

WASTE-TO-ENERGY FACILITY

Appendices of Emissions Testing Report February 2025 Survey First Quarter 2025

Table of Contents

<u>Appendix</u>

- A Quality Assurance / Quality Control Results
- B Calculations
- C Laboratory Results
- D Computer Generated Results
- E Field Data Sheets
- F Calibration Sheets and Technician Certificates

APPENDIX - A

QUALITY ASSURANCE / QUALITY CONTROL RESULTS

Quality assurance / quality control (QA/QC) is divided into four categories: administration, preparation, testing, and analysis. The following sections detail results found for the above four categories.

Administration:

- All field, process, and analytical data was reviewed to ensure data integrity and accuracy.
- Duplicate proof of draft and final report, including data entry, conducted.

Preparation:

- All glassware cleaned
- Blank samples of reagents collected.

Testing:

- Stack diameter and absence of cyclonic flow confirmed
- Calibrated magnehelic used for all velocity measurements
- All trains past pre- and post- leak checks.
- Isokinetics all within 100% ± 10%.

Analysis:

- Trace Metals and Mercury analysis conducted at Element Labs, Surrey, B.C.
- Fluoride (HF) analysis conducted at Element Labs in Surrey, B.C.
- Nitrous Oxide (N₂O) analysis conducted at Bureau Veritas in Mississauga, ON.
- Volatile Organic Compounds (VOC) analysis conducted at ALS Environmental in Simi Valley, CA.
- Particulate analysis conducted at A. Lanfranco and Associates Inc., Surrey, BC.
- Chain of Custody protocols followed for all samples.
- Acceptable blank values for all sample types. All samples blank corrected.

Sample Type	Blank Value					
First Quarter 2025	Unit 1	Unit 2	Unit 3			
Filter	0.4 mg	0.2 mg	0.3 mg			
Front Half Washings	0.3 mg	-0.3 mg	-0.4 mg			
Mercury Front	<0.02 ug	<0.02 ug	<0.02 ug			
Mercury Back	<0.27 ug	<0.17 ug	<0.17 ug			
Trace Metals Front *	<55.2 ug	<59.2 ug	<67.7 ug			
Trace Metals Back*	<14.4 ug	<22.0 ug	<26.6 ug			
Ammonia	<6 ug	<6 ug	<6 ug			
Fluoride	<7 ug	<7 ug	<7 ug			

Sum of all reported elements except Hg*

APPENDIX - B CALCULATIONS

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-11 were used to calculate particulate concentration at standard conditions on a dry basis. Equations 12-26 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 27-29 were used to calculate the volumetric flowrate of the stack flue gas.

App B.1

pp B.1	Contaminant Concentration Calculations	
	$c = \frac{m}{V_{std}}$	Equation 1
	$m_{part} = m_{filter} + m_{pw}$	Equation 2
	$m_i = m_{ana,i} - m_{blank}$	Equation 3
	$V_{std} = \frac{V_{std(imp)}}{35.315}$	Equation 4
	$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$	Equation 5
	$V_{samp} = V_{final} - V_{init}$	Equation 6
	$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$	Equation 7
ΔH_{av}	$h_{pe} = rac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}$, where $n=$ the number of points	Equation 8
	$OC = \frac{20.9 - \%O_{2c}}{20.9 - \%O_{2m}}$	Equation 9
$%O_{2m} = \frac{1}{2}$	$\frac{1}{n}\sum_{i=1}^{n}\%O_{2i}$, where $n=$ the number of O_{2} measurements	Equation 10
% <i>CO</i> ₂ =	$= \frac{1}{n} \sum_{i=1}^{n} \%CO_{2i}, where n = the number of CO_{2} measurements$	Equation 11

Where,

c = Contaminant concentration

m = Contaminant mass

 m_i = Net analytical mass (mg, ng, or μ g) $m_{ana,i}$ = Analytical mass (mg, ng, or μ g) m_{blank} = Blank analytical mass (mg, ng, or μ g)

 m_{part} = Total particulate mass (mg)

 m_{filter} = Net particulate gain from filter (mg)

 m_{pw} = Net particulate gain from probe wash (mg) $V_{std(imp)}$ = Sample volume at standard conditions (ft³) V_{samp} = Sample volume at actual conditions (ft³)

 V_{final} = Final gas meter reading (ft³) V_{init} = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) T_m = Gas meter temperature (°F)

 $T_{m(ave)}$ = Average gas meter temperature (°F) P_m = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg)

 ΔH_{ave} = Average of individual point orifice pressures (inches of H_2O) $\Delta H_{i(act)}$ = Individual recorded point orifice pressures (inches of H_2O)

OC = Oxygen correction factor (dimensionless)

 $%O_{2c}$ = Oxygen concentration to correct to (% dry basis)

 $\%O_{2m}$ = Average measured stack gas oxygen concentration (% dry basis) $\%CO_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant. For particulate, m is the sum of the mass contributed from probe washing and filter particulate.

App B.2 Isokinetic Variation Calculations

$$\Delta H_{l} = \frac{2.62 \times 10^{7} \times c_{p} \times A_{n} \times (1 - B_{wo}) \times M_{D} \times (T_{m} + 459.67) \times \Delta p_{l}}{k_{o} \times M_{w} \times (T_{Stk} + 459.67)} \qquad \text{Equation } 12$$

$$R_{m} = 85.49 \times c_{p} \times \sqrt{\Delta p_{l}} \times \sqrt{\frac{(T_{stk_{l}} + 459.67)}{M_{w} \times P_{B}}} \times 60 \times A_{n} \times \frac{(T_{m_{l}} + 459.67) \times (1 - B_{wo})}{(T_{stk_{l}} + 459.67) \times y} \qquad \text{Equation } 13$$

$$A_{n} = \pi \left(\frac{d_{n}}{24}\right)^{2} \qquad \qquad \text{Equation } 14$$

$$M_{w} = M_{D} \times (1 - B_{wo}) + 18 \times B_{wo} \qquad \qquad \text{Equation } 15$$

$$M_{D} = 0.44 \times \% CO_{2} + 0.32 \times \% O_{2} + 0.28 \times (100 - \% CO_{2} - \% O_{2}) \qquad \qquad \text{Equation } 16$$

$$T_{Stk} = \frac{1}{n} \sum_{l=1}^{n} T_{Stk_{l}}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation } 17$$

$$B_{wo} = \frac{V_{cond}}{V_{cond} + V_{std(limp)}} \qquad \qquad \text{Equation } 18$$

$$V_{cond} = 0.04707 \times V_{gain} \qquad \qquad \text{Equation } 19$$

$$Iso = \frac{1}{n} \sum_{l=1}^{n} Iso_{l}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation } 20$$

$$Iso_{l} = \frac{v_{nzi}}{v_{l}} \qquad \qquad \text{Equation } 21$$

$$v_{l} = 85.49 \times c_{p} \times \sqrt{\Delta p_{l}} \times \sqrt{\frac{(T_{Stk_{l}} + 459.67)}{(P_{Stk} \times M_{W})}} \qquad \qquad \text{Equation } 22$$

$$v_{nzi} = \frac{(V_{l} - V_{l-1}) \times y \times (T_{Stk_{l}} + 459.67) \times (P_{B} + \frac{\Delta H_{l(act)}}{13.6})}{A_{n} \times t_{l} \times 60 \times (T_{m(l)} + 459.67) \times P_{stk} \times (1 - B_{wo})} \qquad \qquad \text{Equation } 23$$

$$P_{stk} = P_B + \frac{P_g}{13.6}$$
 Equation 24

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
 , where $n =$ the number of points

Equation 25

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
, where $n =$ the number of points

Equation 26

Where,

 $A_n = Nozzle area (ft^2)$

 d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H₂O)

 P_g = Stack Static pressure (inches of H_2O) P_{stk} = Absolute stack pressure (inches of H_B) M_W = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

*%CO*₂ = Stack gas carbon dioxide concentration (% dry basis)

 $\%O_2$ = Stack gas oxygen concentration (% dry basis) B_{wo} = Stack gas water vapour, proportion by volume

V_{cond} = Total volume of water vapor collected, corrected to standard conditions

 (ft^3)

 V_{gain} = Condensate gain of impinger contents (mL) P_{std} = Standard pressure (29.92 inches of Hg)

 v_{stk} = Average flue gas velocity (ft/sec)

 v_i = Individual point flue gas velocity (ft/sec)

 v_{nz} = Average velocity at nozzle(ft/sec)

 v_{nzi} = Individual point velocity at nozzle(ft/sec) Iso_i = Individual point isokinetic variation (%)

Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (ft^3 /min)

App B.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$

$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
Equation 28

$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
 Equation 29

Where,

 Q_A = Actual flowrate (Am³/min)

 $Qs = Flowrate (m^3/min)$ at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)

d = Diameter of stack (inches)

APPENDIX - C LABORATORY RESULTS

Appendix C - Particulate Analysis

Client:Metro VancouverSample Date:Feb 10-13, 2025Source:Units 1, 2, and 3Location:WTE (Burnaby, B.C)

A. Lanfranco & Associates Standard Operating Procedure:

SOP 1.2.1 Gravimetric determination of total particulate matter

Test #	Init	ial	Final	Net Diference	Blank Adjusted	
	(gram	s)	(grams)	(grams)	(grams)	
Unit 1 Blank	0.44	59	0.4463	0.0004		
Unit 1 Run 1	0.44	47	0.4467	0.0020	0.0016	
Unit 1 Run 2	0.44	36	0.4450	0.0014	0.0010	
Unit 1 Run 3	0.44	55	0.4475	0.0020	0.0016	
Unit 2 Blank	0.44	71	0.4473	0.0002		
Unit 2 Run 1	0.43	94	0.4433	0.0039	0.0037	
Unit 2 Run 2	0.44		0.4512	0.0040	0.0038	
Unit 2 Run 3	0.44	58	0.4500	0.0042	0.0040	
Unit 3 Blank	0.44	78	0.4481	0.0003		
Unit 3 Run 1	0.44		0.4468	0.0003	ND	
Unit 3 Run 2	0.44		0.4484	0.0007	0.0004	
Unit 3 Run 3	0.44	98	0.4502	0.0004	0.0001	
Front Half Washings:						
Test #	Init	ial	Final	Net	Blank	
				Diference	Adjusted	
	(gram	s)	(grams)	(grams)	(grams)	
Unit 1 Blank	85.60	13	85.6016	0.0003		
Unit 1 Run 1	119.18	35	119.1859	0.0024	0.0021	
Unit 1 Run 2	122.64		122.6482	0.0018	0.0015	
Unit 1 Run 3	120.13	21	120.1361	0.0040	0.0037	
Unit 2 Blank	84.39		84.3991	-0.0003		
Unit 2 Run 1	118.99		118.9991	0.0041	0.0044	
Unit 2 Run 2	83.95		83.9580	0.0060	0.0063	
Unit 2 Run 3	123.60	30	123.6140	0.0060	0.0063	
Unit 3 Blank	96.00		95.9999	-0.0004		
Unit 3 Run 1	129.19		129.1988	0.0008	0.0012	
Unit 3 Run 2	126.97		126.9789	0.0021	0.0025	
Unit 3 Run 3	99.49	72	99.4975	0.0003	0.0007	
Task	Unit	Personnel		Date	Quality Control	Y/N
Filter Recovery:	Unit 1	J. Ching		13-Feb-25	Adequate PW volume:	Y
	Unit 2	J. Ching		11-12-Feb-25	No sample leakage:	Y
	Unit 3	J. Ching		11-12-Feb-25	Filter not compromised:	Y
PW Initial Analysis:	Unit 1	J. Ching		18-Feb-25		
-	Unit 2	J. Ching		18-Feb-25		
	Unit 3	J. Ching		18-Feb-25		
PW, Filter Final Analysis:	Unit 1	S. Verby		20-Feb-25		
2 , 1 mer 1 mai 1 maryons.	Unit 2	S. Verby		20-Feb-25		
	Unit 3	S. Verby		20-Feb-25		
Data Entanad to Committee						
Data Entered to Computer:	All	D. Sampson		03-Mar-25		

Comments:

No problems encountered in sample analysis.

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

LABORATORY REPORT

March 3, 2025

Mark Lanfranco A. Lanfranco and Associates Inc. Unit 101 - 9488 189 St. Surrey, BC V4N 4W7

RE: Metro Vancouver WTE

Dear Mark:

Enclosed are the results of the samples submitted to our laboratory on February 17, 2025. For your reference, these analyses have been assigned our service request number P2500578.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

ALS | Environmental

By Sue Anderson at 4:39 pm, Mar 03, 2025

Sue Anderson Project Manager

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

Client: A. Lanfranco and Associates Inc. Service Request No: P2500578

Project: Metro Vancouver WTE

CASE NARRATIVE

The samples were received intact under chain of custody on February 17, 2025 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

C3 through C6 Hydrocarbons, Methane, Ethene and Ethane Analysis

The samples were analyzed per modified EPA Method TO-3 for C3 through >C6 hydrocarbons and methane, ethene and ethane using a gas chromatograph equipped with a flame ionization detector (FID). This procedure is described in laboratory SOP VOA-TO3C1C6. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AIHA-LAP, LLC accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	https://dec.alaska.gov/spar/csp/lab-approval/list-of-approved-labs	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental-laboratories/index.html	E871020
Louisiana DEQ (NELAP)	https://internet.deq.louisiana.gov/portal/divisions/lelap/accredited-laboratories	203013
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtm	CA012627
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	006-999-456
New Jersey DEP (NELAP)	https://dep.nj.gov/dsr/oqa/certified-laboratories/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oklahoma DEQ (NELAP)	labaccreditation.deq.ok.gov/labaccreditation/	2207
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	4068
Pennsylvania DEP	hhttp://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration only)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env lab accreditation.html	T104704413
Utah DOH (NELAP)	https://uphl.utah.gov/certifications/environmental-laboratory-certification/	CA01627
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Service Request: P2500578

Client: A. Lanfranco and Associates Inc.

Project ID: Metro Vancouver WTE

Tioject ID.	Wicho vancouv	CI W IL						Г	ц	ıı	
Date Received: Time Received:	2/17/2025 09:07		Date	Time	Container	Pi l	Pfl		3 Modified - C1C6+ Can	3 Modified - MEEPP Can	
Client Sample ID	Lab Code	Matrix	Collected	Collected	ID	(psig)	(psig)		TO-3	TO-3	
II '- 1 D - 1	7.5.00.5.00.001			40.0				·			
Unit 1 Run1	P2500578-001	Air	2/13/2025	10:25	SC02326	-1.56	3.68		X	X	
Unit 1 Run 2	P2500578-001 P2500578-002	Air Air	2/13/2025 2/13/2025	10:25 11:56	SC02326 SC01486	-1.56 -2.62	3.68		X	X X	
Unit 1 Run 2	P2500578-002	Air	2/13/2025	11:56	SC01486	-2.62	3.78		X X	X	
Unit 1 Run 2 Unit 1 Run 3	P2500578-002 P2500578-003	Air Air	2/13/2025 2/13/2025	11:56 13:10	SC01486 SC00826	-2.62 -2.34	3.78 3.62		X X	X X	
Unit 1 Run 2 Unit 1 Run 3 Unit 2 Run 1	P2500578-002 P2500578-003 P2500578-004	Air Air Air	2/13/2025 2/13/2025 2/12/2025	11:56 13:10 10:45	SC01486 SC00826 SC01028	-2.62 -2.34 -2.85	3.78 3.62 3.79		X X X X	X X X	
Unit 1 Run 2 Unit 1 Run 3 Unit 2 Run 1 Unit 2 Run 2	P2500578-002 P2500578-003 P2500578-004 P2500578-005	Air Air Air Air	2/13/2025 2/13/2025 2/12/2025 2/12/2025	11:56 13:10 10:45 11:56	SC01486 SC00826 SC01028 SC00778	-2.62 -2.34 -2.85 -4.08	3.78 3.62 3.79 4.10		X X X X	X X X X	
Unit 1 Run 2 Unit 1 Run 3 Unit 2 Run 1 Unit 2 Run 2 Unit 2 Run 3	P2500578-002 P2500578-003 P2500578-004 P2500578-005 P2500578-006	Air Air Air Air	2/13/2025 2/13/2025 2/12/2025 2/12/2025 2/12/2025	11:56 13:10 10:45 11:56 13:07	SC01486 SC00826 SC01028 SC00778 SC02299	-2.62 -2.34 -2.85 -4.08 -2.76	3.78 3.62 3.79 4.10 3.82		X X X X X	X X X X	

Air - Chain of Custody Record & Analytical Service Request

2655 Park Center Drive, Suite A Simi Valley, California 93065

Phone (805) 526-7161			ĺ	Requested T	urnaround Time in	Business Days (Surc	harges) pleas	se circle	1000	CAS Project N	10.
Fax (805) 526-7270				1 Day (100%)	2 Day (75%) 3 Day	(50%) 4 Day (35%)	5 Day (25%)	10 Day-Stand	ard		
	e de la companya della companya della companya della companya de la companya della companya dell							CAS Contact			
A. Lanfranco 3 As	**	05 T.		Project Name Metve Project Number	Vancouver	WTE	:	Analysi	s Method/A	Analytes	
Project Manager Mark Lanfra		-5 -1		P.O. # / Billing	g Information			0.3			Comments
604 881 25 82 Email Address for Result Reporting	l ax			Sampler (Print	& Sign)			1			e.g. Actual Preservative or specific instructions
mark. Lanfranco @ alo	nfranco	. com		Lian Sample Type		Flow Controller	-	P 7			
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	(Air/Tube/ Solid)	(Bar code # - AC, SC, etc.)	(Bar code - FC #)	Sample Volume	لبا			
Unit Run 1		Feb 13/25	9:25-10:25	No. 1	003213	0A00102					
Unit1 Runz		Feb 13/25	1056-1156		002538	0A00102					
Unit 1 Run3		Feb 13/25	1210-1310		02006	0A00102					
			Ų.								
Unit 2 Run 1			945-1045		02026	CA00696					
Unit 2 Run 2			1056-1156		01119	CA00696		/			
Unit 2 Run 3		feb 12/25	1207-1307		002845	CA00696					
Unit 3 Run 1		Feb 11/25	9:35-10:35		01193	881					
Unit 3 Run 2		Feb 11/25	10:46:11:46		01185	881		/			
Unit 3 Run3			1158-1258		002747	88)		/			
				•							
Report Tier Levels - please select Tier I - (Results/Default if not specified) Tier II (Results + QC)		Tier III (Data V Tier V (client s	alidation Packa	ge) 10% Surcha	rge		EDD require	d Yes / No	EDD Units:		Project Requirements (MRLs, QAPP)
Reliquished by: (Signature)			Date:	Time:	Received by: (Signatur	e) Fapel			Date:	Time:	
Reliquished by: (Signature)	メ		Date:	Time:	Received by: (Signatur	re)	~		Date: 2-17-15	0907	
Reliquished by: (Signature)			Date:	Time:	Received by: (Signatur	re) C			Date:	Time:	Cooler / Blank Temperature°C

ALS Environmental Sample Acceptance Check Form

		and Associates Inc.	~ ~~~			Work order:	P2500578			
	Metro Vancou				D.4	2/17/2025	1	ANTELLO	NIX/ X/ A	COLIEZ
Sample	s) received on:	2/17/2025		•	Date opened:	2/17/2025	_ by:	ANTHO	JNY.VA	SQUEZ
Note: This f	form is used for al	l samples received by ALS	. The use of this fe	orm for custody se	eals is strictly me	eant to indicate prese	nce/absence and no	ot as an in	dication	of
compliance	or nonconformity.	Thermal preservation and	l pH will only be e	valuated either at	the request of the	e client and/or as req	uired by the metho			
					_			Yes	No	<u>N/A</u>
1	-	containers properly		ient sample ID	?			X		
2	_	ontainers arrive in go						\boxtimes		
3		f-custody papers used						X		
4	-	ontainer labels and/o	0		ers?			X		
5	_	rolume received adeq	•	is?				X		
6	-	vithin specified holdir	•					X		
7	Was proper te	mperature (thermal	preservation) o	f cooler at rece	eipt adhered t	o?				X
8	Were custody	seals on outside of c	ooler/Box/Con	tainer?					X	
		Location of seal(s)?					_Sealing Lid?			X
	Were signatur	e and date included?								X
	Were seals int	act?								X
9	Do containe	rs have appropriate p	reservation, a	ccording to me	ethod/SOP or	Client specified	information?			X
	Is there a clie	nt indication that the	submitted samp	oles are pH pro	eserved?					\times
	Were VOA v	ials checked for prese	ence/absence of	f air bubbles?						X
	Does the clien	t/method/SOP require	e that the analy	st check the sa	mple pH and	if necessary alte	r it?			\boxtimes
10	Tubes:	Are the tubes cap	•		rrr					X
	Badges:	Are the badges p	-							×
11	2008001	-			ri commad and	into at?				\boxtimes
10	Lab Notificati	Are dual bed bad	ges separated a were alerted of			intact?				X
12 13		ation: Client has been n			-	CoC discrepancie	e?	П		X
15	Chefit Protiffic	l	Touried regarding	g 111 exceedance		l coc discrepancie	3.	"""""	"""""	<u> </u>
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspac	Receip	ot / Pres	ervation	l
		Description	pH *	pН	pН	(Presence/Absence)	Comme	nts	
P2500578		6.0 L Source Can								
P2500578		6.0 L Source Can								
P2500578		6.0 L Source Can								
P2500578		6.0 L Source Can								
P2500578		6.0 L Source Can								
P2500578		6.0 L Source Can								
P2500578 P2500578		6.0 L Source Can 6.0 L Source Can								
P2500578		6.0 L Source Can								
2300370	000.01	0.0 L Source Can								
Explain	any discrepanc	ies: (include lab sample	ID numbers):							
£	· · · · · ·	, F	/-							

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run1 ALS Project ID: P2500578
Client Project ID: Metro Vancouver WTE ALS Sample ID: P2500578-001

Test Code: EPA TO-3 Modified Date Collected: 2/13/25
Instrument ID: HP5890 II/GC8/FID Date Received: 2/17/25
Analyst: Stephanie Reynoso Date Analyzed: 2/28/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02326

Initial Pressure (psig): -1.56 Final Pressure (psig): 3.68

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.70	
C ₄ as n-Butane	ND	0.70	
C ₅ as n-Pentane	0.75	0.70	
C ₆ as n-Hexane	ND	0.70	
C ₆ + as n-Hexane	ND	4.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 2

Client Project ID: P2500578

Client Project ID: Metro Vancouver WTE

ALS Project ID: P2500578-002

Test Code:EPA TO-3 ModifiedDate Collected: 2/13/25Instrument ID:HP5890 II/GC8/FIDDate Received: 2/17/25Analyst:Stephanie ReynosoDate Analyzed: 2/28/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01486

Initial Pressure (psig): -2.62 Final Pressure (psig): 3.78

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.77	
C ₄ as n-Butane	ND	0.77	
C ₅ as n-Pentane	1.0	0.77	
C ₆ as n-Hexane	ND	0.77	
C ₆ + as n-Hexane	ND	4.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 3

Client Project ID: P2500578

Client Project ID: Metro Vancouver WTE

ALS Project ID: P2500578-003

Test Code: EPA TO-3 Modified Date Collected: 2/13/25
Instrument ID: HP5890 II/GC8/FID Date Received: 2/17/25
Analyst: Stephanie Reynoso Date Analyzed: 2/28/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00826

Initial Pressure (psig): -2.34 Final Pressure (psig): 3.62

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.74	
C ₄ as n-Butane	ND	0.74	
C ₅ as n-Pentane	1.3	0.74	
C ₆ as n-Hexane	ND	0.74	
C ₆ + as n-Hexane	ND	4.4	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1 ALS Project ID: P2500578
Client Project ID: Metro Vancouver WTE ALS Sample ID: P2500578-004

Test Code:EPA TO-3 ModifiedDate Collected: 2/12/25Instrument ID:HP5890 II/GC8/FIDDate Received: 2/17/25Analyst:Stephanie ReynosoDate Analyzed: 2/28/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01028

Initial Pressure (psig): -2.85 Final Pressure (psig): 3.79

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.78	
C ₄ as n-Butane	0.85	0.78	
C ₅ as n-Pentane	1.4	0.78	
C ₆ as n-Hexane	ND	0.78	
C ₆ + as n-Hexane	ND	4.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: P2500578

ALS Project ID: P2500578

ALS Sample ID: P2500578-005

Test Code: EPA TO-3 Modified Date Collected: 2/12/25
Instrument ID: HP5890 II/GC8/FID Date Received: 2/17/25
Analyst: Stephanie Reynoso Date Analyzed: 2/28/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00778

Initial Pressure (psig): -4.08 Final Pressure (psig): 4.10

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.89	
C ₄ as n-Butane	1.1	0.89	
C ₅ as n-Pentane	1.6	0.89	
C ₆ as n-Hexane	ND	0.89	
C ₆ + as n-Hexane	ND	5.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: P2500578

Client Project ID: Metro Vancouver WTE

ALS Sample ID: P2500578-006

Test Code:EPA TO-3 ModifiedDate Collected: 2/12/25Instrument ID:HP5890 II/GC8/FIDDate Received: 2/17/25Analyst:Stephanie ReynosoDate Analyzed: 2/28/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02299

Initial Pressure (psig): -2.76 Final Pressure (psig): 3.82

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.78	
C ₄ as n-Butane	ND	0.78	
C ₅ as n-Pentane	1.1	0.78	
C ₆ as n-Hexane	ND	0.78	
C ₆ + as n-Hexane	ND	4.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2500578
Client Project ID: Metro Vancouver WTE ALS Sample ID: P2500578-007

