005
0.530	0.740	30.5	0.8378	0.0002
0.610	0.850	47.0	0.8387	0.0011
	<u> </u>	Average:	0.8376	0.0007

Pitot ID:

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average:		
		Average :		

Calibrated by: Sean Verby

Signature. — www.

Date:

Jan 8, 2025

^{*} Average absolute deviation must not exceed 0.01.

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

GLASS NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Christian De La O Date: 18-Feb-25

Signature:

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
A	0.1270	0.1270	0.1255	0.0015	0.1265	0.0000873
G-165	0.1650	0.1660	0.1645	0.0015	0.1652	0.0001488
G-170	0.1700	0.1710	0.1695	0.0015	0.1702	0.0001579
G-178	0.1760	0.1770	0.1790	0.0030	0.1773	0.0001715
E	0.1950	0.1930	0.1960	0.0030	0.1947	0.0002067
Q	0.2030	0.2040	0.2050	0.0020	0.2040	0.0002270
L	0.2100	0.2070	0.2090	0.0030	0.2087	0.0002375
P-2240	0.2160	0.2155	0.2170	0.0015	0.2162	0.0002549
P-224	0.2160	0.2170	0.2150	0.0020	0.2160	0.0002545
G-221	0.2160	0.2185	0.2190	0.0030	0.2178	0.0002588
G-2232	0.2210	0.2200	0.2215	0.0015	0.2208	0.0002660
P-223	0.2297	0.2296	0.2298	0.0002	0.2297	0.0002878
P-250	0.2500	0.2495	0.2505	0.0010	0.2500	0.0003409
C-250	0.2500	0.2500	0.2500	0.0000	0.2500	0.0003409
C-280	0.2800	0.2800	0.2800	0.0000	0.2800	0.0004276
C-281	0.2800	0.2820	0.2780	0.0040	0.2800	0.0004276
C-282	0.2800	0.2800	0.2800	0.0000	0.2800	0.0004276
C-283	0.2800	0.2800	0.2800	0.0000	0.2800	0.0004276
G-33-13	0.3008	0.3009	0.3009	0.0001	0.3009	0.0004937
G-3121	0.3055	0.3063	0.3070	0.0015	0.3063	0.0005116
G-3092	0.3100	0.3085	0.3090	0.0015	0.3092	0.0005213
P-31	0.3120	0.312	0.3120	0.0000	0.3120	0.0005309
P-314	0.3135	0.3135	0.3140	0.0005	0.3137	0.0005366
P-315	0.3145	0.3145	0.3145	0.0000	0.3145	0.0005395
P-34	0.3430	0.3430	0.3430	0.0000	0.3430	0.0006417
343-GS	0.3430	0.3430	0.3430	0.0000	0.3430	0.0006417
G-345	0.3470	0.3475	0.3475	0.0005	0.3473	0.0006580
G-367	0.3680	0.3660	0.3658	0.0022	0.3666	0.0007330
G-372	0.3669	0.3700	0.3668	0.0032	0.3679	0.0007382
P-375	0.3705	0.3710	0.3709	0.0005	0.3708	0.0007499
P-38	0.3750	0.3750	0.3750	0.0000	0.3750	0.0007670
P-401	0.3980	0.3990	0.4000	0.0020	0.3990	0.0008683
P-405	0.4047	0.4055	0.4056	0.0009	0.4053	0.0008958
P-407	0.4065	0.4070	0.4072	0.0007	0.4069	0.0009030
P-406	0.4058	0.4062	0.4060	0.0004	0.4060	0.0008990
P-41	0.4060	0.4060	0.4060	0.0000	0.4060	0.0008990
G-433	0.4360	0.4360	0.4355	0.0005	0.4358	0.0010360
P-47	0.4680	0.4680	0.4680	0.0000	0.4680	0.0011946
P-29	0.4681	0.4683	0.4685	0.0004	0.4683	0.0011961
G-468	0.4700	0.4685	0.4720	0.0035	0.4702	0.0012057
P-7	0.4965	0.4945	0.4975	0.0030	0.4962	0.0013427
G-540	0.5400	0.5410	0.5400	0.0010	0.5403	0.0015924
	(-)	D4 D2 D2	- throo diffo		toro, ocob diameter	t l

- (a) D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.
- (b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.
- (c) Average = average of D1, D2 and D3

	BAROMETER CALIBRATION FORM									
		Pbar E	nv Canada	Device (inc	thes of Hg)	Difference				
					Elevation					
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)				
LA	6-Jan-25	103.3	30.51	30.42	30.49	0.02				
DS	6-Jan-25	103.3	30.51	30.40	30.47	0.04				
CL	6-Jan-25	103.3	30.51	30.42	30.49	0.02				
JC	6-Jan-25	103.3	30.51	30.42	30.49	0.02				
LF	6-Jan-25	103.3	30.51	30.41	30.48	0.03				
Sv	6-Jan-25	103.3	30.51	30.41	30.48	0.03				
CDO	6-Jan-25	103.3	30.51	30.41	30.48	0.03				
JG	6-Jan-25	103.3	30.51	30.41	30.48	0.03				
ML	6-Jan-25	103.3	30.51	30.41	30.48	0.03				
BL	6-Jan-25	103.3	30.51	30,43	30.50	0.01				

Calibrated by:

Jeremy Gibbs

Signature:/

Date:

06-Jan-25

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74 metric e.html

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Calibrated by: Christian De La O

Date: 8-Jan-25

Signature:

TEMPERATURE DEVICE CALIBRATIONS

Reference Device				Temperature Settings (degrees F)												
Model CL23A Calib	Model CL23A Calibrator		32 100		2	200 300		00 500		00	800		1700			
Device	ALA#	Serial #	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation
TPI 341K	7	20314590036	30.1	-0.39%	97.8	-0.39%	197.6	-0.36%	297.2	-0.37%	496.6	-0.35%	795.9	-0.33%	1693	-0.32%
TPI 341K	8	20313490047	31.1	-0.18%	99	-0.18%	198.6	-0.21%	298.3	-0.22%	497.6	-0.25%	797.1	-0.23%	1695	-0.23%
TPI 341K	11	20345510024	31.7	-0.06%	98.9	-0.20%	198.7	-0.20%	298.5	-0.20%	498	-0.21%	797.8	-0.17%	1696	-0.19%
TPI 341K	12	20345510031	32.7	0.14%	100.1	0.02%	199.9	-0.02%	299.8	-0.03%	499.4	-0.06%	798.8	-0.10%	1697	-0.14%
TPI 341K	18	20329480036		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%
TPI 341K	20	20329480013	29.8	-0.45%	98.1	-0.34%	198	-0.30%	297.8	-0.29%	497.6	-0.25%	797.5	-0.20%	1697	-0.14%
TPI 341K	22	20329480041	30	-0.41%	98.1	-0.34%	197.7	-0.35%	297	-0.39%	497.1	-0.30%	796.8	-0.25%	1696	-0.19%
TPI 341K	24	20142030017	31.4	-0.12%	99.6	-0.07%	199.6	-0.06%	299.4	-0.08%	499	-0.10%	798.8	-0.10%	1697	-0.14%
TPI 341K	26	20345510036	31.6	-0.08%	99.6	-0.07%	199.2	-0.12%	299	-0.13%	498.7	-0.14%	798.4	-0.13%	1696	-0.19%
TPI 341K	28	20142030009	31	-0.20%	99.3	-0.13%	199.4	-0.09%	299.3	-0.09%	498.6	-0.15%	798.8	-0.10%	1697	-0.14%
TPI 341K	30	20345510023	31.7	-0.06%	99.3	-0.13%	198.9	-0.17%	298.7	-0.17%	498.4	-0.17%	797.8	-0.17%	1696	-0.19%
TPI 341K	32	20142030028	31.3	-0.14%	99.5	-0.09%	199.4	-0.09%	299	-0.13%	498.9	-0.11%	798.7	-0.10%	1697	-0.14%
Reference device is																