Test Code:EPA TO-3 ModifiedDate Collected: 2/11/25Instrument ID:HP5890 II/GC8/FIDDate Received: 2/17/25Analyst:Stephanie ReynosoDate Analyzed: 2/28/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00235

Initial Pressure (psig): -3.47 Final Pressure (psig): 3.81

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.83	
C ₄ as n-Butane	ND	0.83	
C ₅ as n-Pentane	1.3	0.83	
C ₆ as n-Hexane	ND	0.83	
C ₆ + as n-Hexane	ND	5.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: P2500578

ALS Project ID: P2500578

ALS Sample ID: P2500578-008

Test Code:EPA TO-3 ModifiedDate Collected: 2/11/25Instrument ID:HP5890 II/GC8/FIDDate Received: 2/17/25Analyst:Stephanie ReynosoDate Analyzed: 2/28/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00134

Initial Pressure (psig): -2.23 Final Pressure (psig): 3.52

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.73	
C ₄ as n-Butane	0.76	0.73	
C ₅ as n-Pentane	1.3	0.73	
C ₆ as n-Hexane	ND	0.73	
C ₆ + as n-Hexane	ND	4.4	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: P2500578

ALS Project ID: P2500578

ALS Sample ID: P2500578-009

Test Code: EPA TO-3 Modified Date Collected: 2/11/25 Instrument ID: HP5890 II/GC8/FID Date Received: 2/17/25 Analyst: Stephanie Reynoso Date Analyzed: 2/28/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01509

Initial Pressure (psig): -3.02 Final Pressure (psig): 3.57

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.78	
C ₄ as n-Butane	ND	0.78	
C ₅ as n-Pentane	1.1	0.78	
C ₆ as n-Hexane	ND	0.78	
C ₆ + as n-Hexane	ND	4.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Method BlankALS Project ID: P2500578Client Project ID:Metro Vancouver WTEALS Sample ID: P250228-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 2/28/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.50	
C ₄ as n-Butane	ND	0.50	
C ₅ as n-Pentane	ND	0.50	
C ₆ as n-Hexane	ND	0.50	
C ₆ + as n-Hexane	ND	3.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Duplicate Lab Control SampleALS Project ID: P2500578Client Project ID:Metro Vancouver WTEALS Sample ID: P250228-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 2/28/25
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

Test Notes:

	Spike Amount	Re	sult			ALS			
Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
	ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
Propane	1,000	1,100	1,100	110	110	92-120	0	6	
n-Butane	1,000	1,090	1,100	109	110	91-121	0.9	6	
n-Pentane	1,000	1,040	1,040	104	104	89-118	0	6	
n-Hexane	1,000	1,020	1,030	102	103	92-125	1	6	

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run1 ALS Project ID: P2500578
Client Project ID: Metro Vancouver WTE ALS Sample ID: P2500578-001

Test Code: EPA TO-3 Modified Date Collected: 2/13/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 2/17/25
Analyst: Stephanie Reynoso Date Analyzed: 2/27/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02326

Initial Pressure (psig): -1.56 Final Pressure (psig): 3.68

Container Dilution Factor: 1.40

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	1.8	ND	2.8	
74-85-1	Ethene	ND	0.96	ND	0.84	
74-84-0	Ethane	ND	1.0	ND	0.84	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 2

Client Project ID: P2500578

Client Project ID: Metro Vancouver WTE

ALS Project ID: P2500578-002

Test Code: EPA TO-3 Modified Date Collected: 2/13/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 2/17/25
Analyst: Stephanie Reynoso Date Analyzed: 2/27/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01486

Initial Pressure (psig): -2.62 Final Pressure (psig): 3.78

Container Dilution Factor: 1.53

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.2	2.0	3.3	3.1	
74-85-1	Ethene	ND	1.1	ND	0.92	
74-84-0	Ethane	ND	1.1	ND	0.92	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 3

Client Project ID: P2500578

Client Project ID: Metro Vancouver WTE

ALS Sample ID: P2500578-003

Test Code: EPA TO-3 Modified Date Collected: 2/13/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 2/17/25
Analyst: Stephanie Reynoso Date Analyzed: 2/27/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00826

Initial Pressure (psig): -2.34 Final Pressure (psig): 3.62

Container Dilution Factor: 1.48

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.0	1.9	3.0	3.0	
74-85-1	Ethene	ND	1.0	ND	0.89	
74-84-0	Ethane	ND	1.1	ND	0.89	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1 ALS Project ID: P2500578
Client Project ID: Metro Vancouver WTE ALS Sample ID: P2500578-004

Test Code:EPA TO-3 ModifiedDate Collected: 2/12/25Instrument ID:HP5890A/GC10/FID/TCDDate Received: 2/17/25Analyst:Stephanie ReynosoDate Analyzed: 2/27/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01028

Initial Pressure (psig): -2.85 Final Pressure (psig): 3.79

Container Dilution Factor: 1.56

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.7	2.0	4.1	3.1	
74-85-1	Ethene	ND	1.1	ND	0.94	
74-84-0	Ethane	ND	1.2	ND	0.94	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: P2500578

ALS Project ID: P2500578

ALS Sample ID: P2500578-005

Test Code: EPA TO-3 Modified Date Collected: 2/12/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 2/17/25
Analyst: Stephanie Reynoso Date Analyzed: 2/27/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00778

Initial Pressure (psig): -4.08 Final Pressure (psig): 4.10

Container Dilution Factor: 1.77

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	5.4	2.3	8.2	3.5	
74-85-1	Ethene	ND	1.2	ND	1.1	
74-84-0	Ethane	ND	1.3	ND	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: P2500578

ALS Project ID: P2500578

ALS Sample ID: P2500578-006

Test Code:EPA TO-3 ModifiedDate Collected: 2/12/25Instrument ID:HP5890A/GC10/FID/TCDDate Received: 2/17/25Analyst:Stephanie ReynosoDate Analyzed: 2/27/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02299

Initial Pressure (psig): -2.76 Final Pressure (psig): 3.82

Container Dilution Factor: 1.55

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.1	2.0	3.2	3.1	_
74-85-1	Ethene	ND	1.1	ND	0.93	
74-84-0	Ethane	ND	1.1	ND	0.93	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2500578
Client Project ID: Metro Vancouver WTE ALS Sample ID: P2500578-007

Test Code: EPA TO-3 Modified Date Collected: 2/11/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 2/17/25
Analyst: Stephanie Reynoso Date Analyzed: 2/27/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00235

Initial Pressure (psig): -3.47 Final Pressure (psig): 3.81

Container Dilution Factor: 1.65

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.2	ND	3.3	_
74-85-1	Ethene	ND	1.1	ND	0.99	
74-84-0	Ethane	ND	1.2	ND	0.99	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: P2500578

ALS Project ID: P2500578

ALS Sample ID: P2500578-008

Test Code:EPA TO-3 ModifiedDate Collected: 2/11/25Instrument ID:HP5890A/GC10/FID/TCDDate Received: 2/17/25Analyst:Stephanie ReynosoDate Analyzed: 2/27/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00134

Initial Pressure (psig): -2.23 Final Pressure (psig): 3.52

Container Dilution Factor: 1.46

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m³	ppmV	ppmV	Qualifier
74-82-8	Methane	2.3	1.9	3.4	2.9	
74-85-1	Ethene	ND	1.0	ND	0.88	
74-84-0	Ethane	ND	1.1	ND	0.88	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: P2500578

ALS Project ID: P2500578

ALS Sample ID: P2500578-009

Test Code: EPA TO-3 Modified Date Collected: 2/11/25
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 2/17/25
Analyst: Stephanie Reynoso Date Analyzed: 2/27/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01509

Initial Pressure (psig): -3.02 Final Pressure (psig): 3.57

Container Dilution Factor: 1.56

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.2	2.0	3.4	3.1	
74-85-1	Ethene	ND	1.1	ND	0.94	
74-84-0	Ethane	ND	1.2	ND	0.94	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Method Blank
Client Project ID: Metro Vancouver WTE
ALS Project ID: P2500578
ALS Sample ID: P250227-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID/TCD Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 2/27/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	1.3	ND	2.0	
74-85-1	Ethene	ND	0.69	ND	0.60	
74-84-0	Ethane	ND	0.74	ND	0.60	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Duplicate Lab Control SampleALS Project ID: P2500578Client Project ID:Metro Vancouver WTEALS Sample ID: P250227-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID/TCD Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 2/27/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

Test Notes:

		Spike Amount	Re	sult			ALS			
CAS#	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
74-82-8	Methane	7.60	7.79	7.45	103	98	70-130	5	15	
74-85-1	Ethene	7.53	7.41	7.12	98	95	70-130	3	15	
74-84-0	Ethane	7.49	7.67	7.42	102	99	70-130	3	15	

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167 info@betalabservices.com

March 3, 2025

Mark Lanfranco
A. Lanfranco and Associates Inc.
Unit 101 - 9488 189 St.
Surrey, British Columbia (BC) V4N4W7
Canada

Dear Mark Lanfranco,

Please find enclosed your radiocarbon (C14) report for the material recently submitted. The result is reported as "% Biogenic Carbon". This indicates the percentage carbon from "renewable" (biomass or animal by-product) sources versus petroleum (or otherwise fossil) sources . For reference, 100 % Biogenic Carbon indicates that a material is entirely sourced from plants or animal by-products and 0 % Biogenic Carbon indicates that a material did not contain any carbon from plants or animal by-products. A value in between represents a mixture of natural and fossil sources.

The analytical measurement is cited as "percent modern carbon (pMC)". This is the percentage of C14 measured in the sample relative to a modern reference standard (NIST 4990C). The % Biogenic Carbon content is calculated from pMC by applying a small adjustment factor for C14 in carbon dioxide in air today. It is important to note is that all internationally recognized standards using C14 assume that the plant or biomass feedstocks were obtained from natural environments.

Reported results are accredited to ISO/IEC 17025:2017 PJLA #59423 standards and all chemistry was performed here in our laboratory and counted in our own accelerators in Miami, Florida.

The international standard method utilized for this analysis is cited under Summary of Results. The standard version used is the latest available as of the date reported (unless otherwise noted). The report also indicates if the result is relative to total carbon (TC) or only total organic carbon (TOC). When interpreting the results, please consider any communications you may have had with us regarding the analysis. If you have any questions, please contact us. We welcome your inquiries.

Sincerely,

Carlos Barroso

Laboratory Management Group / AMS Pretreatment Manager

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167

info@betalabservices.com

Summary of Results - % Biogenic CO2 ASTM D6866-16

Method B (AMS) TC

Validation:

Certificate Number:

E58C512A01064BAF9003B0A0B7049763

To validate report, scan this QR code on a mobile device of go to https://verify.betalabservices.com and enter the requested information.

Submitter Mark Lanfranco

Company A. Lanfranco and Associates Inc.

Received Date February 25, 2025

Report Date March 3, 2025

Sample Code Unit 1 Run 1

Result 50% Biogenic CO2

Laboratory Number Beta-737222

Percent modern carbon (pMC) 49.65 +/- 0.13 pMC Atmospheric adjustment factor (REF) 99.4; = pMC/0.994

Labeling COC

View of Content

Disclosures: All analytical work is performed by BETA Analytic's professional staff, in its laboratories on our AMS, IRMS, CRDS and GC instruments. No subcontractors are ever used. We are a tracer-free 14C facility that does not accept or analyze materials that might contain artificial 14C (from biomedical, environmental, or other studies). Quality Assurance is maintained through our ongoing ISO/IEC 17025:2017 Laboratory Testing Accreditation, and verified by Quality Assurance Reports, posted to the web-library along with this report.

The published report is final and non-modifiable.

This report has been built with the information provided on the online form by the client. If different reporting information is required, a new sample analysis must be performed, with a new online form filled out to include exactly the information requested on the form.

Precision on the RESULT is cited as +/- 3% (absolute). The cited precision on the analytical measure (pMC) is 1 sigma (1 relative standard deviation). The reported result only applies to the analyzed material. The accuracy of the RESULT relies on the measured carbon in the analyzed material having been in recent equilibrium with CO2 in the air and/or from fossil carbon (more than 45,000 years old) such as petroleum or coal. The RESULT only applies to relative carbon content, not to relative mass content. The RESULT is calculated by adjusting pMC by the applicable "Atmospheric adjustment factor (REF)" cited in this report.

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167 info@betalabservices.com

Summary of Results - % Biogenic CO2 ASTM D6866-16

Method B (AMS) TC

Validation:

Certificate Number:

E58C512A01064BAF9003B0A0B7049763

To validate report, scan this QR code on a mobile device of go to https://verify.betalabservices.com and enter the requested information.

Submitter Mark Lanfranco

Company A. Lanfranco and Associates Inc.


Received Date February 25, 2025
Report Date March 3, 2025

Sample Code Unit 1 Run 1

Result 50% Biogenic CO2

Laboratory Number Beta-737222

Percent modern carbon (pMC) 49.65 +/- 0.13 pMC Atmospheric adjustment factor (REF) 99.4; = pMC/0.994

Precision on the RESULT is cited as +/- 3% (absolute). The cited precision on the analytical measure (pMC) is 1 sigma (1 relative standard deviation). The reported result only applies to the analyzed material. The accuracy of the RESULT relies on the measured carbon in the analyzed material having been in recent equilibrium with CO2 in the air and/or from fossil carbon (more than 45,000 years old) such as petroleum or coal. The RESULT only applies to relative carbon content, not to relative mass content. The RESULT is calculated by adjusting pMC by the applicable "Atmospheric adjustment factor (REF)" cited in this report.

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167 info@betalabservices.com

% Biogenic CO2 ASTM D6866-16 Method B (AMS) TC

Explanation of Results

The result was obtained using the radiocarbon isotope (also known as Carbon-14, C14 or 14C), a naturally occurring isotope of carbon that is radioactive and decays in such a way that there is none left after about 45,000 years following the death of a plant or animal. Its most common use is radiocarbon dating by archaeologists. An industrial application was also developed to determine if consumer products and CO2 emissions were sourced from plants/biomass or from materials such as petroleum or coal (fossil-ba sed). By 2003 there was growing demand for a standardized methodology for applying Carbon -14 testing within the regulatory environment. The first of these standards was ASTM D6866-04, which was written with the assistance of Beta Analytic. Since ASTM was largely viewed as a US standard, European stakeholders soon began demanding an equivalent CEN standard while global stakeholders called for ISO standardization.

The analytical procedures for measuring radiocarbon content using the different standards are identical. The only difference is the reporting format. Results are usually reported using the standardized terminology "% biobased carbon". Only ASTM D6866 uses the term "% biogenic carbon" when the result represents all carbon present (Total Carbon) rather than just the organic carbon (Total Organic Carbon). The terms "% biobased carbon" and "% biogenic carbon" are now the standard units in regulatory and industrial applications, replacing obscure units of measure historically reported by radiocarbon dating laboratories e.g. disintegra tions per minute per gram (dpm/g) or radiocarbon age.

The result was obtained by measuring the ratio of radiocarbon in the material relative to a National Institute of Standards and Technology (NIST) modern reference standard (SRM 4990C). This ratio was calculated as a percentage and is reported as percent modern carbon (pMC). The value obtained relative to the NIST standard is normalized to the year 1950 AD so an adjustment was required to calculate a carbon source value relative to today. This factor is listed on the report sheet as the terminology "REF".

Interpretation and application of the results is straightforward. A value of 100% biobased or biogenic carbon would indicate that 100% of the carbon came from plants or animal by-products (biomass) living in the natural environment and a value of 0% would mean that all of the carbon was derived from petrochemicals, coal and other fossil sources. A value between 0-100% would indicate a mixture. The higher the value, the greater the proportion of naturally sourced components in the material.

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167

info@betalabservices.com

Quality Assurance Report

This report provides the results of reference materials used to validate radiocarbon analyses prior to reporting. Known-value reference materials were analyzed quasi-simultaneously with the unknowns. Results are reported as expected values vs measured values. Reported values are calculated relative to NIST SRM-4990C and corrected for isotopic fractionation. Results are reported using the direct analytical measure percent modern carbon (pMC) with one relative standard deviation. Agreement between expected and measured values is taken as being within 2 sigma agreement (error x 2) to account for total laboratory error.

Report Date March 3, 2025 Submitter Mark Lanfranco

QA MEASUREMENTS

Reference 1

129.41 +/- 0.06 pMC **Expected Value** Measured Value 129.55 +/- 0.16 pMC

> Agreement Accepted

Reference 2

Expected Value 0.44 +/- 0.04 pMC

Measured Value 0.43 +/- 0.04 pMC

> Agreement Accepted

Reference 3

Expected Value 95.86 +/- 0.37 pMC Measured Value 95.50 +/- 0.24 pMC

> Agreement Accepted

All measurements passed acceptance tests. Comment

Validation March 3, 2025 Date

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167 info@betalabservices.com

March 3, 2025

Mark Lanfranco
A. Lanfranco and Associates Inc.
Unit 101 - 9488 189 St.
Surrey, British Columbia (BC) V4N4W7
Canada

Dear Mark Lanfranco,

Please find enclosed your radiocarbon (C14) report for the material recently submitted. The result is reported as "% Biogenic Carbon". This indicates the percentage carbon from "renewable" (biomass or animal by-product) sources versus petroleum (or otherwise fossil) sources . For reference, 100 % Biogenic Carbon indicates that a material is entirely sourced from plants or animal by-products and 0 % Biogenic Carbon indicates that a material did not contain any carbon from plants or animal by-products. A value in between represents a mixture of natural and fossil sources.

The analytical measurement is cited as "percent modern carbon (pMC)". This is the percentage of C14 measured in the sample relative to a modern reference standard (NIST 4990C). The % Biogenic Carbon content is calculated from pMC by applying a small adjustment factor for C14 in carbon dioxide in air today. It is important to note is that all internationally recognized standards using C14 assume that the plant or biomass feedstocks were obtained from natural environments.

Reported results are accredited to ISO/IEC 17025:2017 PJLA #59423 standards and all chemistry was performed here in our laboratory and counted in our own accelerators in Miami, Florida.

The international standard method utilized for this analysis is cited under Summary of Results. The standard version used is the latest available as of the date reported (unless otherwise noted). The report also indicates if the result is relative to total carbon (TC) or only total organic carbon (TOC). When interpreting the results, please consider any communications you may have had with us regarding the analysis. If you have any questions, please contact us. We welcome your inquiries.

Sincerely,

Carlos Barroso

Laboratory Management Group / AMS Pretreatment Manager

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167

info@betalabservices.com

Summary of Results - % Biogenic CO2 ASTM D6866-16

Method B (AMS) TC

Validation:

Certificate Number:

5F41A63675924CB57AF5387D7BF78346

To validate report, scan this QR code on a mobile device or go to https://verify.betalabservices.com and enter the requested information.

Submitter Mark Lanfranco

Company A. Lanfranco and Associates Inc.

Received Date February 25, 2025

Report Date March 3, 2025

Sample Code Unit 2 Run 1

Result 56% Biogenic CO2

Laboratory Number Beta-737223

Percent modern carbon (pMC) 55.49 +/- 0.14 pMC
Atmospheric adjustment factor (REF) 99.4; = pMC/0.994

Labeling COC

View of Content

Disclosures: All analytical work is performed by BETA Analytic's professional staff, in its laboratories on our AMS, IRMS, CRDS and GC instruments. No subcontractors are ever used. We are a tracer-free 14C facility that does not accept or analyze materials that might contain artificial 14C (from biomedical, environmental, or other studies). Quality Assurance is maintained through our ongoing ISO/IEC 17025:2017 Laboratory Testing Accreditation, and verified by Quality Assurance Reports, posted to the web-library along with this report.

The published report is final and non-modifiable.

This report has been built with the information provided on the online form by the client. If different reporting information is required, a new sample analysis must be performed, with a new online form filled out to include exactly the information requested on the form.

Precision on the RESULT is cited as +/- 3% (absolute). The cited precision on the analytical measure (pMC) is 1 sigma (1 relative standard deviation). The reported result only applies to the analyzed material. The accuracy of the RESULT relies on the measured carbon in the analyzed material having been in recent equilibrium with CO2 in the air and/or from fossil carbon (more than 45,000 years old) such as petroleum or coal. The RESULT only applies to relative carbon content, not to relative mass content. The RESULT is calculated by adjusting pMC by the applicable "Atmospheric adjustment factor (REF)" cited in this report.

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167 info@betalabservices.com

Summary of Results - % Biogenic CO2 ASTM D6866-16

Method B (AMS) TC

Validation:

Certificate Number:

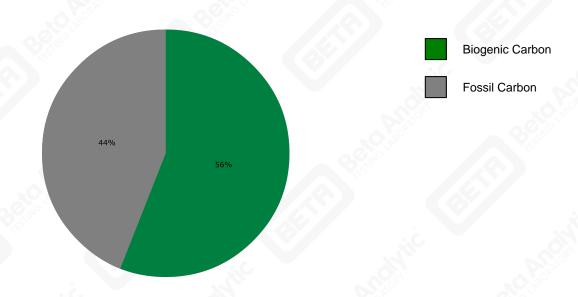
5F41A63675924CB57AF5387D7BF78346

To validate report, scan this QR code on a mobile device or go to https://verify.betalabservices.com and enter the requested information.

Submitter Mark Lanfranco

Company A. Lanfranco and Associates Inc.

Received Date February 25, 2025


Report Date March 3, 2025

Sample Code Unit 2 Run 1

Result 56% Biogenic CO2

Laboratory Number Beta-737223

Percent modern carbon (pMC) 55.49 +/- 0.14 pMC Atmospheric adjustment factor (REF) 99.4; = pMC/0.994

Precision on the RESULT is cited as +/- 3% (absolute). The cited precision on the analytical measure (pMC) is 1 sigma (1 relative standard deviation). The reported result only applies to the analyzed material. The accuracy of the RESULT relies on the measured carbon in the analyzed material having been in recent equilibrium with CO2 in the air and/or from fossil carbon (more than 45,000 years old) such as petroleum or coal. The RESULT only applies to relative carbon content, not to relative mass content. The RESULT is calculated by adjusting pMC by the applicable "Atmospheric adjustment factor (REF)" cited in this report.

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167 info@betalabservices.com

% Biogenic CO2 ASTM D6866-16 Method B (AMS) TC

Explanation of Results

The result was obtained using the radiocarbon isotope (also known as Carbon-14, C14 or 14C), a naturally occurring isotope of carbon that is radioactive and decays in such a way that there is none left after about 45,000 years following the death of a plant or animal. Its most common use is radiocarbon dating by archaeologists. An industrial application was also developed to determine if consumer products and CO2 emissions were sourced from plants/biomass or from materials such as petroleum or coal (fossil-ba sed). By 2003 there was growing demand for a standardized methodology for applying Carbon -14 testing within the regulatory environment. The first of these standards was ASTM D6866-04, which was written with the assistance of Beta Analytic. Since ASTM was largely viewed as a US standard, European stakeholders soon began demanding an equivalent CEN standard while global stakeholders called for ISO standardization.

The analytical procedures for measuring radiocarbon content using the different standards are identical. The only difference is the reporting format. Results are usually reported using the standardized terminology "% biobased carbon". Only ASTM D6866 uses the term "% biogenic carbon" when the result represents all carbon present (Total Carbon) rather than just the organic carbon (Total Organic Carbon). The terms "% biobased carbon" and "% biogenic carbon" are now the standard units in regulatory and industrial applications, replacing obscure units of measure historically reported by radiocarbon dating laboratories e.g. disintegra tions per minute per gram (dpm/g) or radiocarbon age.

The result was obtained by measuring the ratio of radiocarbon in the material relative to a National Institute of Standards and Technology (NIST) modern reference standard (SRM 4990C). This ratio was calculated as a percentage and is reported as percent modern carbon (pMC). The value obtained relative to the NIST standard is normalized to the year 1950 AD so an adjustment was required to calculate a carbon source value relative to today. This factor is listed on the report sheet as the terminology "REF".

Interpretation and application of the results is straightforward. A value of 100% biobased or biogenic carbon would indicate that 100% of the carbon came from plants or animal by-products (biomass) living in the natural environment and a value of 0% would mean that all of the carbon was derived from petrochemicals, coal and other fossil sources. A value between 0-100% would indicate a mixture. The higher the value, the greater the proportion of naturally sourced components in the material.

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167

info@betalabservices.com

Quality Assurance Report

This report provides the results of reference materials used to validate radiocarbon analyses prior to reporting. Known-value reference materials were analyzed quasi-simultaneously with the unknowns. Results are reported as expected values vs measured values. Reported values are calculated relative to NIST SRM-4990C and corrected for isotopic fractionation. Results are reported using the direct analytical measure percent modern carbon (pMC) with one relative standard deviation. Agreement between expected and measured values is taken as being within 2 sigma agreement (error x 2) to account for total laboratory error.

Report Date March 3, 2025 Submitter Mark Lanfranco

QA MEASUREMENTS

Reference 1

129.41 +/- 0.06 pMC **Expected Value** Measured Value 129.55 +/- 0.16 pMC

> Agreement Accepted

Reference 2

Expected Value 0.44 +/- 0.04 pMC

Measured Value 0.43 +/- 0.04 pMC

> Agreement Accepted

Reference 3

Expected Value 95.86 +/- 0.37 pMC Measured Value 95.50 +/- 0.24 pMC

> Agreement Accepted

All measurements passed acceptance tests. Comment

Validation March 3, 2025 Date

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167

info@betalabservices.com

March 3, 2025

Mark Lanfranco
A. Lanfranco and Associates Inc.
Unit 101 - 9488 189 St.
Surrey, British Columbia (BC) V4N4W7
Canada

Dear Mark Lanfranco,

Please find enclosed your radiocarbon (C14) report for the material recently submitted. The result is reported as "% Biogenic Carbon". This indicates the percentage carbon from "renewable" (biomass or animal by-product) sources versus petroleum (or otherwise fossil) sources . For reference, 100 % Biogenic Carbon indicates that a material is entirely sourced from plants or animal by-products and 0 % Biogenic Carbon indicates that a material did not contain any carbon from plants or animal by-products. A value in between represents a mixture of natural and fossil sources.

The analytical measurement is cited as "percent modern carbon (pMC)". This is the percentage of C14 measured in the sample relative to a modern reference standard (NIST 4990C). The % Biogenic Carbon content is calculated from pMC by applying a small adjustment factor for C14 in carbon dioxide in air today. It is important to note is that all internationally recognized standards using C14 assume that the plant or biomass feedstocks were obtained from natural environments.

Reported results are accredited to ISO/IEC 17025:2017 PJLA #59423 standards and all chemistry was performed here in our laboratory and counted in our own accelerators in Miami, Florida.

The international standard method utilized for this analysis is cited under Summary of Results. The standard version used is the latest available as of the date reported (unless otherwise noted). The report also indicates if the result is relative to total carbon (TC) or only total organic carbon (TOC). When interpreting the results, please consider any communications you may have had with us regarding the analysis. If you have any questions, please contact us. We welcome your inquiries.

Sincerely,

Carlos Barroso

Laboratory Management Group / AMS Pretreatment Manager

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167 info@betalabservices.com

Summary of Results - % Biogenic CO2 ASTM D6866-16

Method B (AMS) TC

Validation:

Certificate Number:

9DD52CF543480A144CEAB0E84576614A

To validate report, scan this QR code on a mobile device of go to https://verify.betalabservices.com and enter the requested information.

Submitter Mark Lanfranco

Company A. Lanfranco and Associates Inc.

Received Date February 25, 2025

Report Date March 3, 2025

Sample Code Unit 3 Run 1

Result 57% Biogenic CO2

Laboratory Number Beta-737224

Percent modern carbon (pMC) 57.00 +/- 0.14 pMC Atmospheric adjustment factor (REF) 99.4; = pMC/0.994

Labeling COC

View of Content

Disclosures: All analytical work is performed by BETA Analytic's professional staff, in its laboratories on our AMS, IRMS, CRDS and GC instruments. No subcontractors are ever used. We are a tracer-free 14C facility that does not accept or analyze materials that might contain artificial 14C (from biomedical, environmental, or other studies). Quality Assurance is maintained through our ongoing ISO/IEC 17025:2017 Laboratory Testing Accreditation, and verified by Quality Assurance Reports, posted to the web-library along with this report.

The published report is final and non-modifiable.

This report has been built with the information provided on the online form by the client. If different reporting information is required, a new sample analysis must be performed, with a new online form filled out to include exactly the information requested on the form.

Precision on the RESULT is cited as +/- 3% (absolute). The cited precision on the analytical measure (pMC) is 1 sigma (1 relative standard deviation). The reported result only applies to the analyzed material. The accuracy of the RESULT relies on the measured carbon in the analyzed material having been in recent equilibrium with CO2 in the air and/or from fossil carbon (more than 45,000 years old) such as petroleum or coal. The RESULT only applies to relative carbon content, not to relative mass content. The RESULT is calculated by adjusting pMC by the applicable "Atmospheric adjustment factor (REF)" cited in this report.

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167 info@betalabservices.com

Summary of Results - % Biogenic CO2 ASTM D6866-16

Method B (AMS) TC

Validation:

Certificate Number:

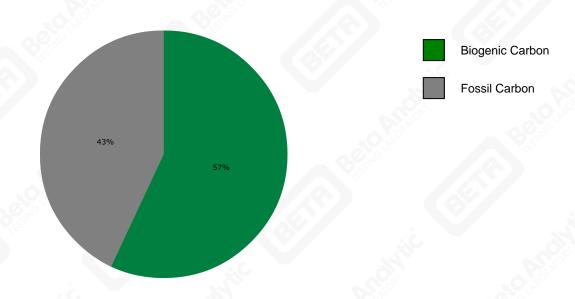
9DD52CF543480A144CEAB0E84576614A

To validate report, scan this QR code on a mobile device of go to https://verify.betalabservices.com and enter the requested information.

Submitter Mark Lanfranco

Company A. Lanfranco and Associates Inc.

Received Date February 25, 2025


Report Date March 3, 2025

Sample Code Unit 3 Run 1

Result 57% Biogenic CO2

Laboratory Number Beta-737224

Percent modern carbon (pMC) 57.00 +/- 0.14 pMC Atmospheric adjustment factor (REF) 99.4; = pMC/0.994

Precision on the RESULT is cited as +/- 3% (absolute). The cited precision on the analytical measure (pMC) is 1 sigma (1 relative standard deviation). The reported result only applies to the analyzed material. The accuracy of the RESULT relies on the measured carbon in the analyzed material having been in recent equilibrium with CO2 in the air and/or from fossil carbon (more than 45,000 years old) such as petroleum or coal. The RESULT only applies to relative carbon content, not to relative mass content. The RESULT is calculated by adjusting pMC by the applicable "Atmospheric adjustment factor (REF)" cited in this report.

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167 info@betalabservices.com

% Biogenic CO2 ASTM D6866-16 Method B (AMS) TC

Explanation of Results

The result was obtained using the radiocarbon isotope (also known as Carbon-14, C14 or 14C), a naturally occurring isotope of carbon that is radioactive and decays in such a way that there is none left after about 45,000 years following the death of a plant or animal. Its most common use is radiocarbon dating by archaeologists. An industrial application was also developed to determine if consumer products and CO2 emissions were sourced from plants/biomass or from materials such as petroleum or coal (fossil-ba sed). By 2003 there was growing demand for a standardized methodology for applying Carbon -14 testing within the regulatory environment. The first of these standards was ASTM D6866-04, which was written with the assistance of Beta Analytic. Since ASTM was largely viewed as a US standard, European stakeholders soon began demanding an equivalent CEN standard while global stakeholders called for ISO standardization.

The analytical procedures for measuring radiocarbon content using the different standards are identical. The only difference is the reporting format. Results are usually reported using the standardized terminology "% biobased carbon". Only ASTM D6866 uses the term "% biogenic carbon" when the result represents all carbon present (Total Carbon) rather than just the organic carbon (Total Organic Carbon). The terms "% biobased carbon" and "% biogenic carbon" are now the standard units in regulatory and industrial applications, replacing obscure units of measure historically reported by radiocarbon dating laboratories e.g. disintegra tions per minute per gram (dpm/g) or radiocarbon age.

The result was obtained by measuring the ratio of radiocarbon in the material relative to a National Institute of Standards and Technology (NIST) modern reference standard (SRM 4990C). This ratio was calculated as a percentage and is reported as percent modern carbon (pMC). The value obtained relative to the NIST standard is normalized to the year 1950 AD so an adjustment was required to calculate a carbon source value relative to today. This factor is listed on the report sheet as the terminology "REF".

Interpretation and application of the results is straightforward. A value of 100% biobased or biogenic carbon would indicate that 100% of the carbon came from plants or animal by-products (biomass) living in the natural environment and a value of 0% would mean that all of the carbon was derived from petrochemicals, coal and other fossil sources. A value between 0-100% would indicate a mixture. The higher the value, the greater the proportion of naturally sourced components in the material.

Beta Analytic, Inc. 4985 SW 74th Court Miami, FL 33155 USA Tel: (305) 667-5167

info@betalabservices.com

Quality Assurance Report

This report provides the results of reference materials used to validate radiocarbon analyses prior to reporting. Known-value reference materials were analyzed quasi-simultaneously with the unknowns. Results are reported as expected values vs measured values. Reported values are calculated relative to NIST SRM-4990C and corrected for isotopic fractionation. Results are reported using the direct analytical measure percent modern carbon (pMC) with one relative standard deviation. Agreement between expected and measured values is taken as being within 2 sigma agreement (error x 2) to account for total laboratory error.

Report Date March 3, 2025 Submitter Mark Lanfranco

QA MEASUREMENTS

Reference 1

129.41 +/- 0.06 pMC **Expected Value** Measured Value 129.55 +/- 0.16 pMC

> Agreement Accepted

Reference 2

Expected Value 0.44 +/- 0.04 pMC

Measured Value 0.43 +/- 0.04 pMC

> Agreement Accepted

Reference 3

Expected Value 95.86 +/- 0.37 pMC Measured Value 95.50 +/- 0.24 pMC

> Agreement Accepted

All measurements passed acceptance tests. Comment

Validation March 3, 2025 Date

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796331

Control Number:

Date Received: Feb 21, 2025
Date Reported: Mar 14, 2025
Report Number: 3109076
Report Type: Final Report

Contact	Company	Address	
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 88	31-2581
		Email: mark.lanfranco@alanfranco.com	
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	COA / COC	
Email	PDF	COC / Test Report	
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 88	31-2581
		Email: missy@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	Invoice	

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796331

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 14, 2025 Report Number: 3109076 Report Type: Final Report

Reference Number Sample Date Sample Time Sample Location

1796331-1 Feb 13, 2025 NA

1796331-2 Feb 12, 2025 NA

1796331-3 Feb 11, 2025

NA

Sample Description

Field Blank Unit 1 Field Blank Unit 2 (MV Unit 1 Blank + 4 (MV Unit 2 Blank + 4 Bottles) / 18.1 °C

Field Blank Unit 3 Bottles) / 18.1 °C

(MV Unit 3 Blank + 4 Bottles) / 18.1 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fr	action 1A					
Aluminum		μg	6	<5	<5	5
Antimony		μg	6	<2	<2	2.5
Arsenic		μg	2	<1	8.6	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	0.55	<0.2	0.60	0.2
Cobalt		μg	0.3	<0.3	< 0.3	0.25
Copper		μg	0.4	<0.3	1	0.25
Lead		μg	<2	<2	2	1.5
Manganese		μg	0.3	0.3	0.8	0.25
Nickel		μg	<0.5	1	1	0.5
Phosphorus		μg	39	55	44	2.5
Selenium		μg	<2	<2	5.7	1.5
Tellurium		μg	<2	2.9	<2	2
Thallium		μg	<2	<2	2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	0.6	<0.5	2	0.5
Back Half Metals Fra	action 2A					
Aluminum		μg	<5	<5	<5	5
Antimony		μg	3	<2	3	2.5
Arsenic		μg	<0.9	<0.9	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	0.46	0.31	0.97	0.2
Cobalt		μg	<0.2	<0.2	<0.2	0.25
Copper		μg	<0.2	1	1	0.25
Lead		μg	<1	<1	<1	1.5
Manganese		μg	<0.2	<0.2	0.8	0.25
Nickel		μg	<0.5	<0.5	<0.5	0.5
Phosphorus		μg	10	20	20	2.5
Selenium		μg	<1	<1	<1	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	0.9	0.7	0.8	0.5
Volume	Sample	mL	400	321	320	
Volume	aliquot volume	mL	350	271	270	
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05	<0.05	<0.05	0.05

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796331

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 14, 2025 Report Number: 3109076

Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location Sample Description

1796331-1 Feb 13, 2025 NA

1796331-2 Feb 12, 2025

1796331-3 Feb 11, 2025 NA

NA

Field Blank Unit 2

Field Blank Unit 3

Field Blank Unit 1 (MV Unit 1 Blank + 4 (MV Unit 2 Blank + 4 (MV Unit 3 Blank + 4 Bottles) / 18.1 °C Bottles) / 18.1 °C Bottles) / 18.1 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - Co	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	400	321	320	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.2	<0.1	<0.1	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	101	98	107	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	< 0.008	< 0.008	< 0.009	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	< 0.04	< 0.04	< 0.04	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	< 0.02	<0.02	< 0.02	

Approved by:

Rachel Eden, B. Sc. **Operations Manager**

Page 3 of 3

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID:

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Metro Vancouver WTE

Element

#104, 19575-55 A Ave.

Surrey, British Columbia

V3S 8P8, Canada

Metals and Hg Samples

Lot ID: 1796331 Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 14, 2025

Report Number: 3109076 Report Type: Final Report

VIE	tho	d o	t Ana	ılysıs

wiethod of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Feb 27, 2025	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Feb 24, 2025	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796283

Control Number:

Date Received: Feb 21, 2025
Date Reported: Mar 14, 2025
Report Number: 3109022
Report Type: Final Report

Contact	Company	Address	
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 88	31-2581
		Email: mark.lanfranco@alanfranco.com	
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	COA / COC	
Email	PDF	COC / Test Report	
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 88	31-2581
		Email: missy@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	Invoice	

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Missy

Sampled By:

Attn:

Company:

Project ID: Metro Vancouver WTE

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796283

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 14, 2025 Report Number: 3109022 Report Type: Final Report

Filter Reagent Blanks

1796283-1 Feb 07, 2025 NA

1796283-2 Feb 07, 2025

1796283-3 Feb 07, 2025

NA NA

Sample Location

Reference Number

Sample Date

Sample Time

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3 Container 1 (filter) /

Container 1 (filter) / Container 1 (filter) /

Nominal Detection

Limit

18.1 °C 18.1 °C 18.1 °C Matrix Stack Samples Stack Samples Stack Samples Analyte Units Results Results Results Front Half Metals Fraction 1A

Aluminum		μg	<5	<5	<5	5
Antimony		μg	5	<2	<2	2.5
Arsenic		μg	1	7.8	6.3	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	0.50	0.34	0.56	0.2
Cobalt		μg	0.7	0.6	<0.3	0.25
Copper		μg	2	<0.3	<0.3	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	<0.3	0.3	<0.3	0.25
Nickel		μg	1	<0.5	<0.5	0.5
Phosphorus		μg	45	50	35	2.5
Selenium		μg	<2	2	<2	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<2	2.9	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	0.5	<0.5	<0.5	0.5
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	

Approved by:

Rachel Eden, B. Sc.

Operations Manager

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID:

Metro Vancouver WTE Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796283

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 14, 2025 Report Number: 3109022 Report Type: Final Report

Meth	od	of A	۱nal	lysis
				,

mounta or rinary ord				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Mar 12, 2025	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Feb 24, 2025	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796277

Control Number:

Date Received: Feb 21, 2025
Date Reported: Feb 25, 2025
Report Number: 3109013
Report Type: Final Report

Contact	Company	Address				
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street				
		Surrey, BC V4N 4W7				
		Phone: (604) 881-2582 Fax: (604) 881-2581				
		Email: mark.lanfranco@alanfranco.com				
Delivery	<u>Format</u>	<u>Deliverables</u>				
Email	PDF	COA / COC				
Email	PDF	COC / Test Report				
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street				
		Surrey, BC V4N 4W7				
		Phone: (604) 881-2582 Fax: (604) 881-2581				
		Email: missy@alanfranco.com				
Delivery	<u>Format</u>	<u>Deliverables</u>				
Email	PDF	Invoice				

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

HF Blanks Project Name:

LSD: P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1796277

Control Number:

Date Received: Feb 21, 2025 Date Reported: Feb 25, 2025 Report Number: 3109013

Report Type: Final Report

Reference Number Sample Date Sample Time

1796277-1 Feb 13, 2025 NA

1796277-2 Feb 12, 2025

1796277-3 Feb 11, 2025

NA

NA

Sample Location **Sample Description**

Unit #1 HF Blank / 18.1 °C

Unit #2 HF Blank / 18.1 °C

Unit #3 HF Blank / 18.1 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Volume	Sample	mL	242	248	243	
Dilution Factor	fluoride		1.00	1.00	1.00	
Fluoride	As Tested	mg/L	< 0.03	< 0.03	< 0.03	0.03
Fluoride	Water Soluble	µg/sample	<7	<7	<7	

Approved by:

Carol Nam, Dipl. T.

Quality Assurance Coordinator

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID:

ect ID: Metro Vancouver WTE

Element

#104, 19575-55 A Ave.

Surrey, British Columbia

V3S 8P8, Canada

Project Name: HF Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796277

Control Number:

Date Received: Feb 21, 2025
Date Reported: Feb 25, 2025
Report Number: 3109013
Report Type: Final Report

Method	of	Δna	lvsis
Mictiloa	v.	Alla	. y 3.3

Method Name	Reference	Method	Date Analysis Started	Location
Anions by IEC in air (VAN)	EMC	* Determination of Hydrogen Halide & Halogen Emissions from Stationary	Feb 24, 2025	Element Vancouver

Sources (Isokinetic), 26A
* Reference Method Modified

References

EMC Emission Measurement Center of EPA

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By: Company:

Attn: Missy

Project ID: Metro Vancouver WTE

Project Name: HF Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796279

Control Number:

Date Received: Feb 21, 2025
Date Reported: Feb 27, 2025
Report Number: 3109833

Report Type: Reissue Report

Original Report #: 3109016

Contact	Company	Address			
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street			
		Surrey, BC V4N 4W7			
		Phone: (604) 881-2582 Fa	ax:	(604) 881-2581	
		Email: mark.lanfranco@alanfranco.com			
Delivery	<u>Format</u>	<u>Deliverables</u>			
Email	PDF	COA / COC			
Email	PDF	COC / Test Report			
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street			
		Surrey, BC V4N 4W7			
		Phone: (604) 881-2582 Fa	ax:	(604) 881-2581	
		Email: missy@alanfranco.com			
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>			
Email	PDF	Invoice			

Notes To Clients:

• Report was issued to include retest result for fluoride analysis on samples 1796279-1 to 9 as requested by Mark Lanfranco of A. Lanfranco on February 25, 2025.

Previous report 3109016.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

HF Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796279

Control Number:

Date Received: Feb 21, 2025 Date Reported: Feb 27, 2025 Report Number: 3109833

Report Type: Reissue Report

Original Report #: 3109016

Reference Number Sample Date Sample Time

1796279-1 Feb 13, 2025 NA

1796279-2 Feb 13, 2025

1796279-3 Feb 13, 2025

NA

NA

Sample Location

Sample Description Unit #1 HF Run 1 / 18.1 °C

Unit #1 HF Run 2 / 18.1 °C

Unit #1 HF Run 3 / 18.1 °C

Matrix Stack Samples Stack Samples Stack Samples

Results Nominal Detection
Limit
337
1.00
0.08 0.03
30

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: **HF Samples**

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796279

Control Number:

Date Received: Feb 21, 2025 Date Reported: Feb 27, 2025 Report Number: 3109833

Report Type: Reissue Report

Original Report #: 3109016

Reference Number Sample Date Sample Time

1796279-4 Feb 12, 2025 NA

1796279-5 Feb 12, 2025 NA

1796279-6 Feb 12, 2025 NA

Sample Location

Sample Description Unit #2 HF Run 1 / 18.1 °C

Unit #2 HF Run 2 / 18.1 °C

Unit #2 HF Run 3 / 18.1 °C

Stack Samples Stack Samples Stack Samples Matrix Nominal Detection Units Results Analyte Results Results Limit Air Quality 350 312 395 Volume Sample mL **Dilution Factor** fluoride 1.00 1.00 1.00 Fluoride As Tested mg/L 0.04 0.05 0.03 0.03 Fluoride Water Soluble 20 10 µg/sample 10

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

Water Soluble

V4N 4W7

Attn: Missy Sampled By:

Company:

Fluoride

Project ID: Metro Vancouver WTE

Project Name:

LSD: P.O.:

Proj. Acct. code:

Project Location:

HF Samples Control Number:

Date Received:

T: +1 (604) 514-3322

W: www.element.com

E: info.vancouver@element.com

Feb 21, 2025 Date Reported: Feb 27, 2025 Report Number: 3109833

Lot ID: 1796279

Report Type: Reissue Report

Original Report #: 3109016

Reference Number Sample Date Sample Time

Sample Location **Sample Description**

µg/sample

1796279-7 Feb 11, 2025 NA

18.1 °C

30

1796279-8 Feb 11, 2025 NA

1796279-9 Feb 11, 2025 NA

Unit #3 HF Run 1 /

Unit #3 HF Run 2 / 18.1 °C

20

Unit #3 HF Run 3 / 18.1 °C

20

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Volume	Sample	mL	327	310	360	
Dilution Factor	fluoride		1.00	1.00	1.00	
Fluoride	As Tested	ma/l	0.08	0.08	0.05	0.03

Approved by:

Carol Nam, Dipl. T.

Quality Assurance Coordinator

#104, 19575-55 A Ave.

Surrey, British Columbia V3S 8P8, Canada

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7 Attn: Missy

Sampled By:

Company:

Project ID:

Project Name: **HF Samples**

Project Location: LSD:

P.O.:

Proj. Acct. code:

Metro Vancouver WTE

Control Number:

Date Received: Feb 21, 2025 Feb 27, 2025 Date Reported: Report Number: 3109833

Lot ID: 1796279

Report Type: Reissue Report

Original Report #: 3109016

Method of Analysis

Method Name Reference Method Date Analysis Location Started Anions by IEC in air (VAN) **EMC** Feb 25, 2025 **Element Vancouver**

Determination of Hydrogen Halide & Halogen Emissions from Stationary

Sources (Isokinetic), 26A

* Reference Method Modified

References

EMC Emission Measurement Center of EPA

Comments:

• Report was issued to include retest result for fluoride analysis on samples 1796279-1 to 9 as requested by Mark Lanfranco of A. Lanfranco on February 25. 2025.

Previous report 3109016.

Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796341

Control Number:

Date Received: Feb 21, 2025
Date Reported: Mar 17, 2025
Report Number: 3109096
Report Type: Final Report

Contact	Company	Address				
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street				
		Surrey, BC V4N 4W7				
		Phone: (604) 881-2582 Fax: (604) 881-258	1			
	Email: mark.lanfranco@alanfranco.com					
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>				
Email	PDF	COA / COC				
Email	PDF	COC / Test Report				
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street				
		Surrey, BC V4N 4W7				
		Phone: (604) 881-2582 Fax: (604) 881-258	1			
		Email: missy@alanfranco.com				
Delivery	<u>Format</u>	<u>Deliverables</u>				
Email	PDF	Invoice				

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company:

Project Name:

Project Location:

LSD:

P.O.:

Proj. Acct. code:

Project ID: Metro Vancouver WTE

> Metals and Hg Samples Control Number:

> > Date Received: Feb 21, 2025 Date Reported: Mar 17, 2025 Report Number: 3109096

> > > Report Type: Final Report

Lot ID: 1796341

Reference Number Sample Date Sample Time

1796341-1 Feb 13, 2025 NA

1796341-2 Feb 13, 2025 NA

1796341-3 Feb 13, 2025 NA

Sample Location Sample Description Unit 1 Run 1 (Unit 1

R1 + 4 Bottles) / 18.1

Unit 1 Run 2 (MV Unit 1 Run 2 + 4 Bottles) / 18.1 °C Unit 1 Run 3 (MV Unit 1 Run 3 + 4 Bottles) / 18.1 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	ction 1A					
Aluminum		μg	9	10	20	5
Antimony		μg	4	<2	3	2.5
Arsenic		μg	3.6	<1	7.4	1
Cadmium		μg	0.7	0.8	0.3	0.25
Chromium		μg	3.57	2.0	2.56	0.2
Cobalt		μg	0.5	0.9	<0.3	0.25
Copper		μg	4.0	2	4.3	0.25
Lead		μg	4.3	5.7	6.1	1.5
Manganese		μg	2	0.8	1	0.25
Nickel		μg	3.2	1	2	0.5
Phosphorus		μg	52	51	55	2.5
Selenium		μg	<2	19	<2	1.5
Tellurium		μg	5.1	<2	<2	2
Thallium		μg	<2	2.9	2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	46.2	50.5	45.8	0.5
Back Half Metals Fra	ction 2A	, ,				
Aluminum		μg	10	20	6	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	< 0.9	<0.9	4.8	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	0.88	0.83	0.35	0.2
Cobalt		μg	<0.2	<0.2	<0.2	0.25
Copper		μg	1	1	1	0.25
Lead		μg	<1	4.4	<1	1.5
Manganese		μg	0.8	0.3	0.3	0.25
Nickel		μg	0.6	<0.4	<0.4	0.5
Phosphorus		μg	9	8	10	2.5
Selenium		μg	2.7	<1	<1	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	3.9	2	1.0	0.5
Volume	Sample	mL	683	726	748	
Volume	aliquot volume	mL	633	676	698	
Mercury by CVAA	•					
Mercury	As Tested	μg/L	0.07	0.07	0.13	0.05

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796341

Control Number:

Date Received: Feb 21, 2025
Date Reported: Mar 17, 2025
Report Number: 3109096
Report Type: Final Report