Variation expressed as a percentage of the absolute temperature must be within 1.5 %

Calibration Certificate

 Date:
 10-Jan-25
 Insrtument Calibrated:
 Testo 1 (330-2LL)

 Calibrated by:
 Serial #:
 03101345

 Authorizing Signature:
 Customer:
 ALA

Ambient Conditions: Temperature: 20 °C Barometric Pressure: 102 kPa Relative Humidity: 76%

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

O ₂		Initial Evaluation				After Calibration				
Gas	Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Certified Value (vol %)	
Zero	0.1	0.10	Pass			0.00	Pass		0	
O_2	11.0	0.17	Pass			10.83	Fail		10.83	
Ambient	20.9	0.05	Pass			20.95	Fail		20.95	

Performance Specification: +/- 1% O₂ (absolute diff)

CO		Initial Evalua	ation						
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero 1 Gas 2 Gas	0 247 487	0.0% 2.8% 1.5%	Pass Pass Pass			0.0% 100.0% 100.0%	Pass Fail Fail		0 254 494
3 Gas	920	3.5%	Pass			100.0%	Fail		953

Performance Specification: +/- 5% of Certified Gas Value

NO		Initial Evaluation							
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero	0	0.0%	Pass			0.0%	Pass		0
1 Gas	50	11.6%	Fail		47	4.9%	Pass		45
2 Gas	95	6.6%	Fail		92	3.2%	Pass		89
3 Gas	251	0.6%	Pass		252	1.0%	Pass		250

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure	NO	O ₂	co
				(PSI)	(ppm)	(Vol. %)	(ppm)
Zero Gas (N ₂)	353	0	0	1550	0	0	0
1 Gas	435	45279	48202	500	44.81	0	254.1
2 Gas	K9P	45397	48319	1500	89.11	0	494.2
3 Gas	K2H	45434	48356	1750	249.6	0	952.9
O ₂ /CO ₂	A1M	45365	48287	1400	0	10.83	0

Note: National Institute of Standards and Technology traceable certificates are available upon request.

Calibration Certificate

 Date:
 10-Jan-25
 Insrtument Calibrated:
 Testo 2 (330-2LX)

 Calibrated by:
 Sean Verby
 Serial #:
 03282252

 Authorizing Signature:
 Customer:
 ALA

Ambient Conditions: Temperature: 20 °C Barometric Pressure: 102 kPa Relative Humidity: 78%

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

O_2		Initial Evalua	ation						
Gas	Instrument Reading (vol %)	Calibration Error	Pass/Fail	Notes	Instrument Reading (vol %)	g Calibration Error	Pass/Fail	Notes	Certified Value (vol %)
Zero	0	0.00	Pass			0.00	Pass		0
O ₂ Ambient	10.8 20.9	0.03 0.06	Pass Pass			10.83 20.96	Fail Fail		10.83 20.96

Performance Specification: +/- 1% O₂ (absolute diff)

CO		Initial Evaluation							
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Readi (ppm)	ng % Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero	0	0.0%	Pass			0.0%	Pass		0
1 Gas	247	2.8%	Pass			100.0%	Fail		254
2 Gas	485	1.9%	Pass			100.0%	Fail		494
3 Gas	924	3.0%	Pass			100.0%	Fail		953