 Reference Number
 1796341-1
 1796341-2

 Sample Date
 Feb 13, 2025
 Feb 13, 2025

 Sample Time
 NA
 NA

Sample Location

Sample Description Unit 1 Run 1 (Unit 1

R1 + 4 Bottles) / 18.1 °C Unit 1 Run 2 (MV Unit 1 Run 2 + 4 Bottles) / 18.1 °C

Unit 1 Run 3 (MV Unit 1 Run 3 + 4 Bottles) / 18.1 °C

1796341-3

Feb 13, 2025

NA

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Units Analyte Results Results Results Limit Mercury by CVAA - Continued Dilution Factor As Tested 1 1 1 Volume Sample mL 250 250 250 mL Volume aliquot volume 25 25 25 40 40 Volume Final mL 40 Fraction 1B 0.03 0.03 0.053 Mercury µg/sample Mercury As Tested µg/L < 0.05 < 0.05 < 0.05 0.05 **Dilution Factor** As Tested 1 1 1 Volume Sample mL 683 726 748 Volume aliquot volume mL 5.0 5.0 5.0 40 Volume Final mL 40 40 Mercury Fraction 2B µg/sample < 0.3 <0.3 < 0.3 As Tested < 0.05 < 0.05 < 0.05 0.05 Mercury μg/L **Dilution Factor** As Tested 1 1 Volume Sample 99 98 99 mL Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3A µg/sample < 0.008 <0.008 < 0.008 < 0.05 Mercury As Tested µg/L < 0.05 < 0.05 0.05 **Dilution Factor** As Tested 1 1 1 Volume Sample mL 500 500 500 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Fraction 3B < 0.04 < 0.04 < 0.04 Mercury µg/sample As Tested < 0.05 0.05 Mercury μg/L 0.07 0.10 **Dilution Factor** As Tested 1 1 1 200 Volume Sample mL 200 200 Volume aliquot volume 25 25 25 mL Volume Final mL 40 40 40 Fraction 3C Mercury µg/sample < 0.02 0.02 0.03

Surrey, British Columbia

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796341

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 17, 2025 3109096 Report Number: Report Type: Final Report

Reference Number 1796341-4 1796341-5 1796341-6 Sample Date Feb 11, 2025 Feb 12, 2025 Feb 12, 2025 Sample Time NA NA NA

Sample Location

Sample Description Unit 2 Run 1 (Unit 2 Unit 2 Run 2 (MV Unit 2 Run 3 (MV Unit 2 Run 2 + 4 Unit 2 Run 3 + 4 R1 + 4 Bottles) / 18.1

Bottles) / 18.1 °C

Bottles) / 18.1 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	action 1A					
Aluminum		μg	20	20	20	5
Antimony		μg	3	<2	10	2.5
Arsenic		μg	2	3.7	3.5	1
Cadmium		μg	0.5	0.3	0.7	0.25
Chromium		μg	3.50	5.68	8.88	0.2
Cobalt		μg	0.5	<0.3	<0.3	0.25
Copper		μg	3.7	3.9	4.8	0.25
Lead		μg	8.8	7.0	11	1.5
Manganese		μg	1	2	1	0.25
Nickel		μg	3.8	5.7	4.2	0.5
Phosphorus		μg	44	64	50	2.5
Selenium		μg	<2	9.1	<2	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	63.1	48.0	126	0.5
Back Half Metals Fra	ction 2A					
Aluminum		μg	24	6	7	5
Antimony		μg	4	10	<2	2.5
Arsenic		μg	1	<0.9	2	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	2.23	0.68	5.08	0.2
Cobalt		μg	<0.2	<0.2	<0.2	0.25
Copper		μg	0.9	0.7	1	0.25
Lead		μg	4.0	<1	2	1.5
Manganese		μg	0.8	0.3	0.6	0.25
Nickel		μg	0.4	<0.4	2	0.5
Phosphorus		μg	20	20	10	2.5
Selenium		μg	<1	<1	<1	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	3.4	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	2.2	1	4.2	0.5
Volume	Sample	mL	665	652	719	
Volume	aliquot volume	mL	615	602	669	
Mercury by CVAA						
Mercury	As Tested	μg/L	0.05	0.12	0.14	0.05

Surrey, British Columbia

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796341

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 17, 2025 3109096 Report Number: Report Type: Final Report

Reference Number Sample Date Sample Time

1796341-4 Feb 11, 2025 NA

1796341-5 Feb 12, 2025

1796341-6 Feb 12, 2025

NA

NA

Sample Location

Sample Description Unit 2 Run 1 (Unit 2

R1 + 4 Bottles) / 18.1

Unit 2 Run 2 (MV Unit 2 Run 2 + 4 Bottles) / 18.1 °C

Unit 2 Run 3 (MV Unit 2 Run 3 + 4 Bottles) / 18.1 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	0.02	0.049	0.054	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	665	652	719	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	µg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	99	100	102	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	µg/sample	<0.008	<0.008	<0.008	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	µg/sample	<0.04	< 0.04	< 0.04	
Mercury	As Tested	μg/L	0.05	0.05	0.11	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.02	0.02	0.034	

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796341

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 17, 2025 Report Number: 3109096 Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location

Sample Description

1796341-7 Feb 10, 2025 NA

1796341-8 Feb 11, 2025

1796341-9 Feb 11, 2025

NA

Unit 3 Run 2 (MV

NA

Unit 3 Run 1 (Unit 3 R1 + 4 Bottles / 18.1 $^{\circ}C$

Unit 3 Run 2 + 4 Bottles) / 18.1 °C Unit 3 Run 3 (MV Unit 3 Run 3 + 4 Bottles) / 18.1 °C

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Units Results Analyte Results Results Limit Front Half Metals Fraction 1A 20 20 10 Aluminum 5 μg <2 <2 3 2.5 Antimony μg Arsenic <1 6.3 μg 1 1 Cadmium < 0.3 0.6 0.3 0.25 μg 0.90 0.2 Chromium μg 1.9 1.5 Cobalt 0.4 < 0.3 0.6 0.25 μg Copper 2 3.3 1 0.25 μg Lead 5.0 5.7 <2 1.5 μg Manganese 1 1 0.6 0.25 μg <0.5 Nickel 3.9 0.7 0.5 μg Phosphorus 59 55 45 2.5 μg Selenium <2 <2 1.5 <2 μg Tellurium <2 2 μg <2 <2 Thallium <2 <2 <2 1.5 μg Vanadium <1 <1 <1 1 μg Zinc 20 28.3 20 0.5 μg **Back Half Metals Fraction 2A** Aluminum 20 10 27 5 μg Antimony <2 <2 3 2.5 μg Arsenic < 0.9 < 0.9 < 0.9 1 μg 0.25 Cadmium < 0.2 <0.2 < 0.2 μg Chromium 1.1 1.5 1.0 0.2 μg Cobalt <0.2 0.5 0.2 0.25 μg Copper μg 2 2 2 0.25 2.7 <1 <1 Lead μg 1.5 0.5 Manganese 0.9 0.6 0.25 μg Nickel <0.4 < 0.4 0.5 μg Phosphorus 9 10 10 2.5 μg Selenium 2 <1 <1 1.5 μg Tellurium 3.0 <2 2.3 2 μg Thallium μg <1 <1 <1 1.5 Vanadium < 0.9 < 0.9 < 0.9 1 μg Zinc 2.3 16 11 0.5 μg Sample 668 699 Volume 636 mL aliquot volume 586 618 649 Volume mL Mercury by CVAA Mercury As Tested μg/L < 0.05 < 0.05 < 0.05 0.05

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796341

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 17, 2025 Report Number: 3109096 Report Type: Final Report

Reference Number 1796341-7 1796341-8 1796341-9 Sample Date Feb 10, 2025 Feb 11, 2025 Feb 11, 2025 Sample Time NA NA NA

Sample Location

Sample Description Unit 3 Run 1 (Unit 3 Unit 3 Run 2 (MV Unit 3 Run 3 (MV Unit 3 Run 2 + 4 R1 + 4 Bottles / 18.1 Unit 3 Run 3 + 4

Bottles) / 18.1 °C

°С Bottles) / 18.1 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	636	668	699	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	0.12	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	99	98	99	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	0.019	<0.008	<0.008	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	< 0.04	< 0.04	< 0.04	
Mercury	As Tested	μg/L	1.44	0.15	0.07	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.46	0.048	0.02	

Approved by:

Carol Nam, Dipl. T.

Quality Assurance Coordinator

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID:

Metro Vancouver WTE Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796341

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 17, 2025 Report Number: 3109096 Report Type: Final Report

Method of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 1B	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Feb 27, 2025	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Feb 24, 2025	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796255

Control Number:

Date Received: Feb 21, 2025
Date Reported: Feb 26, 2025
Report Number: 3108969
Report Type: Final Report

Contact	Company	Address	
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 88	31-2581
		Email: mark.lanfranco@alanfranco.com	
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	COA / COC	
Email	PDF	COC / Test Report	
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 88	31-2581
		Email: missy@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	Invoice	

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

NH3 Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Reference Number

Sample Date

Sample Time

Matrix

Sample Location **Sample Description** Lot ID: 1796255

Control Number:

T: +1 (604) 514-3322

W: www.element.com

Date Received: Feb 21, 2025 Date Reported: Feb 26, 2025 Report Number: 3108969 Report Type: Final Report

1796255-2

1796255-1 Feb 13, 2025 NA

Unit #1 NH3 Blk /

18.1 °C

Stack Samples

Feb 12, 2025 NA

1796255-3 Feb 11, 2025

NA

Unit #2 NH3 Blk /

Stack Samples

18.1 °C

18.1 °C Stack Samples

Unit #3 NH3 Blk /

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Ammonium - N	As Tested	μg/L	<25	<25	<25	25
Dilution Factor	As Tested		1.00	1.00	1.00	
Sample Volume	Sample volume	mL	240	238	246	
Ammonium - N		μg/sample	<6.0	<6.0	<6.2	

Approved by:

nthony Weumann Anthony Neumann, MSc

General Manager

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By: Company:

Attn: Missy

Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796255

Control Number:

Date Received: Feb 21, 2025 Date Reported: Feb 26, 2025 Report Number: 3108969 Report Type: Final Report

Method of Analysis

Method Name Reference Method Date Analysis Location Started Ammonium in Impingers **APHA** Automated Phenate Method, 4500-NH3 Feb 26, 2025 Element Edmonton -G Roper Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Project Name:

Metro Vancouver WTE

NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796254

Control Number:

Date Received: Feb 21, 2025
Date Reported: Feb 26, 2025
Report Number: 3108967
Report Type: Final Report

Contact	Company	Address	
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 881-2581	
		Email: mark.lanfranco@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	COA / COC	
Email	PDF	COC / Test Report	
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 881-2581	
		Email: missy@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	Invoice	

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796254

Control Number:

Date Received: Feb 21, 2025 Date Reported: Feb 26, 2025 Report Number: 3108967 Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location **Sample Description**

1796254-1 Feb 13, 2025 NA

1796254-2 Feb 13, 2025 NA

1796254-3 Feb 13, 2025

NA

Unit 1 Run 1 NH3 /

18.1 °C

Unit 1 Run 2 NH3 / 18.1 °C

Unit 1 Run 3 NH3/ 18.1 °C

Stack Samples Stack Samples Stack Samples Matrix Nominal Detection **Analyte** Units Results Results Results Limit **Air Quality** Ammonium - N As Tested 12700 29600 24600 25 μg/L Dilution Factor 10.0 As Tested 10.0 10.0 Sample Volume Sample volume mL 368 336 352 Ammonium - N µg/sample 4680 9960 8650

T: +1 (604) 514-3322
A Ave. E: info.vancouver@element.com
W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796254

Control Number:

Date Received: Feb 21, 2025
Date Reported: Feb 26, 2025
Report Number: 3108967

Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location Sample Description 1796254-4 Feb 12, 2025 NA 1796254-5 Feb 12, 2025 1796254-6 Feb 12, 2025 NA

NA

Unit 2 Run 1 NH3 / 18.1 °C

Unit 2 Run 2 NH3 / 18.1 °C

Unit 2 Run 3 NH3 / 18.1 °C Stack Samples

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Ammonium - N	As Tested	μg/L	3750	4580	164	25
Dilution Factor	As Tested		1.00	1.00	1.00	
Sample Volume	Sample volume	mL	344	318	248	
Ammonium - N		μg/sample	1290	1460	40.7	

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

NH3 Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

T: +1 (604) 514-3322

W: www.element.com

Lot ID: 1796254

Control Number:

Date Received: Feb 21, 2025 Date Reported: Feb 26, 2025 Report Number: 3108967

Report Type: Final Report

Reference Number Sample Date Sample Time

1796254-7 Feb 11, 2025 NA

1796254-8 Feb 11, 2025

1796254-9 Feb 11, 2025 NA

NA

Sample Location **Sample Description**

Unit 3 Run 1 NH3 / 18.1 °C

Unit 3 Run 2 NH3 / 18.1 °C

Unit 3 Run 3 NH3/ 18.1 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Ammonium - N	As Tested	μg/L	<25	11700	3220	25
Dilution Factor	As Tested		1.00	10.0	1.00	
Sample Volume	Sample volume	mL	296	320	360	
Ammonium - N		μg/sample	<7.4	3740	1160	

Approved by:

nthony Weuman Anthony Neumann, MSc

General Manager

Element

#104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

NH3 Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796254

Control Number:

Date Received: Feb 21, 2025 Date Reported: Feb 26, 2025 Report Number: 3108967 Report Type: Final Report

Method of Analysis

Method Name Reference Method Date Analysis Location Started Ammonium in Impingers **APHA** Automated Phenate Method, 4500-NH3 Feb 26, 2025 Element Edmonton -G Roper Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796284

Control Number:

Date Received: Feb 21, 2025
Date Reported: Mar 14, 2025
Report Number: 3109023
Report Type: Final Report

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Sampled By: Company:

Attn: Missy

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location: LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796284

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 14, 2025 Report Number: 3109023 Report Type: Final Report

Reference Number Sample Date Sample Time

1796284-1 Feb 07, 2025 NA

Stack Samples

1796284-2 Feb 07, 2025

Stack Samples

1796284-3 Feb 07, 2025

Stack Samples

NA NA

Sample Location

Matrix

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3 / 18.1 °C / 18.1 °C / 18.1 °C

Analyte		Units	Results	Results	Results	Nominal Detection
Front Half Metals Fra	ction 1A		riodulio	rtodato	roouno	Limit
Aluminum		μg	<5	<5	<5	5
Antimony		μg	4	<2	<2	2.5
Arsenic		μg	6.6	3.4	5.5	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	0.58	0.83	0.91	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	<0.3	0.6	<0.3	0.25
Lead		μg	2	2	<2	1.5
Manganese		μg	<0.3	<0.3	0.3	0.25
Nickel		μg	1	<0.5	<0.5	0.5
Phosphorus		μg	<2	5	<2	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	6.7	<2	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	<0.5	0.5	<0.5	0.5
Back Half Metals Frac	ction 2A					
Aluminum		μg	<5	<5	<5	5
Antimony		μg	<3	<3	<3	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	0.31	0.89	<0.2	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	1	0.8	<0.3	0.25
Lead		μg	<2	4.5	4.8	1.5
Manganese		μg	<0.3	<0.3	<0.3	0.25
Nickel		μg	0.6	<0.5	<0.5	0.5
Phosphorus		μg	10	10	10	2.5
Selenium		μg	2	<2	<2	1.5
Tellurium		μg	2.8	<2	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	<0.5	<0.5	0.6	0.5
Volume	Sample	mL	207	207	208	
Volume	aliquot volume	mL	157	157	158	
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7 Missy

Sampled By: Company:

Mercury

Attn:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796284

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 14, 2025 Report Number: 3109023 Report Type: Final Report

1796284-1 **Reference Number** 1796284-2 1796284-3 Sample Date Feb 07, 2025 Feb 07, 2025 Feb 07, 2025 Sample Time NA NA NA

Sample Location

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3 / 18.1 °C

/ 18.1 °C / 18.1 °C

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Units Analyte Results Results Results Limit Mercury by CVAA - Continued Volume Sample mL 250 250 250 aliquot volume mL 25 25 25 Volume Volume Final mL 40 40 40 Mercury Fraction 1B µg/sample < 0.02 < 0.02 < 0.02 As Tested < 0.05 < 0.05 0.05 0.05 Mercury µg/L **Dilution Factor** As Tested 1 1 Volume Sample mL 207 207 208 aliquot volume Volume mL 5.0 5.0 5.0 Volume Final mL 45 45 45 Mercury Fraction 2B µg/sample < 0.09 < 0.09 0.10 As Tested < 0.05 < 0.05 < 0.05 0.05 Mercury μg/L **Dilution Factor** As Tested 1 92 100 99 Volume Sample mL Volume aliquot volume mL 25 25 25 40 40 40 Volume Final mL µg/sample < 0.007 <0.008 < 0.008 Mercury Fraction 3A Mercury As Tested μg/L < 0.05 < 0.05 < 0.05 0.05 **Dilution Factor** As Tested 1 1 1 Volume Sample mL 500 500 500 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Fraction 3B < 0.04 < 0.04 < 0.04 Mercury µg/sample Mercury As Tested μg/L < 0.05 < 0.05 < 0.05 0.05 **Dilution Factor** As Tested 1 1 1 Volume Sample 200 200 200 mL Volume aliquot volume 25 25 25 mL Final 40 40 40 Volume mL Fraction 3C

Approved by:

< 0.02

Rachel Eden . B. Sc. **Operations Manager**

achel Eden

< 0.02

< 0.02

µg/sample

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1796284

Control Number:

Date Received: Feb 21, 2025 Date Reported: Mar 14, 2025 Report Number: 3109023 Report Type: Final Report

Method of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 12, 2025	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Feb 27, 2025	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Feb 24, 2025	Element Vancouver

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

Your Project #: MVWTE

Site#: C515068

Site Location: BURNABY, BC

Your C.O.C. #: C515068-ONTV-01-01

Attention: Shanaz Akbar

Bureau Veritas 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2025/02/25

Report #: R8492540 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C517296 Received: 2025/02/19, 09:00

Sample Matrix: Tedlar Bag # Samples Received: 9

	Date	Date	
Analyses	Quantity Extracted	Analyzed Laboratory Method	Analytical Method
Nitrous Oxide	9 N/A	2025/02/20 CAM SOP-00203	GC/ECD

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: MVWTE

Site#: C515068

Site Location: BURNABY, BC

Your C.O.C. #: C515068-ONTV-01-01

Attention: Shanaz Akbar

Bureau Veritas 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2025/02/25

Report #: R8492540 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C517296

Received: 2025/02/19, 09:00

Encryption Key

Julian Tong Project Manager Assistant 25 Feb 2025 17:37:18

Please direct all questions regarding this Certificate of Analysis to: Julian Tong, Project Manager Assistant

Email: Julian.Tong@bureauveritas.com

Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Bureau Veritas Job #: C517296 Report Date: 2025/02/25 Bureau Veritas

Client Project #: MVWTE

Site Location: BURNABY, BC

COMPRESSED GAS PARAMETERS (TEDLAR BAG)

Bureau Veritas ID		AODP60	AODP61	AODP62	AODP63		
Sampling Date		2025/02/11	2025/02/11	2025/02/11	2025/02/12		
COC Number		C515068-ONTV-01-01	C515068-ONTV-01-01	C515068-ONTV-01-01	C515068-ONTV-01-01		
Na Caratalan	UNITS	DEU325-UNIT3 BAG1	DEU326-UNIT3 BAG2	DEU327-UNIT3 BAG3	327-UNIT3 BAG3 DEU328-UNIT2 BAG1		QC Batch
Gas							
Nitrous Oxide	ppmv	4.5	5.0	3.4	2.4	0.1	9880505
RDL = Reportable Detec	tion Limit						
QC Batch = Quality Cont	rol Batch						

Bureau Veritas ID		AODP64	AODP65	AODP66 AODP67			
Sampling Date		2025/02/12	2025/02/12 2025/02/13		2025/02/13		
COC Number		C515068-ONTV-01-01	C515068-ONTV-01-01 C515068-ONTV-01-01 C5		C515068-ONTV-01-01		
	UNITS	DEU329-UNIT2 BAG2	DEU330-UNIT2 BAG3	DEU331-UNIT1 BAG1	DEU332-UNIT1 BAG2	RDL	QC Batch
Gas							
Nitrous Oxide	ppmv	5.0	8.2	3.5	6.5	0.1	9880505
RDL = Reportable Detec	tion Limit	×					
QC Batch = Quality Cont	rol Batch						

Bureau Veritas ID		AODP68	AODP68		
Sampling Date		2025/02/13	2025/02/13		
COC Number C51506		C515068-ONTV-01-01	C515068-ONTV-01-01		
	UNITS	DEU333-UNIT1 BAG3	DEU333-UNIT1 BAG3 Lab-Dup	RDL	QC Batch
Gas					
Nitrous Oxide	ppmv	11	11	0.1	9880505
RDL = Reportable Detec	ction Limit trol Batch				

Bureau Veritas Job #: C517296

Report Date: 2025/02/25

Bureau Veritas

Client Project #: MVWTE Site Location: BURNABY, BC

TEST SUMMARY

Bureau Veritas ID: AODP60

DEU325-UNIT3 BAG1 Sample ID:

Matrix: Tedlar Bag

Collected:

2025/02/11

Shipped:

2025/02/19 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9880505	N/A	2025/02/20	Satvinder Bhathal

Bureau Veritas ID: AODP61

Sample ID: DEU326-UNIT3 BAG2

Matrix: Tedlar Bag

Collected:

2025/02/11

Shipped: Received: 2025/02/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9880505	N/A	2025/02/20	Satvinder Bhathal

Bureau Veritas ID: AODP62

Sample ID: DEU327-UNIT3 BAG3

Matrix: Tedlar Bag Collected: 2025/02/11

Shipped:

2025/02/19 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Nitrous Oxide	GC/ECD	9880505	N/A	2025/02/20	Satvinder Bhathal	

Bureau Veritas ID: AODP63

DEU328-UNIT2 BAG1 Sample ID:

Matrix: Tedlar Bag

Collected: Shipped:

2025/02/12

Received: 2025/02/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9880505	N/A	2025/02/20	Satvinder Bhathal

Bureau Veritas ID: AODP64

DEU329-UNIT2 BAG2 Sample ID:

Matrix: Tedlar Bag

Collected: 2025/02/12

Shipped: Received: 2025/02/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9880505	N/A	2025/02/20	Satvinder Bhathal

Bureau Veritas ID: AODP65

DEU330-UNIT2 BAG3 Sample ID:

Matrix: Tedlar Bag

Collected:

2025/02/12

Shipped: Received: 2025/02/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9880505	N/A	2025/02/20	Satvinder Bhathal

Bureau Veritas ID: AODP66

Sample ID: DEU331-UNIT1 BAG1

Matrix: Tedlar Bag

Collected: 2025/02/13

Shipped:

2025/02/19 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9880505	N/A	2025/02/20	Satvinder Bhathal

Bureau Veritas Job #: C517296 Report Date: 2025/02/25

Bureau Veritas

Client Project #: MVWTE

Site Location: BURNABY, BC

TEST SUMMARY

Bureau Veritas ID: AODP67

Collected: 2025/02/13

Shipped:

Received: 2025/02/19

Sample ID: DEU332-UNIT1 BAG2 Matrix: Tedlar Bag

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9880505	N/A	2025/02/20	Satvinder Bhathal

Bureau Veritas ID: AODP68

Collected: 2025/02/13

Shipped:

Sample ID: DEU333-UNIT1 BAG3 Matrix: Tedlar Bag

Received: 2025/02/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrous Oxide	GC/ECD	9880505	N/A	2025/02/20	Satvinder Bhathal

Bureau Veritas ID: AODP68 Dup

Collected: 2025/02/13

DEU333-UNIT1 BAG3 Sample ID: Matrix: Tedlar Bag

Shipped:

Received: 2025/02/19

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst 2025/02/20 Satvinder Bhathal Nitrous Oxide GC/ECD 9880505 N/A

Report Date: 2025/02/25

Bureau Veritas

Client Project #: MVWTE

Site Location: BURNABY, BC

GENERAL COMMENTS

Nitrous Oxide Analysis: The samples were analysed 9/10/11 days after the date of sampling. The recommended holding time is 2 days.

Results relate only to the items tested.

17296

QUALITY ASSURANCE REPORT

Bureau Veritas Client Project #: MVWTE

Client Project #: MVWTE Site Location: BURNABY, BC

			Method Blank	ank	RPD	
QC Batch	Parameter	Date	Value	UNITS	Value (%)	QC Limits
9880505	Nitrous Oxide	2025/02/20	<0.1	ppmv	NC	N/A
A STATE OF THE STA						

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Bureau Veritas
Client Project #: MVWTE
Site Location: BURNABY, BC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Tom Mitchell, B.Sc, Supervisor, Compressed Gases

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

VEBITAL

Sent to: Bureau Veritas Campobello Mississauga, ON, LSN 2L8 6740 Campobello Road Tel: (905) 817-5700

BUREAU VERITAS INTERLAB CHAIN OF CUSTODY RECORD

Page 01 of 01

COC # C515068-ONTV-01-01

Labels Verifled By: Please mform us if rush charges will be incurred RECEIVING LAB USE ONLY NONT-2025-02-2936 TURNAROUND TIME Rush Required Bureau Verters Job # Date Required 2025/03/03 ADDITIONAL SAMPLE INFORMATION Samples Labelted By: Job Borcode Lobe DATE: (YYYY/MM/DO) TIME: (HH:MM) National Excel (NO01) REQUIRED EDDS DINO NO (P: 01) (P: 01) (P:01) (P: 01) (P: 01) (P: 01) (P: 01) (P: 01) SPECIAL INSTRUCTIONS
Please inform Bureau Vertiss immediately if you are not accredited for
the requested restly or the hold time a paproaching.
"Please return a copy of this form with the report." Temp: YES NO YOY Custody Seal Present Custody Seal Intact Cooling Media Present ANALYSIS REQUESTED COOLER ID: RECEIVED BY: (SIGN & PRINT × NSO 685 CSA 22396.1-09 Subcontract × × × Temp: Incl. on Report? Yes / No SAMPLER Shanaz. Akbar@bureauveritas.com, Customersolutionswest@bureauveritas.com YES NO REGULATORY CRITERIA TIME: (HH:MM) SAMPLED 5 Custody Seal Intact Custody Seal Intact Cooling Media Present (HH:MM) 15:00 YYYY/MM/DD) DATE: [YYYY/MM/DD] DATE 2025/02/11 2025/02/11 2025/02/12 2025/02/12 2025/02/12 2025/02/13 2025/02/13 2025/02/13 2025/02/11 COOLER ID: 4606 Canada Way, Burnaby, British Columbia, VSG 1KS 2025-02-18 A. LANFRANCO & ASSOCIATES INC. (1301) A. LANFRANCO & ASSOCIATES INC. (1301) AIR AIR AIR AIR AIR AIR AIR AIR AIR PO/AFE, TASK ORDER/SERVICE ORDER, LINE ITEM: Temp **Bureau Veritas** Shanaz Akbar C515068 DEU325-UNIT3 BAG1 DEU326-UNIT3 BAG2 DEU327-UNIT3 BAG3 DEU328-UNIT2 BAG1 DEU329-UNITZ BAGZ DEU330-UNIT2 BAG3 DEU332-UNIT1 BAG2 DEU331-UNIT1 BAG1 DEU333-UNIT1 BAG3 RELINQUISHED BY: (SIGN & REPORT INFORMATION Custody Seal Intact Cooling Media Present Sustody Seal Present Cilent Invoice To: Client Report To: SITE LOCATION: SAMPLE ID Contact Name: BV Project #: BURNABY BC COOLER ID: PROJECT #: L'BALLO PUNI Company: Address: MVWTE SITE #: Email: 10

APPENDIX - D COMPUTER GENERATED RESULTS

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time:** 08:30 - 10:34

Concentrations:

Particulate 1.33 mg/dscm 0.00058 gr/dscf

0.76 mg/Acm 0.00033 gr/Acf

1.27 mg/dscm (@ 11% O2) 0.00055 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.096 Kg/hr 0.211 lb/hr

Flue Gas Characteristics:

Flow 1198 dscm/min 42315 dscf/min

 19.97 dscm/sec
 705 dscf/sec

 2097 Acm/min
 74041 Acf/min

Velocity 13.719 m/sec 45.01 f/sec

Temperature 151.4 oC 304.5 oF

Moisture 11.7 %

Gas Analysis 10.5 % O2

8.8 % CO2

29.835 Mol. Wt (g/gmole) Dry 28.454 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7843 dscm 98.326 dscf

Sample Time 120.0 minutes Isokineticity 101.8 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

 Source:
 Unit 1
 Run Time:
 08:30 - 10:34

Control Unit (Y)	1.0010	Collection:		Gas Analys	sis (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.3092	Filter (grams) 0.00160		CO2	O2	Impinger 1	185.0
Pitot Factor	0.8505	Washings (grams) 0.00210	Traverse 1	8.83	10.32	Impinger 2	65.0
Baro. Press. (in. Hg)	29.43		Traverse 2	8.83	10.74	Impinger 3	12.0
Static Press. (in. H20)	-19.00	Total (grams) 0.00370				Impinger 4	0.0
Stack Height (ft)	30					Impinger 5	1.0
Stack Diameter (in.)	70.90					Impinger 6	0.0
Stack Area (sq.ft.)	27.417			8.83	10.53	Gel	13.0
Minutes Per Reading	5.0						
Minutes Per Point	5.0					Gain (grams)	276.0

					Dry Gas	Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Traverse 1	0.0	884.328								
1	5.0	887.766	0.29	1.87	54	54	4.5	295	1.5	101.3
2	10.0	891.281	0.30	1.94	55	55	4.5	296	4.7	101.7
3	15.0	894.684	0.28	1.81	56	56	4.5	296	8.4	101.7
4	20.0	898.210	0.30	1.95	57	57	4.5	295	12.5	101.6
5	25.0	901.423	0.25	1.61	58	58	4	300	17.7	101.5
6	30.0	905.172	0.34	2.20	58	58	4	300	25.2	101.7
7	35.0	909.517	0.46	2.94	60	60	6	310	45.6	101.8
8	40.0	914.295	0.55	3.54	60	60	6	305	53.2	102.2
9	45.0	919.002	0.53	3.43	61	61	7.5	302	58.3	102.1
10	50.0	923.584	0.50	3.25	63	63	7.5	303	62.5	102.0
11	55.0	927.910	0.45	2.89	63	63	6.5	311	66.1	101.9
12	60.0	931.781	0.35	2.28	64	64	6.5	302	69.4	102.4
			•	•						•
Fraverse 2	0.0	931.781								
1	5.0	935.780	0.38	2.46	65	65	6.5	308	1.5	101.8
2	10.0	940.130	0.45	2.93	66	66	6.5	306	4.7	101.6
3	15.0	944.748	0.50	3.28	67	67	7.5	301	8.4	101.9
4	20.0	949.350	0.50	3.25	68	68	7.5	310	12.5	101.9
5	25.0	953.873	0.48	3.13	69	69	7.5	308	17.7	101.9
6	30.0	958.410	0.48	3.14	71	71	7.5	310	25.2	101.9
7	35.0	962.882	0.47	3.05	70	70	7	315	45.6	102.0
8	40.0	967.276	0.45	2.94	70	70	7	309	53.2	102.0
9	45.0	971.618	0.44	2.88	70	70	7	308	58.3	101.9
10	50.0	975.870	0.42	2.76	71	71	7	305	62.5	101.7
11	55.0	979.520	0.31	2.03	71	71	6	307	66.1	101.6
12	60.0	982.802	0.25	1.64	71	71	6	305	69.4	101.5
Average:			0.405	2.633	64.1	64.1	6.2	304.5		101.8

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 1 **Run Time:** 10:56 - 1300

Concentrations:

Particulate 0.88 mg/dscm 0.00038 gr/dscf

0.48 mg/Acm 0.00021 gr/Acf

Emission Rates:

Particulate 0.062 Kg/hr 0.136 lb/hr

Flue Gas Characteristics:

Flow 1177 dscm/min 41559 dscf/min

 19.61 dscm/sec
 693 dscf/sec

 2133 Acm/min
 75310 Acf/min

Velocity 13.954 m/sec 45.78 f/sec

Temperature 158.1 oC 316.6 oF

Moisture 13.2 %

Gas Analysis 10.8 % O2

8.4 % CO2

29.780 Mol. Wt (g/gmole) Dry 28.221 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.8533 dscm 100.765 dscf

Sample Time 120.0 minutes Isokineticity 103.2 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Metro Vancouver Date: 13-Feb-25 Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals Source: Unit 1 Run Time: 10:56 - 1300 Control Unit (Y) 1.0010 Collection Gas Analysis (Vol. %): Condensate Collection: 0.3137 Filter (grams) 0.00100 8.00 Impinger 1 Impinger 2 213.0 Nozzle Diameter (in.) Pitot Factor 0.8367 Washings (grams) 0.00150 Baro. Press. (in. Hg) 29.39 Traverse 2 8.83 10.50 Impinger 3 11.0 Total (grams) 0.00250 Static Press. (in. H20) -19.00 Impinger 4 5.0 Stack Height (ft) 30 0.0 Impinger 5 70.90 Stack Diameter (in.) 0.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 15.5 8.42 10.83 Gain (grams) 326.5 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Wall Stack Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 5.0 983.232 103.2 0.36 70 70 305 1.5 987.220 2.42 10.0 991.802 0.48 3.19 70 70 314 103.5 3 15.0 996.457 0.50 3.30 70 70 11.5 319 8.4 103.4 20.0 25.0 4 1001.150 0.51 3.36 69 69 11.5 319 12.5 103.4 3.30 11.5 17.7 0.50 69 69 319 1005.801 103.5 30.0 1010.363).48 3.17 11.5 318 35.0 1014.831 0.46 3.04 70 11.5 318 45.6 103.3 40.0 1019.246 0.45 2.97 70 70 11.5 319 53.2 103.2 45.0 50.0 55.0 9 1023.805 0.48 3.18 318 58.3 103.2 10 1027.974 0.40 2.65 70 12 318 62.5 103.3 10.5 317 11 1031.988 0.37 2.46 71 66.1 103.1 12 60.0 1035.485 0.28 1.86 71 71 10.5 318 69.4 103.1 Traverse 2 0.0 1035.485 5.0 1039.218 0.32 103.2 2.12 10.0 1042,900 0.31 2.06 317 4.7 103.2 15.0 317 1046.520 0.30 1.99 8.4 103.1 3 20.0 1050.316 2.19 316 103.1 5 25.0 1054.244 0.35 2.33 72 72 316 103.4 6 30.0 1058.269 0.37 2.46 72 9 317 25.2 103.2 35.0 1062.855).48 3.20 45.6 103.2 315 8 40.0 1067.888 0.58 3.86 315 103.4 45.0 9 1072.754 0.54 3.59 71 13 316 58.3 103.6 50.0 1077.435 0.50 316 62.5 103.5 10 3.32 55.0 60.0 1081.820 0.44 2.92 2.12 71 71 12 317 66.1 103.4 71 71 317 12 1085.490 0.32 12 69.4 101.2 Average: 0.421 2.794 70.5 70.5 10.7 316.6 103.2

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 1 **Run Time:** 13:20 - 15:23

Concentrations:

Particulate1.9 mg/dscm0.0008 gr/dscf

1.0 mg/Acm 0.0005 gr/Acf

1.8 mg/dscm (@ 11% O2) 0.0008 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.134 Kg/hr 0.295 lb/hr

Flue Gas Characteristics:

Flow 1166 dscm/min 41189 dscf/min

 19.44 dscm/sec
 686 dscf/sec

 2144 Acm/min
 75729 Acf/min

Velocity 14.032 m/sec 46.04 f/sec

Temperature 160.4 oC 320.8 oF

Moisture 14.0 %

Gas Analysis 10.6 % O2

8.8 % CO2

29.836 Mol. Wt (g/gmole) Dry 28.180 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7693 dscm 97.800 dscf

Sample Time 120.0 minutes Isokineticity 104.0 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Metro Vancouver Date: 13-Feb-25 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: 13:20 - 15:23 Source: Unit 1 **Run Time:** Control Unit (Y) 1.0010 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3092 Filter (grams) 0.00160 9.00 O2 10.39 Impinger 1 Impinger 2 234.0 Pitot Factor 0.8505 Washings (grams) 0.00370 76.0 Baro. Press. (in. Hg) 29.38 Traverse 2 8.67 10.73 Impinger 3 9.0 Total (grams) 0.00530 Static Press. (in. H20) -19.00 Impinger 4 0.0 Stack Height (ft) 30 1.0 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 17.0 Stack Area (sq.ft.) 27.417 Gel 8.83 10 56 Gain (grams) 338 0 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Time Dry Gas Meter Pitot ^P Orifice ^H Traverse / Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 0.0 86.015 103.9 0.31 2.00 67 315 1.5 5.0 89.625 10.0 93.180 0.30 1.93 67 67 315 4.7 104.0 3 15.0 96,740 0.30 1.93 68 68 316 8.4 104.0 315 317 4 20.0 100.405 0.32 2.06 67 12.5 103.8 0.35 2.25 5.5 17.7 25.0 104.252 68 68 104.2 30.0 108.151 0.36 2.32 69 5.5 317 25.2 103.9 35.0 112.514 0.45 2.91 69 69 316 45.6 104.1 40.0 117.415 0.57 3.68 53.2 104.2 45.0 122.183 0.54 3.46 69 58.3 104.3 10 50.0 55.0 126.770 0.50 3.20 70 70 325 62.5 104.3 131.117 0.45 2.87 70 6.5 326 66.1 104.2 11 70 12 60.0 134.794 0.32 2.04 70 70 6.5 328 69.4 104.4 Traverse 2 134.794 0.0 138.624 0.35 68 103.9 68 68 10.0 142.711 0.40 2.55 68 5.5 324 4.7 104.1 104.1 15.0 146.890 0.42 2.67 68 327 8.4 20.0 151.150 0.44 333 12.5 104.1 5 25.0 155 505 0.46 2.90 69 69 6.5 335 17.7 104.0 6 30.0 159.762 0.44 2.77 69 69 6.5 337 25.2 104.1 164.221 0.47 3.03 6.5 45.6 104.3 35.0 318 40.0 168.613 0.45 2.93 70 70 6.5 310 53.2 104.2 315 315 9 45.0 173.080 0.47 3.04 70 70 58.3 104.1 177.604 0.48 3.11 70 104.3 10 50.0 70 62.5 55.0 181.525 0.36 2.33 70 70 70 5.5 316 66.1 104.3

70

68.8

68.8

5.5

6.0

321

320.8

69.4

102.0

104.0

1.93

2.622

60.0

12

Average:

185.020

0.30

0.409

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 1

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date Test Time		13-Feb-25 09:25 - 10:25	13-Feb-25 10:56 - 11:56	13-Feb-25 12:10 - 13:10
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	29.41	29.41	29.41
DGM Factor	(Y)	0.9880	0.9880	0.9880
Initial Reading	(m ³)	217.482	218.018	218.583
Final Reading	(m^3)	218.016	218.578	219.164
Temp. Outlet	(Avg. oF)	43.0	47.5	48.5
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.55	0.57	0.59
HF	(mg)	0.032	0.011	0.032
Oxygen	(Vol. %)	10.5	10.8	10.6
HF	(mg/Sm³)	0.058	0.019	0.054
HF	(mg/Sm ³ @ 11% O2)	0.055	0.018	0.052
Moisture	(Vol. %)	13.2	13.2	14.0

Tstd. (oF) 68 Pstd. (in. Hg) 29.92

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 1

Sample Type: NH₃

Parameter	NH ₃	Test 1	Test 2	Test 3
Test Date Test Time		13-Feb-25 09:25 - 10:25	13-Feb-25 10:56 - 11:56	13-Feb-25 12:10 - 13:10
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	29.41	29.41	29.41
DGM Factor	(Y)	0.9965	0.9965	0.9965
Initial Reading	(m^3)	646.898	647.461	647.999
Final Reading	(m^3)	647.458	647.995	648.555
Temp. Outlet	(Avg. oF)	44.3	48.5	46.0
Orifice Press.	(∆H in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.57	0.54	0.57
NH ₃	(mg)	5.7	12.1	10.5
Oxygen	(Vol. %)	10.5	10.8	10.6
NH ₃	(mg/Sm³)	9.9	22.3	18.5
NH ₃	(mg/Sm ³ @ 11% O2)	9.5	21.9	17.7
Moisture	(Vol. %)	13.2	13.2	14.0

Tstd. (oF) 68 Pstd. (in. Hg) 29.92

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 2 **Run Time:** 10:16 - 12:20

Concentrations:

Particulate 2.9 mg/dscm 0.0013 gr/dscf

1.7 mg/Acm 0.0008 gr/Acf

Emission Rates:

Particulate 0.205 Kg/hr 0.452 lb/hr

Flue Gas Characteristics:

Flow 1167 dscm/min 41200 dscf/min

 19.44 dscm/sec
 687 dscf/sec

 1973 Acm/min
 69677 Acf/min

Velocity 12.910 m/sec 42.36 f/sec

Temperature 150.9 oC 303.6 oF

Moisture 11.4 %

Gas Analysis 10.8 % O2

7.9 % CO2

29.700 Mol. Wt (g/gmole) Dry 28.369 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7637 dscm 97.601 dscf

Sample Time 120.0 minutes Isokineticity 101.0 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Metro Vancouver Date: 11-Feb-25 Run: Jobsite: WTE (Burnaby, B.C) 1 - Particulate / Metals Source: Unit 2 Run Time: 10:16 - 12:20 Control Unit (Y) 0.9784 Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3137 Filter (grams) 0.00370 116.0 Impinger 1 Pitot Factor 0.8376 Washings (grams) 0.00440 Traverse 1 Impinger 2 100.0 Baro. Press. (in. Hg) 30.31 Traverse 2 8.00 10.63 Impinger 3 26.0 Total (grams) 0.00810 Static Press. (in. H20) -19.50 Impinger 4 0.0 Stack Height (ft) 30 Impinger 5 3.0 Stack Diameter (in.) 70.90 1.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 20.2 Minutes Per Reading 7.94 10.75 Gain (grams) 266.2 5.0 Minutes Per Point 5.0 Wall Dry Gas Temperature Stack Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 66.789 304 99.7 29 4.5 1.5 5.0 70.295 1.76 29 73.700 4.5 10.0 0.31 1.65 30 30 306 99.8 3 15.0 77.005 0.29 1.55 30 30 4.5 305 8.4 100.1 4 20.0 80.440 0.30 1.60 4.5 305 12.5 102.1 5 0.29 1.55 4.5 17.7 25.0 83.748 32 304 99.7 30.0 87.596 0.38 2.04 4.5 304 25.2 101.2 35.0 92.820 3.77 6.5 304 45.6 101.3 40.0 98.036 0.70 3.78 36 6.5 101.0 45.0 103.285 3.78 304 58.3 101.5 10 50.0 108.310 0.64 3.47 38 304 62.5 101.2 111.343 304 11 55.0 0.23 1.25 39 66.1 101.1 12 60.0 113.802 0.15 0.82 40 40 4 298 69.4 100.8 Traverse 2 0.0 113.802 118.183 0.48 304 101.0 5.0 2.62 2.57 2.52 42 43 42 43 5.5 5.5 2 10.0 122,554 0.47 304 4.7 101.7 15.0 305 126.856 0.46 8.4 101.0 20.0 131.442 2.84 5.5 307 12.5 101.5 5 25.0 135.850 0.48 2.63 306 17.7 101.2 6 30.0 140.130 0.45 2.47 45 45 6 304 25.2 101.1 35.0 143.885 0.35 1.93 303 45.6 100.2 40.0 147.345 0.30 1.66 46 46 302 99.6 9 45.0 151.000 0.33 1.82 46 46 303 58.3 100.4 154.196 1.39 50.0 301 62.5 100.4 10 0.25 55.0 156.800 0.16 0.89 47 47 300 66.1 102.1 60.0 159.455 48 301 12 0.16 0.89 48 69.4 104.0 0.393 Average: 2.135 39.5 39.5 5.2 303.6 101.0

Client: Metro Vancouver Date: 12-Feb-25

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 2 **Run Time:** 09:07 - 11:09

Concentrations:

Particulate 4.29 mg/dscm 0.00187 gr/dscf

2.49 mg/Acm 0.00109 gr/Acf

4.18 mg/dscm (@ 11% O2) 0.00183 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.271 Kg/hr 0.597 lb/hr

Flue Gas Characteristics:

Flow 1053 dscm/min 37174 dscf/min

 17.54 dscm/sec
 620 dscf/sec

 1814 Acm/min
 64052 Acf/min

Velocity 11.868 m/sec 38.94 f/sec

Temperature 148.0 oC 298.3 oF

Moisture 12.7 %

Gas Analysis 10.7 % O2

7.9 % CO2

29.697 Mol. Wt (g/gmole) Dry 28.216 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.3549 dscm 83.163 dscf

Sample Time 120.0 minutes Isokineticity 102.6 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Metro Vancouver Date: 12-Feb-25 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 2 Run Time: 09:07 - 11:09 Control Unit (Y) 0.9784 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3092 Filter (grams) 0.00380 O2 10.50 173.0 Impinger 1 Pitot Factor 0.8505 Washings (grams) 0.00630 Traverse 1 Impinger 2 Baro. Press. (in. Hg) 30.03 Traverse 2 7.67 10.97 Impinger 3 3.0 Total (grams) 0.01010 Static Press. (in. H20) -20.0 Impinger 4 0.0 Stack Height (ft) 2.0 30 Impinger 5 70.90 Stack Diameter (in.) 0.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 16.1 7.92 10.74 Gain (grams) 256 1 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 160.740 29 102.7 0.30 1.57 29 298 1.5 5.0 164,124 30 30 10.0 167.330 0.27 1.41 298 102.3 3 15.0 170.539 0.27 1.42 30 295 8.4 102.2 20.0 173,556 0.24 1.25 31 31 32 290 12.5 102.4 32 17.7 0.24 1.28 288 25.0 176.608 102.2 30.0 179.770 0.26 1.37 33 300 102.3 35.0 183.628 0.39 2.04 35 5.5 5.5 306 45.6 102.1 40.0 188.042 0.50 2.64 300 53.2 45.0 192.200 0.45 2.39 298 58.3 101.6 10 50.0 196,110 0.37 1.96 37 37 298 62.5 105.2 39 297 11 55.0 200.020 0.40 2.13 39 66.1 100.8 12 60.0 202.850 0.20 1.07 40 6 297 69.4 102.7 202.850 Traverse 2 0.0 206.542 0.34 1.81 300 102.9 42 43 42 43 302 300 10.0 210.369 0.37 1.97 5.5 4.7 102.2 15.0 214.220 0.37 1.98 8.4 102.5 20.0 217.966 0.35 1.88 300 102.5 5 25.0 221.610 0.33 44 44 299 17.7 102 4 6 30.0 225.141 0.30 1.61 45 45 301 25.2 104.0 228.513 1.51 45.6 102.6 35.0 0.28 298 8 40.0 231.818 1.46 46 46 5.5 299 53.2 102.2 300 9 45.0 235.005 0.25 1.35 46 46 58.3 102.5 238.263 0.26 1.40 102.5 10 50.0 300 62.5 11 55.0 241.264 0.22 1.19 47 47 297 66.1 102.4 60.0 0.20 48 299 12 244.210 1.08 48 69.4 105.3 0.309 Average: 1.648 39.4 39.4 5.4 298.3 102.6

Client: Metro Vancouver Date: 12-Feb-25

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 2 **Run Time:** 11:35 - 13:37

Concentrations:

Particulate 4.0 mg/dscm 0.0017 gr/dscf

2.3 mg/Acm 0.0010 gr/Acf

Emission Rates:

Particulate 0.25 Kg/hr 0.561 lb/hr

Flue Gas Characteristics:

Flow 1064 dscm/min 37558 dscf/min

 17.73 dscm/sec
 626 dscf/sec

 1860 Acm/min
 65685 Acf/min

Velocity 12.171 m/sec 39.93 f/sec

Temperature 150.7 oC 303.3 oF

Moisture 13.2 %

Gas Analysis 10.3 % O2

8.3 % CO2

29.732 Mol. Wt (g/gmole) Dry 28.179 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5836 dscm 91.241 dscf

Sample Time 120.0 minutes Isokineticity 103.4 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Metro Vancouver Date: 12-Feb-25 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Unit 2 **Run Time:** 11:35 - 13:37 Source: Control Unit (Y) 0.9784 Collection Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3137 Filter (grams) 0.00400 8.33 Impinger 1 Impinger 2 197.0 Pitot Factor 0.8367 Washings (grams) 0.00630 Traverse 1 Baro. Press. (in. Hg) 29.98 Traverse 2 8.17 10.47 Impinger 3 6.0 Total (grams) 0.0103 Static Press. (in. H20) -20.00 Impinger 4 0.0 Stack Height (ft) 30 0.0 Impinger 5 Stack Diameter (in.) 70.90 Impinger 6 0.0 27.417 Stack Area (sq.ft.) Gel 14.7 Minutes Per Reading 8 25 10 30 Gain (grams) 295.7 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Traverse / Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 246.159 103.3 0.35 1.92 47 47 5.5 305 1.5 5.0 249.980 10.0 254.009 0.40 2.20 5.5 306 102.1 3 15.0 257.735 0.33 1.82 48 48 303 8.4 103.4 4 20.0 261.340 0.31 1.71 47 47 303 12.5 103.4 0.27 48 17.7 264.713 1.49 48 302 103.4 25.0 6 30.0 268.100 1.49 48 48 302 103.8 35.0 271.833 1.83 49 49 302 45.6 103.3 40.0 275.341 0.29 1.61 302 53.2 103.3 45.0 278.615 0.25 1.40 50 50 297 58.3 103.5 10 50.0 281.880 0.25 1.40 50 50 5.5 297 62.5 103.2 55.0 0.23 11 285.000 1.29 50 50 295 66.1 102.6 12 60.0 287.855 0.19 1.06 51 51 5 300 69.4 103.4 Traverse 2 0.0 287.855 5.0 291.642 0.34 1.88 307 103.0 1.78 1.67 53 55 10.0 295.330 0.32 7.5 307 4.7 55 298.922 15.0 0.30 306 8.4 103.3 3 20.0 302.351 1.51 306 103.7 5 25.0 305.304 0.20 1.12 57 57 6 307 17.7 103.5 6 30.0 308.670 0.26 1.46 58 58 306 25.2 103.3 35.0 313.228 0.48 2.70 8.5 304 45.6 103.2 40.0 318.179 0.56 3.15 59 59 8.5 305 53.2 103.7 9 45.0 323.355 0.62 3.48 58 58 13.5 306 58.3 103.4 328.090 0.51 303 103.5 50.0 2.88 60 60 13.5 10 62.5 11 55.0 332.769 0.50 2.82 60 60 11.5 304 66.1 103.4 60.0 336.175 62 12 0.25 1.42 62 11.5 304 69.4 105.7

53.0

53.0

3.0

303.3

103.4

0.337

1.879

Average:

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 2

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date Test Time Test Duration	(min.)	12-Feb-25 09:45 - 10:45 60	12-Feb-25 10:56 - 11:56 60	12-Feb-25 12:07 - 13:07 60
Baro. Press.	(in. Hg)	30.03	30.03	30.03
DGM Factor	(Y)	0.9880	0.9880	0.9880
Initial Reading	(m ³)	645.249	645.788	646.339
Final Reading	(m ³)	645.784	646.337	646.894
Temp. Outlet	(Avg. oF)	36.3	39.3	41.5
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.56508	0.57618	0.57985
HF	(mg)	0.011	0.021	0.011
Oxygen	(Vol. %)	10.8	10.7	10.3
HF	(mg/Sm³)	0.019	0.037	0.018
HF	(mg/Sm³ @ 11% O2)	0.018	0.036	0.017
Moisture (isokinetic)	(Vol. %)	11.4	12.7	13.2