Performance Specification: +/- 5% of Certified Gas Value

NO	Initial Evaluation					After Calibra	tion		
Can	Instrument Reading (ppm)	% Calibration Error	Dage/Fail	Notes	Instrument Readi	ng % Calibration Error	Dece/Feil	Natas	Certified Value
Gas	Reading (ppin)	% Calibration Error	Pass/Fail	Notes	(ppm)	% Calibration Error	Pass/Fail	Notes	(ppm)
Zero	1	0.3%	Pass		0	0.0%	Pass		0
1 Gas	48	7.1%	Fail		45	0.4%	Pass		44.8
2 Gas	92	3.2%	Pass		89	0.1%	Pass		89.1
3 Gas	253	1.4%	Pass		246	1.4%	Pass		249.6

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure (PSI)	NO (ppm)	O ₂ (Vol. %)	CO (ppm)
Zero Gas (N ₂)	353	0	0	1550	0	0	0
1 Gas	435	45279	48202	500	44.81	0	254.1
2 Gas	K9P	45397	48319	1500	89.11	0	494.2
3 Gas	K2H	45434	48356	1750	249.6	0	952.9
O ₂ /CO ₂	A1M	45365	48287	1400	0	10.83	0

Note: National Institute of Standards and Technology traceable certificates are available upon request.

Calibration Certificate

 Date:
 10-Jan-25
 Insrtument Calibrated:
 Testo 3 (340)

 Calibrated by:
 Sean Verby
 Serial #:
 64057016

 Authorizing Signature:
 Customer:
 ALA

Ambient Conditions: Temperature: 8 °C Barometric Pressure: 102.1 kPa Relative Humidity: 77%

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

O ₂		Initial Evalu	ation		After Calibration				
Gas	Instrument Reading (vol %)	Calibration Error	Pass/Fail	Notes	Instrument Readir (vol %)	ng Calibration Error	Pass/Fail	Notes	Certified Value (vol %)
Zero	0.13	0.13	Pass			0.00	Pass		0
O ₂ Ambient	11.12 20.85	0.29 0.11	Pass Pass			10.83 20.96	Fail Fail		10.83 20.96

Performance Specification: +/- 1% O₂ (absolute diff)

СО		Initial Evaluation			After Calibration					
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Read (ppm)	ling % Calibration Error	Pass/Fail	Notes	Certified Value (ppm)	
Zero	2	0.7%	Pass			0.0%	Pass		0	
1 Gas	254	0.0%	Pass			100.0%	Fail		254	
2 Gas	500	1.2%	Pass			100.0%	Fail		494	
3 Gas	937	1.7%	Pass			100.0%	Fail		953	

Performance Specification: +/- 5% of Certified Gas Value

NO		Initial Evalua	ation		After Calibration				
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Readii (ppm)	ng % Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
7010	2	0.70/	Door		0	0.00/	Door		0
Zero 1 Gas	47	0.7% 4.9%	Pass Pass		46	0.0% 2.7%	Pass Pass		44.8
2 Gas	93	4.4%	Pass		92	3.2%	Pass		89.1
3 Gas	255	2.2%	Pass		250	0.2%	Pass		249.6

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure (PSI)	NO (ppm)	O ₂ (Vol. %)	CO (ppm)
Zero Gas (N ₂)	353			1550	0	0	0
1 Gas	435	12/19/2023	12/20/2031	500	44.81	0	254.1
2 Gas	K9P	4/15/2024	4/15/2032	1500	89.11	0	494.2
3 Gas	K2H	5/22/2024	5/22/2032	1750	249.6	0	952.9
O ₂ /CO ₂	A1M	3/14/2024	3/14/2032	1400	0	10.83	0

Note: National Institute of Standards and Technology traceable certificates are available upon request.

MOUNT ROYAL COLLEGE

Faculty of Continuing Education and Extension

Carter Lanfranco

has successfully completed

Stack Sampling

May 2009

Date

Door

Faculty of Continuing Education and Extension

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

Carter Lanfranco	as a m	ember of Air and Waste Management Association
declare		
Select one of the following:		
Absence from conflict of interest		
Other than the standard fee I will rece	eive for my	professional services, I have no financial or
other interest in the outcome of this	project	. I further declare that should a
conflict of interest arise in the future	during the o	course of this work, I will fully disclose the
circumstances in writing and without Mr. Sajid Barlas	delay to	, erring on the side of caution.

Real or perceived conflict of interest
Description and nature of conflict(s):
I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.
In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:
Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.
onflict of interest disclosure statement is collected under section 26(c) of the Freedom of nation and Protection of Privacy Act for the purposes of increasing government

This of . Info transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name: Conter

Witnessed by:

Mark Lanfranco

Print name:

Date: Dec. 16, 2020

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

1.	Name of Qualified Professional Carter Lankon
	Title Chief operations officer / au
2.	Are you a registered member of a professional association in B.C.?
	Name of Association:Registration #
3.	Brief description of professional services:
pro pu cai pe	ofessional ethics and accountability. By signing and submitting this statement you consent to its blication and its disclosure outside of Canada. This consent is valid from the date submitted and mnot be revoked. If you have any questions about the collection, use or disclosure of your resonal information please contact the Ministry of Environment and Climate Change Strategy adquarters Office at 1-800-663-7867.
	<u>Declaration</u>
	m a qualified professional with the knowledge, skills and experience to provide expert formation, advice and/or recommendations in relation to the specific work described above.
Sig	witnessed by:
X Pri	int Name: Caster Las Practo Pribe Name: Shown Harrington
Da	ite signed: Dec 7/2020

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Justin Ching

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 26, 2023

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

\square Real or perceived conflict of interest	t
Description and nature of conflict(s)):
I will maintain my objectivity, condu	acting my work in accordance with my Code of Ethics
In addition, I will take the following have disclosed, to ensure the public	steps to mitigate the real or perceived conflict(s) I interest remains paramount:
•	closure may be interpreted as a threat to my ed by the statutory decision maker accordingly.
Information and Protection of Privacy Act transparency and ensuring professional en statement you consent to its publication a valid from the date submitted and cannot	ent is collected under section 26(c) of the <i>Freedom of</i> for the purposes of increasing government thics and accountability. By signing and submitting this and its disclosure outside of Canada. This consent is the revoked. If you have any questions about the anal information please contact the Ministry of the Headquarters Office at 1-800-663-7867.
Signature:	Witnessed by:
x Justin Ching	<u>x</u>
Print name: Justin Ching	Mark Lanfranco Print name:
Date: June 28, 2023	

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

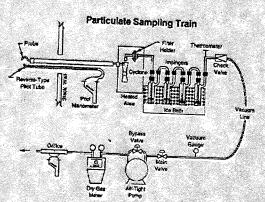
b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

1.	Name of Qualified Professional	Justin Ching	
	Title	Environmental Technician	
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☑ No	
	Name of Association:	Registration #	
3.	3. Brief description of professional services:		
	Environmental Technician - sp	pecialising in air and atmospheric sciences	
pro pul car per	This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.		
<u>Declaration</u>			
	·	knowledge, skills and experience to provide expert ndations in relation to the specific work described above.	
Sig	nature:	Witnessed by:	
X	Justin Ching nt Name: Justin Ching	XDaryl Sampson	
Pri	nt Name: Justin Ching	XDaryl Sampson Print Name: Daryl Sampson	
Da	te signed: June 28, 2023		

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.


Walter Smith & Associates, Inc.

is hereby granted to:

Louis Agassiz

to certify that they have completed to satisfaction

Source Sampling & CEMS Workshop

Granted: March 11, 2011

Walte & thath

Walter S, Smith, PE, DEE 3.5 CEU

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

\square Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conducting and standards of practice.	ng my work in accordance with my Code of Ethics
In addition, I will take the following step have disclosed, to ensure the public into	os to mitigate the real or perceived conflict(s) I erest remains paramount:
Further, Locknowledge that this disclose	ure may be interpreted as a threat to may
•	ure may be interpreted as a threat to my yethe statutory decision maker accordingly.
Information and Protection of Privacy Act for transparency and ensuring professional ethics statement you consent to its publication and	s and accountability. By signing and submitting this its disclosure outside of Canada. This consent is revoked. If you have any questions about the information please contact the Ministry of
Signature:	Witnessed by:
X Print name: Louis Agassiz	Mark Lanfranco Print name:
Date: Jan. 4, 2021	