*Wet Basis Calculated on moisture from isokinetic tests 68

Tstd. (oF)

Metro Vancouver WTE (Burnaby,B.C)

Source: Unit 2

Client:

Jobsite:

Sample Type: NH_3

Parameter	3	Test 1	Test 2	Test 3
Test Date Test Time		12-Feb-25 09:45 - 10:45	12-Feb-25 10:56 - 11:56	
Test Duration	(min.)	60	60	
Baro. Press.	(in. Hg)	30.03	30.03	
DGM Factor	(Y)	0.9965	0.9965	
Initial Reading	(m ³)	215.420	216.091	
Final Reading	(m^3)	216.088	216.759	
Temp. Outlet	(Avg. oF)	40.0	42.7	
Orifice Press.	(ΔH in.H2O)	0.50	0.50	
Gas Volume	(Sm ³)	0.70726	0.70203	
NH ₃	(mg)	1.57	1.78	
Oxygen	(Vol. %)	10.8	10.7	
NH ₃	(mg/Sm³)	2.22	2.53	
NH ₃	(mg/Sm ³ @ 11% O2)	2.16	2.46	
Moisture (isokinetic)	(Vol. %)	11.4	12.7	

Pstd. (in. Hg)

29.92

Client: Metro Vancouver Date: 10-Feb-25

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 3 **Run Time:** 11:50 - 13:51

Concentrations:

Particulate 0.48 mg/dscm 0.00021 gr/dscf

0.28 mg/Acm 0.00012 gr/Acf

Emission Rates:

Particulate 0.034 Kg/hr 0.076 lb/hr

Flue Gas Characteristics:

Flow 1191 dscm/min 42050 dscf/min

 19.85 dscm/sec
 701 dscf/sec

 2045 Acm/min
 72215 Acf/min

Velocity 13.381 m/sec 43.90 f/sec

Temperature 153.1 oC 307.6 oF

Moisture 12.7 %

Gas Analysis 10.4 % O2

9.8 % CO2

29.974 Mol. Wt (g/gmole) Dry 28.456 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.6073 dscm 92.077 dscf

Sample Time 120.0 minutes Isokineticity 101.3 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Metro Vancouver Date: 10-Feb-25 Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals 11:50 - 13:51 Source: Unit 3 **Run Time:** Control Unit (Y) 1.0010 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3009 Filter (grams) 0.00005 Impinger 1 Impinger 2 140.0 Pitot Factor 0.8505 Washings (grams) 0.00120 108.0 Baro. Press. (in. Hg) 30.48 Traverse 2 9.25 10.82 Impinger 3 16.0 Total (grams) 0.00125 Static Press. (in. H20) -20.00 Impinger 4 5.0 2.0 Stack Height (ft) 30 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 12.0 9.75 10 35 Gain (grams) 284 0 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Time Dry Gas Meter Pitot ^P Orifice ^H Traverse / Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 574.827 101.0 0.28 1.53 50 50 306 1.5 5.0 577.880 10.0 580.820 0.26 1.42 51 308 4.7 100.8 3 15.0 583.690 0.25 1.34 50 50 316 8.4 101.1 20.0 586.460 0.23 1.26 51 51 52 306 12.5 100.8 0.30 17.7 25.0 589.620 1.62 52 316 101.3 30.0 592.880 0.32 1.74 100.9 35.0 596.350 0.36 1.97 306 45.6 101.0 40.0 599.980 0.39 2.15 299 53.2 101.0 45.0 603.880 0.45 2.48 53 53 302 58.3 101.1 10 50.0 607.920 0.48 2.66 54 54 300 62.5 101.2 612.040 53 11 55.0 0.50 2.76 53 299 66.1 101.2 12 60.0 616.250 0.52 2.89 54 54 297 69.4 101.1 Traverse 2 0.0 616.250 620.280 0.48 2.65 101.6 55 55 10.0 624.350 0.49 2.68 55 309 4.7 101.3 55 0.52 15.0 628.540 2.85 8.4 101.3 20.0 632.860 0.55 12.5 101.3 57 5 25.0 637.230 0.56 3.10 57 310 17.7 101.5 6 30.0 641.690 0.58 3.22 57 57 310 25.2 101.8

58

59

59

54.5

57

58

59

59

59

54.5

5.7

310

310

310

310

309

308

307.6

45.6

53.2

58.3

62.5

66.1

69.4

101.0

100.1

101.8

101.9

102.2

101.9

101.3

35.0

40.0

45.0

50.0

55.0

60.0

8

9

10

11

12

Average:

645.420

648.980

652,460

655.800

659.100

662.340

0.41

0.38

0.35

0.32

0.31

0.30

0.400

2.25

2.08

1.96

1.80

1.69

2.203

Client: Metro Vancouver Date: 11-Feb-25

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 3 **Run Time:** 09:07 - 11:08

Concentrations:

Particulate 1.08 mg/dscm 0.00047 gr/dscf

0.62 mg/Acm 0.00027 gr/Acf

Emission Rates:

Particulate 0.078 Kg/hr 0.172 lb/hr

Flue Gas Characteristics:

Flow 1206 dscm/min 42591 dscf/min

 20.10 dscm/sec
 710 dscf/sec

 2095 Acm/min
 73971 Acf/min

Velocity 13.706 m/sec 44.97 f/sec

Temperature 149.6 oC 301.3 oF

Moisture 13.9 %

Gas Analysis 10.5 % O2

9.4 % CO2

29.927 Mol. Wt (g/gmole) Dry 28.271 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.6944 dscm 95.154 dscf

Sample Time 120.0 minutes Isokineticity 103.4 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Metro Vancouver Date: 11-Feb-25 Run: Jobsite: WTE (Burnaby, B.C) 2 - Particulate / Metals 09:07 - 11:08 Source: Unit 3 Run Time: Control Unit (Y) 1.0010 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.3009 Filter (grams) 0.00040 9.67 Impinger 1 Impinger 2 191.0 Nozzle Diameter (in.) Pitot Factor 0.8505 Washings (grams) 0.00250 Baro. Press. (in. Hg) 30.32 Traverse 2 9.17 10.67 Impinger 3 20.0 Total (grams) 0.00290 Static Press. (in. H20) -20.00 Impinger 4 5.0 Stack Height (ft) 30 1.0 Impinger 5 70.90 Stack Diameter (in.) 0.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 13.0 9.42 10.51 Gain (grams) 326.0 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Wall Stack Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 663.525 102.0 0.32 1.75 38 38 285 1.5 5.0 666,760 10.0 4.7 670.040 0.33 1.80 39 290 102.0 3 15.0 673.180 0.30 1.63 39 39 291 8.4 102.4 4 20.0 676,140 0.27 1.44 40 40 305 12.5 102.5 25.0 17.7 679.030 0.26 1.38 40 40 308 102.1 30.0 682.080 0.29 1.54 40 102.4 35.0 685.920 0.45 2.43 42 42 302 45.6 102.6 40.0 690.080 0.53 305 53.2 102.5 45.0 50.0 55.0 9 694.440 0.55 3.14 44 44 301 58.3 105.1 10 698.930 0.61 3.32 45 45 298 62.5 102.4 101.9 11 703.450 0.62 3.40 46 46 296 66.1 12 60.0 708.020 0.62 3.42 48 48 294 69.4 102.5 Traverse 2 0.0 5.0 708.020 712.420 0.55 3.15 296 104.6 10.0 716.890 0.57 3.26 50 50 297 4.7 104.3 15.0 0.58 310 8.4 104.3 721.360 3.26 50 50 3 20.0 725.680 0.54 3.03 313 104.4 5 25.0 729.800 0.49 2.75 52 314 17.7 104.3 6 30.0 733.790 0.46 2.59 312 25.2 104.1 35.0 737.350 0.36 2.05 45.6 104.2 306 8 40.0 740.820 0.34 1.94 53 53 304 53.2 104.4

54

55

54

47.1

54

54

47.1

5.8

301

298

297

296

301.3

58.3

62.5

66.1

69.4

104.3

103.9

103.9

103.8

103.4

45.0

50.0

55.0 60.0 743.980

747.020

750.010

753.110

0.28

0.26

0.25

0.27

0.421

1.60

1.50

1.45

1.56

2.343

9

10

12

Average:

Client: Metro Vancouver Date: 11-Feb-25

Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals

Source: Unit 3 **Run Time:** 11:33 - 13:34

Concentrations:

Particulate 0.31 mg/dscm 0.00013 gr/dscf

0.18 mg/Acm 0.00008 gr/Acf

Emission Rates:

Particulate 0.021 Kg/hr 0.047 lb/hr

Flue Gas Characteristics:

Flow 1161 dscm/min 40996 dscf/min

 19.35 dscm/sec
 683 dscf/sec

 2012 Acm/min
 71070 Acf/min

Velocity 13.169 m/sec 43.20 f/sec

Temperature 150.8 oC 303.5 oF

Moisture 13.5 %

Gas Analysis 10.7 % O2

9.4 % CO2

29.936 Mol. Wt (g/gmole) Dry 28.327 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.6054 dscm 92.011 dscf

Sample Time 120.0 minutes Isokineticity 103.9 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Metro Vancouver Date: 11-Feb-25

Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals

 Source:
 Unit 3
 Run Time:
 11:33 - 13:34

Control Unit (Y)	1.0010	Collection:	Gas Analysis (Vol. %):			Condensate Collection:	
Nozzle Diameter (in.)	0.3009	Filter (grams) 0.00010		CO2	O2	Impinger 1	225.0
Pitot Factor	0.8505	Washings (grams) 0.00070	Traverse 1	9.33	10.75	Impinger 2	58.0
Baro. Press. (in. Hg)	30.32		Traverse 2	9.50	10.71	Impinger 3	6.0
Static Press. (in. H20)	-20.00	Total (grams) 0.00080				Impinger 4	0.0
Stack Height (ft)	30					Impinger 5	2.0
Stack Diameter (in.)	70.90					Impinger 6	0.0
Stack Area (sq.ft.)	27.417					Gel	13.5
Minutes Per Reading	5.0			9.42	10.73	Gain (grams)	304.5
Minutes Per Point	5.0						

					Dry Gas	s Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Traverse 1	0.0	753.340			\ <u>`</u>	, , , , , , , , , , , , , , , , , , ,	, J,			
1	5.0	757.330	0.45	2.58	53	53	7	299	1.5	103.8
2	10.0	761.380	0.46	2.65	53	53	7	296	4.7	104.0
3	15.0	765.680	0.52	2.99	53	53	7	297	8.4	104.0
4	20.0	769.630	0.44	2.53	54	54	7	301	12.5	103.8
5	25.0	773.730	0.48	2.72	54	54	7	310	17.7	103.8
6	30.0	777.700	0.45	2.56	54	54	7	309	25.2	103.7
7	35.0	781.010	0.31	1.77	55	55	5	308	45.6	103.7
8	40.0	784.150	0.28	1.59	55	55	5	309	53.2	103.5
9	45.0	787.200	0.26	1.49	55	55	5	304	58.3	104.0
10	50.0	790.200	0.25	1.44	56	56	5	300	62.5	103.8
11	55.0	793.150	0.24	1.39	56	56	5	299	66.1	104.1
12	60.0	796.090	0.24	1.39	56	56	5	297	69.4	103.6
				•	•			•		
Fraverse 2	0.0	796.090								
1	5.0	799.280	0.28	1.61	56	56	6	305	1.5	104.7
2	10.0	802.490	0.29	1.67	57	57	6	302 4.7	4.7	103.2
3	15.0	805.600	0.27	1.55	57	57	6	305	8.4	103.8
4	20.0	808.600	0.25	1.44	57	57	6	304	12.5	103.9
5	25.0	811.760	0.28	1.61	57	57	5	306	17.7	103.6
6	30.0	814.880	0.27	1.56	57	57	5	302	25.2	103.9
7	35.0	818.790	0.43	2.46	58	58	6	308	45.6	103.6
8	40.0	823.100	0.51	2.93	58	58	6	306	53.2	104.8
9	45.0	827.500	0.54	3.11	59	59	7.5	305	58.3	103.8
10	50.0	832.130	0.60	3.47	59	59	7.5	302	62.5	103.5
11	55.0	836.810	0.61	3.52	59	59	8	304	66.1	103.9
12	60.0	841.520	0.62	3.56	58	58	8	306	69.4	104.1
Average:			0.389	2.233	56.1	56.1	6.2	303.5		103.9

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

HF

Source: Unit 3

Sample Type:

Parameter		Test 1	Test 2	Test 3
Test Date Test Time Test Duration	(min.)	11-Feb-25 09:35 - 10:35 60	11-Feb-25 10:46 - 11:46 60	11-Feb-25 11:58 - 12:58 60
Baro. Press.	(in. Hg)	30.30	30.30	30.30
DGM Factor	(Y)	0.9880	0.9880	0.9880
Initial Reading	(m ³)	643.625	644.166	644.715
Final Reading	(m ³)	644.163	644.709	645.244
Temp. Outlet	(Avg. oF)	41.0	45.3	48.0
Orifice Press.	(ΔH in.H2O)	0.30	0.30	0.30
Gas Volume	(Sm³)	0.56689	0.56831	0.55085
HF	(mg)	0.031	0.021	0.021
Oxygen	(Vol. %)	10.4	10.5	10.7
HF	(mg/Sm³)	0.054	0.036	0.037
HF	(mg/Sm³ @ 11% O2)	0.051	0.034	0.036
Moisture (isokinetic)	(Vol. %)	12.7	13.9	13.5

*Wet Basis Calculated on moisture from isokinetic tests
Tstd. (oF) 68

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 3

Sample Type: NH₃

Parameter		Test 1	Test 2	Test 3
Test Date Test Time			0-Jan-00 10:46 - 11:46	0-Jan-00 11:58 - 12:58
Test Duration	(min.)		0	0
Baro. Press.	(in. Hg)		30.30	30.30
DGM Factor	(Y)		0.9965	0.9965
Initial Reading	(m ³)		214.090	214.602
Final Reading	(m^3)		214.574	215.346
Temp. Outlet	(Avg. oF)		44.3	48.0
Orifice Press.	(ΔH in.H2O)		0.30	0.30
Gas Volume	(Sm ³)		0.51174	0.78096
NH ₃	(mg)		4.55	1.41
Oxygen	(Vol. %)		10.5	10.7
NH ₃	(mg/Sm³)		8.89	1.81
NH ₃	(mg/Sm ³ @ 11% O2)		8.47	1.76
Moisture (isokinetic)	(Vol. %)		13.9	13.5

*Wet Basis Calculated on moisture from isokinetic tests

Tstd. (oF) 68

Pstd. (in. Hg)

29.92

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Parameter: N₂O

Molecular Weight: 44.00 grams/mol Reportable Detection

Lab Detection Limit: 0.1 ppm Limit: 0.18 mg/Sm³

Sample ID	Date	Time	N₂O ppm	N₂O mg/Sm³	N₂O mg/Sm³ @ 11% O₂
Unit 1 - Run 1 Unit 1 - Run 2 Unit 1 - Run 3 Average Unit 2 - Run 1 Unit 2 - Run 2 Unit 2 - Run 3 Average	13-Feb-25 13-Feb-25 13-Feb-25 12-Feb-25 12-Feb-25 12-Feb-25	09:25 - 10:25 10:56 - 11:56 12:10 - 13:10 09:45 - 10:45 10:56 - 11:56 12:07 - 13:07	3.50 6.50 11.0 2.40 5.00 8.20	6.41 11.90 20.13 4.39 9.15 15.01	6.12 11.70 19.29 12.37 4.29 8.92 14.03 9.08
Unit 3 - Run 1 Unit 3 - Run 2 Unit 3 - Run 3 Average	11-Feb-25 11-Feb-25 11-Feb-25	09:35 - 10:35 10:46 - 11:46 11:58 - 12:58	4.50 5.00 3.40	8.24 9.15 6.22	7.74 8.73 6.06 7.51

Date:	11-Feb-25			12-Feb-25			13-Feb-25		
	Unit 1 Run 1	Run 2	Run 3	Unit 2 Run 1	Run 2	Run 3	Unit 3 Run 1	Run 2	Run 3
Test Times:	09:25 - 10:25		12:10 - 13:10	09:45 - 10:45	10:56 - 11:56	12:07 - 13:07	09:35 - 10:35	10:46 - 11:46	11:58 - 12:58
Methane (ppmv)	ND	3.3	3.0	4.1	8.2	3.2	ND	3.4	3.4
Ethane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethene (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3 as Propane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C4 as n-Butane (ppmv)	ND	ND	ND	0.85	1.1	ND	ND	0.76	ND
C5 as n-Pentane (ppmv)	0.75	1.0	1.3	1.4	1.6	1.1	1.3	1.3	1.1
C6 as n-Hexane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C6+ as n-Hexane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
Detection Limits:									
Methane	2.8	3.1	3	3.1	3.5	3.1	3.3	2.9	3.1
Ethane	0.84	0.92	0.89	0.94	1.1	0.93	0.99	0.88	0.94
Ethene	0.84	0.92	0.89	0.94	1.1	0.93	0.99	0.88	0.94
C3 as Propane	0.70	0.77	0.74	0.78	0.89	0.78	0.83	0.73	0.78
C4 as n-Butane	0.70	0.77	0.74	0.78	0.89	0.78	0.83	0.73	0.78
C5 as n-Pentane	0.70	0.77	0.74	0.78	0.89	0.78	0.83	0.73	0.78
C6 as n-Hexane	0.70	0.77	0.74	0.78	0.89	0.78	0.83	0.73	0.78
C6+	4.2	4.6	4.4	4.7	5.3	4.7	5	4.4	4.7
Using 1/2 DL Convention									
Sample Date:	11-Feb-25			12-Feb-25			13-Feb-25		
Sample Date:	11-Feb-25 Unit 1			12-Feb-25 Unit 2			13-Feb-25 Unit 3		
·	Unit 1 Run 1	Run 2	Run 3	Unit 2 Run 1	Run 2	Run 3	Unit 3 Run 1	Run 2	Run 3
Sample Date: Test Times:	Unit 1	Run 2 10:56 - 11:56	Run 3 12:10 - 13:10	Unit 2	Run 2 10:56 - 11:56	Run 3 12:07 - 13:07	Unit 3	Run 2 10:46 - 11:46	Run 3 11:58 - 12:58
·	Unit 1 Run 1 09:25 - 10:25	10:56 - 11:56 3.30	12:10 - 13:10 3.00	Unit 2 Run 1 09:45 - 10:45 4.10	10:56 - 11:56 8.20	12:07 - 13:07 3.20	Unit 3 Run 1 09:35 - 10:35	10:46 - 11:46 3.40	11:58 - 12:58 3.40
Test Times:	Unit 1 Run 1 09:25 - 10:25	10:56 - 11:56	12:10 - 13:10	Unit 2 Run 1 09:45 - 10:45 4.10 0.47	10:56 - 11:56	12:07 - 13:07	Unit 3 Run 1 09:35 - 10:35	10:46 - 11:46	11:58 - 12:58 3.40 0.47
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42	10:56 - 11:56 3.30 0.46 0.46	12:10 - 13:10 3.00 0.45 0.45	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47	10:56 - 11:56 8.20 0.55 0.55	12:07 - 13:07 3.20 0.47 0.47	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50	10:46 - 11:46 3.40 0.44 0.44	11:58 - 12:58 3.40 0.47 0.47
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35	10:56 - 11:56 3.30 0.46 0.46 0.39	12:10 - 13:10 3.00 0.45 0.45 0.37	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39	10:56 - 11:56 8.20 0.55 0.55 0.45	12:07 - 13:07 3.20 0.47 0.47 0.39	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42	10:46 - 11:46 3.40 0.44 0.44 0.37	11:58 - 12:58 3.40 0.47 0.47 0.39
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35	10:56 - 11:56 3.30 0.46 0.46 0.39 0.39	12:10 - 13:10 3.00 0.45 0.45 0.37 0.37	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85	10:56 - 11:56 8.20 0.55 0.55 0.45 1.10	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42	10:46 - 11:46 3.40 0.44 0.44 0.37 0.76	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39
Test Times: Methane (ppm) Ethane (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75	10:56 - 11:56 3.30 0.46 0.46 0.39 0.39 1.00	12:10 - 13:10 3.00 0.45 0.45 0.37 0.37 1.30	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85 1.40	10:56 - 11:56 8.20 0.55 0.55 0.45 1.10 1.60	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39 1.10	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30	10:46 - 11:46 3.40 0.44 0.44 0.37 0.76 1.30	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39 1.10
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75 0.35	10:56 - 11:56 3.30 0.46 0.46 0.39 1.00 0.39	3.00 0.45 0.45 0.37 0.37 1.30 0.37	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.85 1.40 0.39	10:56 - 11:56 8.20 0.55 0.55 0.45 1.10 1.60 0.45	3.20 0.47 0.47 0.39 0.39 1.10 0.39	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30 0.42	10:46 - 11:46 3.40 0.44 0.44 0.37 0.76 1.30 0.37	11:58 - 12:58 3.40 0.47 0.47 0.39 1.10 0.39
Test Times: Methane (ppm) Ethane (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75	10:56 - 11:56 3.30 0.46 0.46 0.39 0.39 1.00	12:10 - 13:10 3.00 0.45 0.45 0.37 0.37 1.30	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85 1.40	10:56 - 11:56 8.20 0.55 0.55 0.45 1.10 1.60	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39 1.10	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30	10:46 - 11:46 3.40 0.44 0.44 0.37 0.76 1.30	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39 1.10
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75 0.35	10:56 - 11:56 3.30 0.46 0.46 0.39 1.00 0.39	3.00 0.45 0.45 0.37 0.37 1.30 0.37	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.85 1.40 0.39	10:56 - 11:56 8.20 0.55 0.55 0.45 1.10 1.60 0.45	3.20 0.47 0.47 0.39 0.39 1.10 0.39	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30 0.42	10:46 - 11:46 3.40 0.44 0.44 0.37 0.76 1.30 0.37	11:58 - 12:58 3.40 0.47 0.47 0.39 1.10 0.39
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75 0.35 2.10	10:56 - 11:56 3.30 0.46 0.46 0.39 0.39 1.00 0.39 2.30	12:10 - 13:10 3.00 0.45 0.45 0.37 0.37 1.30 0.37 2.20	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85 1.40 0.39 2.35	10:56 - 11:56 8.20 0.55 0.45 1.10 1.60 0.45 2.65	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39 1.10 0.39 2.35	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30 0.42 2.50	10:46 - 11:46 3.40 0.44 0.37 0.76 1.30 0.37 2.20	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39 1.10 0.39 2.35
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75 0.35 2.10	10:56 - 11:56 3.30 0.46 0.46 0.39 0.39 1.00 0.39 2.30	12:10 - 13:10 3.00 0.45 0.45 0.37 0.37 1.30 0.37 2.20	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85 1.40 0.39 2.35	10:56 - 11:56 8.20 0.55 0.45 1.10 1.60 0.45 2.65	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39 1.10 0.39 2.35	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30 0.42 2.50 1.10 0.33	10:46 - 11:46 3.40 0.44 0.37 0.76 1.30 0.37 2.20	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39 1.10 0.39 2.35
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75 0.35 2.10 0.93 0.28 0.28	10:56 - 11:56 3.30 0.46 0.46 0.39 0.39 1.00 0.39 2.30 2.20 0.31 0.31	12:10 - 13:10 3.00 0.45 0.45 0.37 1.30 0.37 2.20 2.00 0.30 0.30	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85 1.40 0.39 2.35 2.74 0.31	10:56 - 11:56 8.20 0.55 0.45 1.10 1.60 0.45 2.65 5.47 0.37	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39 1.10 0.39 2.35	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30 0.42 2.50 1.10 0.33 0.33	10:46 - 11:46 3.40 0.44 0.37 0.76 1.30 0.37 2.20 2.27 0.29 0.29	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.27 0.31 0.31
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75 0.35 2.10 0.93 0.28 0.28 0.28	10:56 - 11:56 3.30 0.46 0.46 0.39 0.39 1.00 0.39 2.30 2.20 0.31 0.31 0.26	12:10 - 13:10 3.00 0.45 0.37 0.37 1.30 0.37 2.20 2.00 0.30 0.30 0.25	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85 1.40 0.39 2.35 2.74 0.31 0.31 0.26	10:56 - 11:56 8.20 0.55 0.45 1.10 1.60 0.45 2.65 5.47 0.37 0.37	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.14 0.31 0.31 0.26	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30 0.42 2.50 1.10 0.33 0.33 0.28	10:46 - 11:46 3.40 0.44 0.37 0.76 1.30 0.37 2.20 2.27 0.29 0.29 0.24	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.27 0.31 0.31 0.26
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75 0.35 2.10 0.93 0.28 0.28 0.28 0.23 0.23	10:56 - 11:56 3.30 0.46 0.46 0.39 0.39 1.00 0.39 2.30 2.20 0.31 0.31 0.26 0.26	12:10 - 13:10 3.00 0.45 0.37 0.37 1.30 0.37 2.20 2.00 0.30 0.30 0.25 0.25	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85 1.40 0.39 2.35 2.74 0.31 0.31 0.26 0.57	10:56 - 11:56 8.20 0.55 0.45 1.10 1.60 0.45 2.65 5.47 0.37 0.37 0.30 0.73	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.14 0.31 0.31 0.26 0.26	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30 0.42 2.50 1.10 0.33 0.33 0.28 0.28	10:46 - 11:46 3.40 0.44 0.37 0.76 1.30 0.37 2.20 2.27 0.29 0.29 0.24 0.51	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.27 0.31 0.31 0.26 0.26
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄) C5 as n-Pentane (mg/m³ as CH₄)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75 0.35 2.10 0.93 0.28 0.28 0.28 0.23 0.23 0.50	10:56 - 11:56 3.30 0.46 0.46 0.39 0.39 1.00 0.39 2.30 2.20 0.31 0.31 0.26 0.26 0.67	12:10 - 13:10 3.00 0.45 0.45 0.37 0.37 1.30 0.37 2.20 2.00 0.30 0.30 0.25 0.25 0.87	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85 1.40 0.39 2.35 2.74 0.31 0.31 0.26 0.57 0.93	10:56 - 11:56 8.20 0.55 0.45 1.10 1.60 0.45 2.65 5.47 0.37 0.37 0.37 0.30 0.73 1.07	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.14 0.31 0.31 0.26 0.26 0.73	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30 0.42 2.50 1.10 0.33 0.33 0.28 0.28 0.28 0.87	10:46 - 11:46 3.40 0.44 0.37 0.76 1.30 0.37 2.20 2.27 0.29 0.29 0.24 0.51 0.87	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.27 0.31 0.31 0.26 0.26 0.73
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6+ as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄) C5 as n-Pentane (mg/m³ as CH₄) C6 as n-Hexane (mg/m³ as CH₄)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75 0.35 2.10 0.93 0.28 0.28 0.28 0.23 0.23 0.50 0.23	10:56 - 11:56 3.30 0.46 0.49 0.39 1.00 0.39 2.30 2.20 0.31 0.31 0.26 0.26 0.67 0.26	12:10 - 13:10 3.00 0.45 0.37 0.37 1.30 0.37 2.20 2.00 0.30 0.30 0.25 0.25 0.87 0.25	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85 1.40 0.39 2.35 2.74 0.31 0.31 0.26 0.57 0.93 0.26	10:56 - 11:56 8.20 0.55 0.45 1.10 1.60 0.45 2.65 5.47 0.37 0.37 0.37 0.30 0.73 1.07 0.30	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.14 0.31 0.31 0.26 0.26 0.73 0.26	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30 0.42 2.50 1.10 0.33 0.33 0.28 0.28 0.28 0.87 0.28	10:46 - 11:46 3.40 0.44 0.44 0.37 0.76 1.30 0.37 2.20 2.27 0.29 0.29 0.24 0.51 0.87 0.24	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.27 0.31 0.31 0.26 0.26 0.73 0.26
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄) C5 as n-Pentane (mg/m³ as CH₄)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75 0.35 2.10 0.93 0.28 0.28 0.28 0.23 0.23 0.50	10:56 - 11:56 3.30 0.46 0.46 0.39 0.39 1.00 0.39 2.30 2.20 0.31 0.31 0.26 0.26 0.67	12:10 - 13:10 3.00 0.45 0.45 0.37 0.37 1.30 0.37 2.20 2.00 0.30 0.30 0.25 0.25 0.87	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85 1.40 0.39 2.35 2.74 0.31 0.31 0.26 0.57 0.93	10:56 - 11:56 8.20 0.55 0.45 1.10 1.60 0.45 2.65 5.47 0.37 0.37 0.37 0.30 0.73 1.07	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.14 0.31 0.31 0.26 0.26 0.73	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30 0.42 2.50 1.10 0.33 0.33 0.28 0.28 0.28 0.87	10:46 - 11:46 3.40 0.44 0.37 0.76 1.30 0.37 2.20 2.27 0.29 0.29 0.24 0.51 0.87	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.27 0.31 0.31 0.26 0.26 0.73
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6+ as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄) C5 as n-Pentane (mg/m³ as CH₄) C6 as n-Hexane (mg/m³ as CH₄)	Unit 1 Run 1 09:25 - 10:25 1.40 0.42 0.42 0.35 0.35 0.75 0.35 2.10 0.93 0.28 0.28 0.28 0.23 0.23 0.50 0.23	10:56 - 11:56 3.30 0.46 0.49 0.39 1.00 0.39 2.30 2.20 0.31 0.31 0.26 0.26 0.67 0.26	12:10 - 13:10 3.00 0.45 0.37 0.37 1.30 0.37 2.20 2.00 0.30 0.30 0.25 0.25 0.87 0.25	Unit 2 Run 1 09:45 - 10:45 4.10 0.47 0.47 0.39 0.85 1.40 0.39 2.35 2.74 0.31 0.31 0.26 0.57 0.93 0.26	10:56 - 11:56 8.20 0.55 0.45 1.10 1.60 0.45 2.65 5.47 0.37 0.37 0.37 0.30 0.73 1.07 0.30	12:07 - 13:07 3.20 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.14 0.31 0.31 0.26 0.26 0.73 0.26	Unit 3 Run 1 09:35 - 10:35 1.65 0.50 0.50 0.42 0.42 1.30 0.42 2.50 1.10 0.33 0.33 0.28 0.28 0.28 0.87 0.28	10:46 - 11:46 3.40 0.44 0.44 0.37 0.76 1.30 0.37 2.20 2.27 0.29 0.29 0.24 0.51 0.87 0.24	11:58 - 12:58 3.40 0.47 0.47 0.39 0.39 1.10 0.39 2.35 2.27 0.31 0.31 0.26 0.26 0.73 0.26

All data is corrected to standard conditions (S) of 20 °C, 101.325 kPa (dry) unless otherwise noted.

APPENDIX - E FIELD DATA SHEETS

LF

Client MV WTE Test Date Feb 11,12,13 2025
File No. Recovery Date

Source: Unit 3

		Kun I	Run 2	Kun 3	
Pbar in h	g	30.30	39.30	30.30	
Canister	number	01193	01185	002747	
Controlle	er number	188	88	188	
Initial:	Start time	9:35	1046	1158	
	Flask Vac. (in Hg)	10:-30	-31	-30	
Final:	Finish time	10:35	1146	1258	
	Flask Vac. (in Hg)	-10	8	-9	

Source: Unit 2 Run - 1 Run-2 Run-3 30.03 30.03 Pbar in hg 02026 002845 01119 Canister number CA00696 Controller number 10 EL 1207 0945 -30 1056 Start time Initial: -30 1156 Flask Vac. (in Hg) 1307 Final: End time 10 45 -10 Flask Vac. (in Hg)

Source: Unit1 Run1 Run2 Run3

Pbar in h	g	29.93	29.43	29.43
Canister	number	003213	Sea 194 002 288	02006
Controlle	er number	0400102	0400102	0000102
Initial:	Start time	9:25	10:56	12:00
	Flask Vac. (in Hg)	-29	-29	+30
Final:	End time	10.25	H: 56	12:10
	Flask Vac. (in Hg)	- 5	-7	-7

Source:

Pbar in h	ıg		
Canister	number		
Controll	er number		
Initial:	Start time Flask Vac. (in Hg)		
Final:	End time Flask Vac. (in Hg)		

H

Initial 0.000 0.000		Pbar Operator Down Run 0.000	27. VI Static		Source Parare Date Stack Leak Initial	Stack Dia Leak Check		Cp Pbar Operator Down Run 2 0.000 0.000 erature (°F) Imp.									
Test No.	Time (hhmm)	DGM Volume (cu ft) / (m³)	DGM Outlet	Stack	Vol. (mL)				No.	(hhmm)	(cu ft) / (m³)	DGM Outlet	Stack	Vol. (mL)			
-	9.16	217,4818	37		(ITIL)	R1	R2	R3		9.25	646.8984			(IIIL)	R1	R2	R3
	1 2	X17,1310	31							1.00	0 10.274 1	۵					
1			45						1			40					
			-	-													
	10:25	218.0158	47	-						10.15	647.4576	19					
	10.20	V. 9.0138	1							10.73	(g 11. 13 /g	- 6					
	10:56	218.0182	45							16:56	647.4606	45					
0																	
2									2								
												-					
-	11:54	218.5778	50							11:56	647.9998	52					
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	20							p	O Ivini			-			
	12:10	218.5828	5							12 10	6479948						
										12:10	647.9990	50					
2									2								
3									3								
			_														
	13:10	219-1636	46							13:10	648 5547	42					
																-	

LF

-

Client	MV WTE	Υ	LMU-D 0.9965	Client	MV WTE	Y	LMU-A 0.9880
Source	Unit 2	Ср		Source	Unit 2	Ср	
Parameter	NH3	Pbar	30.03 Static	Parameter	HF	Pbar	30.03 Static
Date	Feb 12,2025	Operator	LF + JD	Date	Feb 12,2025	Operator	LF+JD
Stack Dia		Down	Up	Stack Dia		Down	Up

Leak Check	Run 1	Run 2	Run 3
Initial	0.000/	0.0001	0.0001
Final	0.0000	0.0001	0.0001

Run	Time	DGM Volume	Tem	(°F)	lmp.		∆P IN. H₂	Ω
No.	(hhmm)	(cu ft) / (m ³)	DGM Outlet	Stack	Vol. (mL)	R1	R2	R3
	0945	215.4296	39	300				
1			40	302				
	1045	216.0884	41	300				
	1056	216.0912	40	301				
2			42	305				
	1156	216 - 7586	46	303				
	1207	216.7692	39	306				
3								
	1307	217.4462	36	305				
	Ru	ın 1	Run 2	Ri	un 3	_		
O ₂								
CO ₂								

Leak Check	Run 1	Run 2	Run 3
Initial	0.0001	0.0001	0.0001
Final	0.0000	0.0001	0.0001

Run	Time	DGM Volume		rature (°F)	lmp.	Δ	P IN. H ₂	0
No.	(hhmm)	(cu ft) / (m ³)	DGM Outlet	Stack	Vol. (mL)	R1	R2	R3
	0945	645.2490	34	300				
1			36	302				
	1045	645.7840	39	300				
	1056	645.7880	39	301				
2			39	305				
	1156	646.3368	40	393				
	1207	646.3391	43	306				
3								
	1367	646-8938	40	305				
	Ru	n 1 R	un 2	Ru	n 3			
O ₂								
CO ₂								

LF

Client Source Parameter Date Stack Dia	WTE 3 3 0 ,2025	Y Cp _ Pbar _ Operator _ Down _	MU-D 0.9965 30.30 Static LF + BL Up	Client Source Parameter Date Stack Dia	MV WTE Unit 3 HF Feb 11,2025	Y Cp Pbar Operator Down	30.30 LF	
Leak Check	Run 1	Run 2	Run 3	Leak Check	Run 1	Run	2	Run 3
Initial	0,0000	0.000	0.0001	Initial	0.0001	0.00	201	0.0001

Leak Check	Run 1	Run 2	Run 3
Initial	0.0000	0.0001	D.0001
Final	0.0000	0.0000	0,000

Run	Time	DGM Vo	luma	Temp	(°F)	lmp.	^	∆P IN. H₂	0
No.	(hhmm)	(cu ft) /		DGM Outlet	Stack	Vol. (mL)	R1	R2	R3
	0935	213.48	90	33	300	200			
1				39	303				
	1035	214.08	35	45	305				
	1046	2/4.090	20	44	301				
2				44	308				
	1146	214.5	740	45	304				
	1158	21406	021	45	300				
3				48	302				
	1258	215.3	3461	51	307				
	Ru	n 1	R	un 2	R	un 3			
O ₂									
CO_2									

Leak Check	Run 1	Run 2	Run 3
Initial	0.0001	0.0001	0.0001
Final	0.0001	0.000	0,0001

Run	Time	DGM Volume	Temper DGM	ature (°F)	Imp. Vol.	Δ	AP IN. Hz	0
No.	(hhmm)	(cu ft) / (m³)	Outlet	Stack	(mL)	R1	R2	R3
	0935	643.6254	36	300	200			
1			43	303				
	1035	644.1626	44	305				
	1046	644.1658	44	301				
2			45	308				
	1146	644.7090	47	304				
	1158	644.7148	46	300				
3			48	302				
	1258	645.2441	50	307				
	Rui	n 1 R	un 2	Ru	n 3			
O_2								
CO_2								

OUENT P	1 /11/11/-			NOZZLE 6	a-351	DIAME	TER, IN. , 3	292	IMPINGER	INITIAL	FINAL	TOTAL GAIN
CLIENT: REWOOD	Id (MVWTE)			PROBE	AL GUZ	20 0	p 850		VOLUMES	(mL)	(mL)	(mL)
SOURCE: Unit	# i								Imp. #1	0	185	
PARAMETER / RUN	No metals Part	culate /	2-1	PORT LENG	3TH				lmp. #2	105	165	
DATE 13 Feb 2		- / /	V	STATIC PR	ESSURE, IN. I	H2O '	9		Imp. #3	100	112	
OPERATOR: CD	t 5D			STACK DIA	METER ~	70.01	ia .		lmp. #4	0	, 0	
CONTROL UNIT	TV 14	Y 1,001		STACK HEI				-	Imp. #5	100	138	
		ΔH@ 2 1	2	1		-			Imp. #6	100	100	
BAROMETRIC PRES		3		INITIAL LEA	K TEST , C	1016	cu		Upstream D	iameters		
ASSUMED MOISTUR				FINAL LEAF	KTEST , C	01/0/2	3 21		Downstream			
Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °I	F.		Pump Vac.	Fyr	rites	
Point 00	284.328	IN. H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
Point 0830	007.300			Outlet				Exit		Vol. %	Vol. %	
7	887.766	,29	187	54	215	249	254	34	45			
2 10	189 281	.30	1.94	155	296	4-7	201			8.5	106	
3	894.684	28	181	56	296	250	263	32	45			
4 20	298,216	.20	1.95	57	295	230	20					
5	9016423	. 25	1.61	58	300	261	251	33	4.0			
6 30	9050172	34	2.2	58	300	-01	23/					
7	909 517	UL	2.94	60	3/0	251	250	3.5	6	9.0	101	
8 40	914 245	: 35	354	60	305		200	2		7	/	
9		.53	3.43	6/	302	265	265	34	7.5			
10 50	919.002	.50	3.25	63	353							
11	927-910	.45	2.39	63	3/1	260	258	34	6.5	9.0	60.27	
12 60	731,781	. 35	2.29	64	302	200	200	1		/	1	
75	13/11/01				1				1			
	935,780	- 38	2.46	65	308	265	262	38	6.5			
2 70	740.130	٤45	2.93	66	306	200	202	70	-	8.5	10.89	
3	944.748	.50	3.28	47	301	260	265	534	7,5	2.0	10.67	
4 80	949.350	.50	325	68	310		200		1 6/3			
5	953,873	.48	3.13		308	261	269	33	7.5			
6 90	958.410	48	3.14	701	313		101	-	. 0	9.0	10.55	
7	962,882	. 49	3.05	70	3/5	260	265	33	7.0	1		
8 (00	967.226	.45	2 96	70	309							
9	971.618	.44	2.88	70	308	260	259	33	7.0			
10 110	975.870	. 42	2.76	11	305				1	9.0	10.87	
N	979,520	31	2.03	71	301	259	270	32	6	1	7,510	
120	982,802	25	1.64	-41	305	43/						
ENDTEST	10000		1.0	11	1 200							
10:34					1						1	
10,7								1			1	
					1			1			1	50
LL	1		1		1							

CLIENT: D		11 (00.1			NOZZLE ?		DIAMET	ER, IN. /3	137	IMPINGER!	INITIAL	FINAL	TOTAL GAIN
LIENT. K	ewo	rld Mun	116)		PROBE -7	0	С	p , 83	367	VOLUMES	(mL)	(mL)	(mL)
SOURCE: (mit	A /								lmp. #1	0	243	
PARAMETER	RUN N	o Metals parl	Nc. /R-	2	PORT LENG	TH				Imp. #2		188	
DATE 13F	e525		-		STATIC PRE					Imp. #3	100	112	
PERATOR:	0	+ 30 104			STACK DIAM	METER =	70.911			lmp. #4	0	5	
ONTROL UN	IT SI	5.14	Y 1.001		STACK HEI					lmp. #5	100	100	
			ΔH@ 2.15	2_						lmp. #6	100	100	
AROMETRIC	PRESS	URE, IN. Hg 2	9.39		INITIAL LEA	K TEST 🍃	00101	5%		Upstream Di	ameters		
SSUMED MC	ISTURE	, Bw 13/	1		FINAL LEAK	TEST	001019	5 4		Downstream	Diameters		
											,		
Clock	Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °F	7		Pump Vac.	Fyr	rites	
Point //2 ,	56	002 222	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
10.	10	983.232			Outlet				Exit		Vol. %	Vol. %	
1		987.220	. 36	242	70	305	252	250	52	9	8.0	11.15	
2 11	. 1	991.802	,48	319	70	314			-		2	1.3	
3		996.757	50	3.3	70	319	266	254	37	11.5			
4 2	0	1001-150	-51	536	69	319	200			1			
5		1005.301	150	3,3	69	3/9	266	257	34	11.5			
4 3	5	1010.363	48	317	29	3/8	260	20 /		10.	2.0	01.55	
7		1014.831	.46	3.04	70	318	259	269	53	11.5	0.0	06 23	
8 4	,	1019 246	.45	2.97	70	319	6 1	201	-	1			
9		1023.005	.48	3/8	-0	3/8	267	261	58	12			
10 5	9	1027.974	40	2.65	10	3/8	24.7	26		1	8.0	10.75	
11		1031 988		2.46	71	317	259	263	41	10.5	0,0	40	
12 60	5	1035, 485	37 28	186	-11	318	23	26 3	91				
10		1033.703		,,,,,,	- //	2,0				1			-
		1039,218	· 32	2.12	70	3/7	261	268	44	8.0			
1 7	0	1042.900	v 31	206	71	317	-	200	- /	0.0	8.0	11.12	
3		1046,520	230	1,99	71	317	259	268	45	8.0	0.0	11/0	
4 8	0	1050,316	,33	2.19	71	316	63/		/ 3	0.0			
5		1054.244	35	2.33	72	3/6	259	259	42	9			
6 9	0	1058,269	39	2046	72	317	23/	25/	-	1			
7		1062.855	148	3,20	72	3/5	261	268	43	12	9.0	10.38	
8 10	0	1067.888	.58	3.86	7	3/5	201	200			11.5	1-20	
9		10 2 754	:57	3.57	1/	3/6	260	269	41	13			
10 11	10	1077,435	-50	3.32	7/	3/6	750	201		٠,٠			
M	-	1081.810	.74	2092	71	317	261	263	42	/2	915	10.0	
12 12	.6	1385,49	+32	2.12	71	314	201	200		1/2	7,0	,,,,,,,	
END (3)		10003 11	004			011							
0 00										†			
				†			1			1			
	-				-		†			†			

HENT:	0	10/10/10/10/	-			3-309		ER, IN. 🦼		IMPINGER		FINAL	TOTAL GAIN
	Lewor	10 MUNTE)		PROBE -	AL GUR) C	p = 850	25	VOLUMES	(mL)	(mL)	(mL)
OURCE		# /		2		X				Imp. #1	0	234	
		· Metals Par	11/2-	>	PORT LENG					Imp. #2		176	
	38625		/ /				19 رسى H2O			Imp. #3	100	109	
		tJD+BL			STACK DIA		70	. 9 "		Imp. #4	0	0	
ONTRO	DL UNIT J		Y 1.001		STACK HEIGHT 301						100	101	
			AH@ 2.12			-	Imp. #6						
AROME	TRIC PRESS	URE, IN. Hg	29	38	INITIAL LEA	15"	Upstream Di						
SSUME	D MOISTURE	, Bw 131/			FINAL LEAP	(TEST ,	00101			Downstream	Diameters		
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °F			Pump Vac.	Fyr	rites	
Point	12.2	01	IN. H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO_2	O_2	
	13:20	86.015			Outlet				Exit		Vol. %	Vol. %	
		89 625	-31	2.00	67	3/5	255	250	46	50			Ì
2	10	93.180	030	1.93	67	315		-3-	- 1		9.0	(0.2)	
2		96.740	.30	1.93	68	316	265	250	45	5.0			
4	20	100.405	32	2.06	67	315				-			
5		104,252	35	2.25	68	317	264	265	44	5.5			
6	30	108.151	. 36	2.32	69	317		-					
5		112.514	045	2.91	69	316	262	261	44	6.0	9.0	10.50	
8	40	117.415	.57	3.68	69	317						7	
9	10	122.183	.54	3.46	69	321	260	261	44	7.3			
10	50	126.770	50	3,20	70	325							
10	,	131.117	4	2.87	70	326	761	258	46	6.5	9.0	104	
2	60	134.794	032	2.54	70	328	10	2,0			-		
		171	V 0		1,00	1				1			
1		138-624	. 35	2.25	68	319	259	264	45	55	8.3		
2	70	142.711	410	2.55	68	324	-5			100	10.00	13.80	
3	7.0	146 890	42	2.67	68	327	259	259	45	6:0	1000		
4	80	151.150	.44	2.77	68	333							
5	()	155.505	48	2,90	69	335	260	255	45	6.5			
1	90	159,762	. 44	2.77	69	337	200		7.0		9,0	10.45	
3	-1-	164.221	647	3,03	69	318	260	256	45	65			
8	100	1680613	, 45	243	20	310	200						
9	1.0	173.080	47	3.04	70	315	255	259	46	7			
10	110	177.604	48	3.11	70	315			1	1			
11	110	1810525	.36	2.33	70	316	259	260	47	5.5	85	1093	
12	120	185,020	230	1,93	70	321	- /				0.0		
	523	100,000	530	11-13	10	100				1			
W	3-7									†			
$\overline{}$										1 -			
-						1				1			

B.A	ETPO VAI	NCOUVER WTE	DUDNA	DVDC	PROBE TIP	DIAMETER, II	N. P-314		3137	IMPINGER	INITIAL	FINAL	TOTAL GAIN
IAI			- DUKNA	DIDU	PROBE LEN	IGTH, FT / Cp	70	. 3	376	VOLUMES		(mL)	(mL)
RUN N	0 1 /ne	etals Partic								Imp. #1	70 C	116	
SOURC	CHECK	# 2			PORT LENG					Imp. #2	100	200	
DATE	11FP625				STATIC PRE	ESSURE, IN. I	120 -19	7.5		lmp. #3	100	126	
OPER/	ATOR: CD	t 2D			STACK DIA	METER				Imp. #4	100	٥	
CONTR	ROL UNIT / Y	CAE 024	9784		STACK HEIGHT						wo	103	
	ΔН@		1.812								900C/00	101	
	METRIC PRESS		-3031		INITIAL LEA	@ 151-	Imp. #7	CICL					
NU22/	IED MOISTURE	, Bw 131.			FINAL LEAK	TEST	00100	54		Imp. #8	19		
5		G - 6											
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH		1	Femperature °F	7		Pump Vac.	Fyr	rites	
Point	10:16	66.789	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Box	Probe	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	
1	10.1-		173	1.76	29	2 -4	250	250		4 -			
2	10	70,295	•33	1,65		304	270	252	40	415	3.0	10-7	
3	10	77.005			30	306	9-1	251	42	11-			
4	20		,30	1.55	30	305	251	1	76	4.5			
5	20	80,440	.29	1.55	31	304	251	251	+3		0.	100	
6	35			2.04		304	251	251	73	4.5	3.3	10.8	
7	33	87.596 92.820	38	3.77	33	304	251	0	11-	-			
8	40		.70		35		251	250	45	65			
9	70	98.036	,70	3.78		305	000	0	46	-	71	47 A	
10	50	103285	.70	3.78	36	304	251	250	70	7.0	7.6	111	
12	30	08.30	. 64	1 25	38		0=5	25-1	110	110			
12	40	111,343	23		39	304	250	251	48	4.0			
4	60	113.802	. 15	.82	70	298						-	
1		112 100	410	2/2	111	2011	0	-	1111				
主		118 183	48	262	41	304	250	250	44	5.5	20	15	
7	70	122,540		2.57	42	304	13 201	1000000	44	00	8.0	10.5	,
130	0.0	14 856	46	2.52	43	305	251	250	44	3.5			
4	80	131.442	.52	2.34	43	307		ن رسيم وي	1111	/ -			
5	~ ~	135 850	.48	263	44	306	250	250	44	6.0	0.0	10.1	
6	90	140 130	15	2.47	45	304	870-11	200	44	~ A	00	10.6	
3	1.33	143-885	2 -2	1.93	46	303	254	251	44	5.0			
8	100	142.345	1 11	1.66	46	303	050	0	1/2	-	62 5	10.8	
9	1112	151.300	, 33	1.82	46		250	250	43	50	8.0	10.0	
19	110	154, 196	-25	1,39	47	301	20	000	110	7,			
1/1	100	156.800	16	a 849	47	300	250	250	42	4,5			
VZ	120	159.455	.16	-89	48	30/							
END	12:20												
							167						
											L		/