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

1.	Name of Qualified Professional Louis A	Agassiz		
	Title Senior En	vironmental Technicia	an/Project Manager	
2.	Are you a registered member of a professiona	l association in B.C.?	☐ Yes ☑ No	
	Name of Association:	Registration	#	
3.	Brief description of professional services: Environmental consulting, specializing in	air and atmospheric	sciences	
pro pul car per	This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.			
	<u>Decla</u>	<u>ration</u>		
	m a qualified professional with the knowledge, ormation, advice and/or recommendations in re	•		
Sig	nature:	Witnessed by:		
<u>X</u>	Zein and	x Daryl Sam	ypson	
Pri	nt Name: Louis Agassiz	Print Name: <u>Daryl S</u>	ampson	
Da	te signed: November 23, 2020			

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Christian Gonzalo De La O

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 1, 2024

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

☐ Real or	perceived conflict of interest	
Descript	tion and nature of conflict(s):	
	aintain my objectivity, conducting my w	ork in accordance with my Code of Ethics
	ion, I will take the following steps to misclosed, to ensure the public interest re	tigate the real or perceived conflict(s) I mains paramount:
Further	, I acknowledge that this disclosure may	y he interpreted as a threat to my
	ndence and will be considered by the st	•
Information a transparency statement you valid from the collection, use	nd Protection of Privacy Act for the pur and ensuring professional ethics and ac	ccountability. By signing and submitting this osure outside of Canada. This consent is d. If you have any questions about the ation please contact the Ministry of
Signature:	Lu	Witnessed by: Mark Lanfranco
Print name:	Christian De La O	Print name:

29 August 2024

Date:

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

1. Name of Qualified Professional	Christian De La O	
Title	Environmental Air Quality Technician	
2. Are you a registered member of a	professional association in B.C.?	
Name of Association:	Registration #	
3. Brief description of professional ser	rvices:	
Environmental consulting, specia	alizing in air and atmospheric sciences	
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.		
	<u>Declaration</u>	
· ·	knowledge, skills and experience to provide expert adations in relation to the specific work described above.	
Signature:	Witnessed by:	
x Caly	× Ny var GM	
Print Name: Christian De La O	Print Name: Daryl Sampson	
Date signed: 29 August 2024		

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Sean Verby

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 1, 2024

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

1. Name of Qualified Professional	Sean Verby		
Title	Environmental Technician		
2. Are you a registered member of a	professional association in B.C.? ☐ Yes ☒ No		
Name of Association:	Registration #		
Brief description of professional services: Environmental consulting, specializing in air and atmospheric sciences			
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.			
<u>Declaration</u>			
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.			
Signature:	Witnessed by:		
x Solling	Daryl Sampson		
Print Name: Sean Verby	Print Name: Daryl Sampson		
Date signed: Sept, 4, 2024			

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

\square Real or perceived conflict of interest
Description and nature of conflict(s):
I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.
In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:
Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.
This conflict of interest disclosure statement is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting th statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.
Signature: Witnessed by:
X Mark Lanfranco
Print name: Sean Verby Print name: Date: Sept, 4, 2024

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Canadian Association for Laboratory Accreditation Inc.

Certificate of Accreditation

A. Lanfranco and Associates Inc. 101 - 9488 - 189th Street Surrey, British Columbia

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

President and CEO

This certificate is the property of the Canadian Association for Laboratory Accreditation Inc. and must be returned on request; reproduction must follow policy in place at date of issue. For the specific tests to which this accreditation applies, please refer to the laboratory's scope of accreditation at www.cala.ca.