A. Lanfranco and Associates Inc.

- N	METRO VA	NCOUVER WTE -	RIIDNAR	VRC	NOZZLE G			ER, IN.		IMPINGER		FINAL	TOTAL GAIN
			DOINIAD	1 5.0.	PROBE 7	ALGURD) C	P.850	5	VOLUMES		(mL)	(mL)
OURC	E Whit to	12								Imp. #1	0	173	
ARAM	ETER / RUN N	lo Metals fastic	. 42		PORT LENG					Imp. #2		162	
	2Fen2	5				ESSURE, IN. I	H20 / 2	0		Imp. #3	100	103	
PERA	TOR: CD				STACK DIA		Imp. #4	0	0				
ONTR	OL UNIT	AE 024	Y 978	4	STACK HEI	GHT			lmp. #5	100	102		
			ΔH@]. 81	2					lmp. #6	100	100		
_	ETRIC PRESS		30.03		INITIAL LEA	15ª		GLL					
SSUM	ED MOISTURI	E, Bw 37.			FINAL LEAK	(TEST	0016	(5 2	Imp. #8		1 1		
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH	16		;	Pump Vac.	Fyr	rites			
oint	0007	113 71	IN. H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
	0907	160.74		_	Outlet				Exit		Vol. %	Vol. %	
1		164 124	(30	1.57	29	298	263	250	32	5	-	†	
2	1.0	167.336	27	141	30	298			0				
3		170.539	27	1.42	30	295	255	258	35	5	80	10.9	
4	20	173.556	-235	1,25	31	290							
5		176.608	.24	1,28	32	288	250	256	35	4			
6	30	179.770	.26	1.37	33	300				/			
7		183 628	.39	2.04	35	306	250	755	35	5.5	8.5	10.1	
8	40	188.042	250	2.64	36	300							
9		192.200	.45	2.39	37	298	250	253	37	6.0			
10	50	196,/10	=37	1.96	37	298					8.0	10.5	
11		200.02	040	2.13	39	297	251	258	37	6	-		
12	60	202.850	420	1.07	40	297			- 1	1			
1		206 542	34	131	UL	200	250	252	37	5.5			
2	10	210-319	237	1.97	42	1302					8.0	10.6	
3		214,220	9 37	1198	43	300	250	257	39	60	12.		
4	20	217.966	35	188	43	300							
5		221.610	-33	1.77	44	299	251	255	39	Co			
6	30	225, 141	39	161	45	301					-		
7		728.513	- 28	1,51	45	298	250	256	39	5.5	8.0	10.8	
8	40	231.818	,27	1.46	46	299							
9		235,005	25	1:35	46	300	250	256	40	2			
10	50	232.263	. 36	1.40	47	300					7-0	11.5	
11		241, 264	222	1.19	47	297	252	253	40	5	T.	L	
12		244,210	-20	1,08	48	299							
W	11:09			1000									
100						14	4						
-					-	- Confi				-			
_				L		100						1	

METRO VANCOUVER WITE BUR	NADV DC	PROBE TIP	DIAMETER, I	N. P. 314	£ .	3137	IMPINGER !	INITIAL	FINAL	TOTAL GAIN
METRO VANCOUVER WTE - BUR	NADI DC	PROBE LEN	NGTH, FT / Cp	16		3367	VOLUMES	(mL)	(mL)	(mL)
RUN No #3 Metals Partie			-, -				lmp. #1	2	197	
SOURCE Unit #2		PORT LENG	GTH				lmp. #2	100	178	
DATE 12 Feb 25		STATIC PR	ESSURE, IN. I	120 -2	9		Imp. #3	100	106	
OPERATOR: CD		STACK DIA	METER				lmp. #4	0	0	
CONTROL UNIT TY CAE 024 / 978	4	STACK HEI	3	Imp. #5	100	100				
ΔΗ@	14812			Imp. #6	100	100				
BAROMETRIC PRESSURE, IN. Hg	19.98	INITIAL LEA	502	Imp. #7	GEL					
ASSUMED MOISTURE, BW		FINAL LEAF	K TEST	21015	ч		Imp. #8			
				_						
Clock Time Dry Gas Meter ft. Pitot Δ	Orifice ΔH		,	Temperature °F	7		Pump Vac.	Fy	rites	
Point In. H ₂ C	IN. H ₂ O	Dry Gas	Stack	Box	Probe	Impinger	IN. Hg	CO_2	O ₂	
1135 246,159		Outlet				Exit		Vol. %	Vol. %	
1 249.980 .33		47	305	252	257	37	55			
2 10 254.009 ,40		47	1306					85	99	
3 257 735 - 33		48	303	251	258	40	6			
4 2 761,340 031	1.71	47	303			100				
5 264.713 ,2-		48	302	250	257	40	6			
6 30 268.100 .21	1.49	98	302					8.5	003	
7 271.833 -33	1.83	49	302	251	2.56	41	6		*	
8 40 275.34 .29	1.61	50	302				Tr.			100
9 278.615 029	5 1.40	50	297	250	25	41	55			
10 50 281.880 02	1,40	50	297					8.0	20.2	
11 285.000 ,23	129	50	295	250	250	42	5			
12 60 287.855 .19	1.06	51	300		- 1					
4										
291,642 .34	1.88	52	307	250	255	41	7.5	75	120	
1 70 295.330 .32		53	307							
3 298.922 ,30		55	306	253	257	40	7.0	9		
BO 302,351 02		56	306							
5 305.304 .20	1.12	57	337	256	256	40	6.0	8.5	10.1	
6 90 308.670 .26	1.46	58	306		-					
7 313.228 .47		58	304	252	253	41	8.5			
8 100 318.179 156	3.15	59	305			4/7	1 60 -	7		
9 323.355	348	58	306	258	261	42	17.5	3.5	10.2	
10 40 328.090 -51	2.88	60	303			1/2	10 : -			
11 36 169 000		60	304	255	258	42	12.8			
12 126 36.175 .25	1,42	62	304				-			
END 13:37			10	4 2	Acres 15					
			-							
		1						L		

A. Lanfranco and Associates Inc.

METRO VANCOUVER WITE - BURNABY B.C.	NOZZLEG-33-/	3 DIAME	TER, IN.	3009	IMPINGER	INITIAL	FINAL	TOTAL GAIN
4 # -	PROBE FALL	7 - 7 -		5051	VOLUMES	(mL)	(mL)	(mL)
SOURCE Unit #3 3) Unit #3	Mar. 100				Imp. #1	0	140	190
PARAMETER / RUN No 1981 als / Particulate / R-/	PORT LENGTH				Imp. #2	(DD	208	103
DATE FER. 10, ZOZS	STATIC PRESSURE,	IN. H2O 💆 🚄	DD	lmp. #3	100	116	16	
OPERATOR: DS 4 BL	STACK DIAMETER	70.9"		Imp. #4	D	5	3	
CONTROL UNIT JULY Y LADID	STACK HEIGHT	30.D		Imp. #5	100	2	2	
ΔH@ 2.17.0					Imp. #6	100		
BAROMETRIC PRESSURE, IN. Hg 30.98	INITIAL LEAK TEST	0.006	015	4	Imp/#3	12000	4	
ASSUMED MOISTURE, BW /5 %	FINAL LEAK TEST	0.005	215	<i>(1</i>	Imp. #8			2
	G .		-				Testo	5
Clock Time Dry Gas Meter ft ³ Pitot ΔP Orifice ΔH		Temperature °	F		Pump Vac.	Fy	rites	
Point IN. H ₂ O IN. H ₂ O	Dry Gas Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
11.50 574.827	Outlet			Exit .		Vol. %	Vol. %	
1 577.88 0.28 153	50 304	253	299	52	4			
2 10 580.82 0.26 1.42	5/ 307					10.5	7.69	
3 583.69 0.25 1.34	50 3/	265	232	54	5		/	-
4 20 586, 46 0.23 1.26	5/ 30	6		/				
5 589.62 030 1.62	52 3/1	26D	259	.55	5			
6 30 592, 88 0.32 1.74	52 3/7		1					
7 596.35 036 797	52 306	26D	264	54	2	10 D	9.76	
8 40 599.98 0.39 2.15	52 299					1,000		
9 603.88 0.45 2.48	33 302	261	265	53	2			
10 50 807.92 0.98 2.66	39 3DI							
11 612.04 0 SD 275	53 299		26/	51	5	10.0	10 29	
12 60 6/6.25 0.52 2.89	54 29	7						
1 620.28 0.48 2.65	54 302	262	258	52	6			
2 10 62435 049 2.68	55 30	9	-			95	10.48	
3 628.59 0.52 2.85	55 3/1	26/	260	54	6	, -		
4 20 632.86 0.55 3.03	56 306			,				
5 637.73 0.56 3.10	57 303	26D	263	55	7			
6 30 641.69 0.58 3.22	57 302			, E		9.0	10	
7 645 42 0.41 2.25	57 3/1		254	56	7			
8 40 648.98 0.38 2.08	57 314							
9 652.46 035 1.96	58 29:	7 259	160	55	7			
10 50 655.80 p.32 /.80	59 29					9.D	11.0	
11 659.10 0.3/ 1.75	59 29		259	54	6			
12 /3 5/ 662 34 0 30 / 69	59 29		·					
			-			1		
					,			

A. Lanfranco and Associates Incr

1	6
1_	1.

ME	TRO VAN	NCOUVER	WTE -	RIIDNAR	VRC	NOZZLEG-	35-13	DIAMET	NOZZLE6-35-13 DIAMETER, IN. // 3009					TOTAL GAI
	INO VAI	TOUVER	AAIE -	BUNNAB	1 B.C.	PROBE	7 AL C	WRO C	P 0.8	051	VOLUMES	(mL)	(mL)	(mL)
URCE	Wast	#3.		/ >	1 00						Imp. #1	0	191.	191
RAMET	ER / RUN No	F 300 17 F 100 14		RHIWLOT	e K2	PORT LENG					lmp. #2	100	198	96
TE	FEB.	11.200	25		, ,	STATIC PR	D.D"		lmp. #3	100	1/20	Zo		
ERATO	R: //s	+BC				STACK DIA	Imp. #4	D	5	5				
NTROL	UNIT	014		Y 1.00	10	STACK HEI	Imp. #5	100	101					
				ΔH@ 2.1	20			30.01			Imp. #6	100	100	6
ROMET	RIC PRESSI	JRE, IN. Hg	303	12		INITIAL LEA	015"	Im(0.#7	200					
SUMED	MOISTURE	, Bw	5/	Al-		FINAL LEAK	TEST	2 004	0150		Imp. #8		1	
													Testo"	3
C	lock Time	Dry Gas Met	er ft ³	Pitot ΔP	Orifice ΔH			Temperature °I	7		Pump Vac.	Fy	rites	
oint				IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O_2	
1	1907	663.5	25	-	1	Outlet				Exit		Vol. %	Vol. %	
1	/	111	71	0.37	175	38	285	257	235	40	2/		+	
2	10	67D.	200	0 33	100	39	290	2.37	633	7.0	7	95	10.63	
3		272	10	035	13	39	291	223	238	47	5	100	11/0>	
4	20	747	12	233	120	46	305	07	420	11			- 6	
5		978	02	555	155	7D	308	265	200	42	5		 	
6	30	234	03	0 70	1221	45	3/2	400	-11	70			 	
7	30	100	20	000	177	73	302	260	2/2	UI	~		 	
8	40	290.	75	0 53	2.85	43	305	260	~D7	-77	_>	95	10:28	
9	70	26412	00	V 33	310	49	367	262	770	45	-7	1.3	10.20	-
10	50	200	33	011	333	Cot	298	202	-7	73	7		-	
11	30	9/0	12	5 97	3.40	46	298	259	284	42	7	10.0	10 ts	-
12	60	708	02	000	3.45	48	294	201	-01	70	7	10.0	1013	
		TUA.	Ud	000	3.72	70	217						 	
1	-	7/2	42	0.55	3.75	40	296	258	750	50	7	9:0	1065	
2	10		39	0-3	1	-	200	000	207	20	7	100	100	
3	10	7/20	31	234	326	30	3/18	258	051	47	7		-	
4	20	30	-28	0.20	3.03	5/	3/2	108	136	77	7		_	
5	20	1770	BA	026	3.95	35	3/4	221	7=4	110	7	9.0	1690	
6	30	753	20	577	3 Id	34	3/3	261	237	78	7	7.0	1070	
7	30	433	17	0.96	205	2	305	2/3	770	110	~			
8	40	777.T	37		7.94		300	262	JITU	49				9
9	-10	TIVE	260	0 34	1 1 100	53	304	17-0	210	-	5	0	10 (1)	1 7
10	50	777	70	0 00	1.50	34	301	259	268	50	ے	9.5	1044	
11	30	The state of the s	02	0.20	SP		298	200	720	- 1	4			
12	11:02	Total Land In	9/	0.35		55	337	258	270	5/	2			
17	1:08	753.		027	1.56	59	296	+				007		
								 			-	<i>y</i>	-	
\rightarrow							-	1		45	1 / 1			
											6.6			

A. Lanfranco and Associates Inc.

Lt

METRO VANCOUVER WTE - BURNABY B.C. PROBE OF SOURCE IMP. #5 IMP. #5		(mL)	(mL)
DURCE // Imp. #	. A		
		1225	225
ARAMETER / RUN No Metals / Particulate R-3 PORT LENGTH Imp. #2	1111	1/58	58
ATE FEB. 11, 70.25 STATIC PRESSURE, IN. H2O - 20. 0 " Imp. #	100	106	6
PERATOR: DS + BL STACK DIAMETER 70.9" Imp. #		1 0	0
ONTROLUNIT TO 14 Y AND STACK HEIGHT 30 5' Imp. #	100	102	2
ΔH@ 2/2 BD Imp. #6			0
AROMETRIC PRESSURE, IN. Hg 30, 32 INITIAL LEAK TEST 0, 0-02 8 /5" Imp. #	1200	석	
SSUMED MOISTURE, BW /3 % FINAL LEAK TEST 0 002 8 /5 7 Imp. #6		7	
Clock Time Dry Gas Meter ft³ Pitot ΔP Orifice ΔH Temperature °F Pump Va	c. F	Fyrites	
Point IN. H ₂ O IN. H ₂ O Dry Gas Stack Probe Box Impinger IN. Hg	CO ₂	O ₂	
11:33 753 340 IN. H ₂ O IN. H ₂ O Outlet Probe Box Impinger IN. Hg	Vol. %	Vol. %	
1 75733 0.45 2.58 53 299 226 232 39 7	1	1	
2 10 767.38 246 265 53 294	95	1031	
3 765.68 052 299 53 297 233 239 42 7	12	10.01	
4 20 769.83 0.49 2.53 59 361			
5 773.73 0.48 2.72 54 315 265 758 45 7		+	
6 30 777, 70 045 256 54 309		+	
7 781.01 0.31 1.77 35 308 261 263 46 5	20	11.01	
8 40 784.15 628 159 55 309	1.0	111.01	
9 787 20 026 1.49 55 304 259 261 48 5		+	
10 50 790.20 0.25 /94 56 300	-	+	
11 793.15 0.24 1.39 56 299 258 267 49 5	95	10.93	
12 60 796.09 029 739 56 297	1.3	10.13	
7/8.0/02/13/38 24		+	
1 799.26 028 /6/ 56 305 259 262 46 6			
2 10 802, 49 0 29 1.67 57 302	95	10.56	
3 805.60 0.27 1.55. 57 305 259 272 48 6	1.3	10.00	
4 20 8DR 6D 0.25 144 57 304		+	
5 811.76 0 28 1.61 57 306 259 260 49 5	-	-	
6 30 814.88 0.23 1.56 37 3DZ	05	1079	
7 818,79 0.43 2.48 58 308 259 260 49 6	7.3	10.71	
8 40 823. 100 0.51 2.93 <8 306		+	
	-		
		1	
	4,5	10.77	+
	-	-	
	+	+	-
END 13:39	_	+	
		1	
' 		+	

APPENDIX – F CALIBRATION SHEETS and TECHNICIAN CERTIFICATES

	BAROMETER CALIBRATION FORM													
		Pbar E	nv Canada	Device (inc	thes of Hg)	Difference								
					Elevation									
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)								
LA	6-Jan-25	103.3	30.51	30.42	30.49	0.02								
DS	6-Jan-25	103.3	30.51	30.40	30.47	0.04								
CL	6-Jan-25	103.3	30.51	30.42	30.49	0.02								
JC	6-Jan-25	103.3	30.51	30.42	30.49	0.02								
LF	6-Jan-25	103.3	30.51	30.41	30.48	0.03								
Sv	6-Jan-25	103.3	30.51	30.41	30.48	0.03								
CDO	6-Jan-25	103.3	30.51	30.41	30.48	0.03								
JG	6-Jan-25	103.3	30.51	30.41	30.48	0.03								
ML	6-Jan-25	103.3	30.51	30.41	30.48	0.03								
BL	6-Jan-25	103.3	30.51	30,43	30.50	0.01								

Calibrated by:

Jeremy Gibbs

Signature:/

Date:

06-Jan-25

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74 metric e.html

A.Lanfranco & Associates inc.

Meter Box Calibration

English Meter Box Units, English K' Factor

CAE 024 Model #: 9-Jan-25

Serial #: 0028-043024-1 Barometric Pressure: 30.34 (in. Hg) Theoretical Critical Vacuum: 14.31 (in. Hg)

!!!!!!!!!!

IMPORTANT IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above. The Critical Orifice Coefficient, K', must be entered in English units, (ft)\^3*(deg R)\^0.5/((in.Hg)*(min)).

			DRY GA	S METER READ	-CRITICAL ORIFICE READINGS-									
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial T Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Tempera Final (deg F)	ature Average (deg F)
3.70	15.00	683.701	699.822	16.121	64.0	64.0	67.0	67.0	73	0.8185	19.0	76.0	78.0	77.0
1.90	15.00	699.822	711.545	11.723	67.0	67.0	69.0	69.0	63	0.5956	21.5	77.0	81.0	79.0
1.15	15.00	711.545	720.670	9.125	70.0	70.0	72.0	72.0	55	0.4606	23.0	80.0	84.0	82.0
0.67	15.00	720.670	727.685	7.015	74.0	74.0	73.0	73.0	48	0.3560	24.0	73.0	76.0	74.5
0.33	15.00	727.685	732.515	4.830	73.0	73.0	73.0	73.0	40	0.2408	25.5	77.0	79.0	78.0

DRY GAS METER			ORIFICE		DRY GAS METER		ORIFICE			
VOLUME CORRECTED	VOLUME CORRECTED	VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		ON FACTOR Y		LIBRATION FA		
Vm(std) (cu ft)	Vm(std) (liters)	Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)	Value (number)	Variation (number)	Value (in H2O)	Value (mm H2O)	Variation (in H2O)	Ko (value)
16.566	469.1	16.075	455.2	16.129	0.970	-0.008	1.846	46.90	0.035	0.710
11.938	338.1	11.675	330.6	11.758	0.978	0.000	1.789	45.44	-0.023	0.717
9.223	261.2	9.004	255.0	9.118	0.976	-0.002	1.810	45.98	-0.001	0.715
7.049	199.6	7.008	198.5	6.999	0.994	0.016	1.733	44.01	-0.079	0.718
4.854	137.5	4.725	133.8	4.749	0.973	-0.005	1.879	47.74	0.068	0.704
				Average Y>	0.9784	Average dH@>	1.812	46.0	Average Ko>	0.713

				TEMPERATU	RE CALIBRA	TION				
Calibration Standa	ard>	Omega Model	CL23A S/N:T-21		nperature Devic	e Reading				
Set-Point	Sta	ck	Hot	Box	Pro		Imp	Out	Aı	ux
(deg F)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff
32	30	-0.41%	31	-0.20%	31	-0.20%	29	-0.61%	30	-0.41%
100	97	-0.54%	99	-0.18%	99	-0.18%	97	-0.54%	97	-0.54%
300	297	-0.39%	298	-0.26%	298	-0.26%	297	-0.39%	297	-0.39%
500	497	-0.31%	498	-0.21%	498	-0.21%	497	-0.31%	497	-0.31%
1000	996	-0.27%	998	-0.14%	998	-0.14%	996	-0.27%	996	-0.27%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Signature: Carter Lanfranco Calibrated by: Liam Forrer Date: January 9, 2025

Christian Gonzalo De La O

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 1, 2024

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

		Deciara	<u> </u>
l	Christian De La O	, as a r	member of Air and Waste Management Association
dec	lare		
Sele	ect one of the following:		
X	Absence from conflict of interest		
(Other than the standard fee I will rece	eive for my	y professional services, I have no financial or
C	other interest in the outcome of this	project	. I further declare that should a
C	conflict of interest arise in the future	during the	e course of this work, I will fully disclose the
C	circumstances in writing and without Mr. Sajid Barlas	delay to	, erring on the side of caution.

☐ Real or	perceived conflict of interest	
Descript	tion and nature of conflict(s):	
	aintain my objectivity, conducting my w	ork in accordance with my Code of Ethics
	ion, I will take the following steps to misclosed, to ensure the public interest re	tigate the real or perceived conflict(s) I mains paramount:
Further	, I acknowledge that this disclosure may	y he interpreted as a threat to my
	ndence and will be considered by the st	•
Information a transparency statement you valid from the collection, use	nd Protection of Privacy Act for the pur and ensuring professional ethics and ac	ccountability. By signing and submitting this osure outside of Canada. This consent is d. If you have any questions about the ation please contact the Ministry of
Signature:	Lu	Witnessed by: Mark Lanfranco
Print name:	Christian De La O	Print name:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

29 August 2024

Date:

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Faculty of Continuing Education and Extension

Daryl Sampson

has successfully completed

The program of studies and is awarded the certificate in

STACK SAMPLING

May 2005

Date

Dear

Faculty of Continuing Education and Protection

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration I Daryl Sampson , as a member of Air and Waste Management Association declare Select one of the following: Absence from conflict of interest Other than the standard fee I will receive for my professional services, I have no financial or other interest in the outcome of this project . I further declare that should a conflict of interest arise in the future during the course of this work, I will fully disclose the circumstances in writing and without delay to Mr. Sajid Barlas , erring on the side of caution.

\square Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conduction and standards of practice.	ng my work in accordance with my Code of Ethics
In addition, I will take the following ste have disclosed, to ensure the public int	ps to mitigate the real or perceived conflict(s) I erest remains paramount:
	sure may be interpreted as a threat to my by the statutory decision maker accordingly.
Information and Protection of Privacy Act for transparency and ensuring professional ethic statement you consent to its publication and	es and accountability. By signing and submitting this its disclosure outside of Canada. This consent is revoked. If you have any questions about the information please contact the Ministry of
Signature:	Witnessed by:
X Daryl Sampson	Mark Lanfranco
Print name: Daryl Sampson	Print name:
Date: Dec.18, 2020	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

1. Name of Qualified Prof	essional (hristian De La O	
	Title <u>E</u>	nvironmental Air Quality Technician	
2. Are you a registered m	ember of a pr	ofessional association in B.C.?]Yes ⊠ No
Name of Association: _		Registration #	
3. Brief description of prof	fessional servi	ces:	
Environmental consu	lting, specializ	ing in air and atmospheric sciences	
Protection of Privacy Act for professional ethics and accompublication and its disclosur cannot be revoked. If you	or the purpose countability. Bure outside of have any que se contact the	ed under section 26(c) of the <i>Freedom</i> s of increasing government transparency signing and submitting this statement Canada. This consent is valid from the cotions about the collection, use or discloss Ministry of Environment and Climate C	t you consent to its date submitted and osure of your
		<u>Declaration</u>	
·		owledge, skills and experience to provio tions in relation to the specific work de	•
Signature:		Witnessed by:	
x Can		× NAAAAA	
Print Name: Christian	De La O	Print Name: Daryl Sar	mpson
Date signed: 29 Augu	ust 2024_		

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

1.	Name of Qualified Professional <u>Daryl S</u>	Sampson
	Title Senior	Environmental Technician/Project Manager
2.	Are you a registered member of a profess	sional association in B.C.? ☐ Yes ☒ No
	Name of Association:	Registration #
3.	Brief description of professional services:	
	Environmental consulting, specializing in a	ir and atmospheric sciences
pro pu car pe	otection of Privacy Act for the purposes of of the purposes of offessional ethics and accountability. By sign blication and its disclosure outside of Canannot be revoked. If you have any question	increasing government transparency and ensuring and submitting this statement you consent to its da. This consent is valid from the date submitted and is about the collection, use or disclosure of your stry of Environment and Climate Change Strategy
	<u>D</u>	<u>eclaration</u>
	,	dge, skills and experience to provide expert s in relation to the specific work described above.
Sig	nature:	Witnessed by:
<u>x 2</u>	Daryl Sampson	x Zen Com
Pri	Daryl Sampson nt Name: <u>Daryl Sampson</u>	Print Name: Louis Agassiz
Da	te signed: November 23, 2020	

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

1.	Name of Qualified Professional	Justin Ching
	Title	Environmental Technician
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☑ No
	Name of Association:	Registration #
3.	Brief description of professional se	ervices:
	Environmental Technician - sp	pecialising in air and atmospheric sciences
pro pul car per	otection of Privacy Act for the purportessional ethics and accountability blication and its disclosure outside nnot be revoked. If you have any q	ected under section 26(c) of the <i>Freedom of Information and</i> oses of increasing government transparency and ensuring r. By signing and submitting this statement you consent to its of Canada. This consent is valid from the date submitted and uestions about the collection, use or disclosure of your the Ministry of Environment and Climate Change Strategy 57.
		<u>Declaration</u>
	·	knowledge, skills and experience to provide expert ndations in relation to the specific work described above.
Sig	nature:	Witnessed by:
X	Justin Ching nt Name: Justin Ching	XDaryl Sampson
Pri	nt Name: Justin Ching	XDaryl Sampson Print Name: Daryl Sampson
Da	te signed: June 28, 2023	

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

1.	Name of Qualified Professional	Liam Forrer
	Title	Environmental Technician
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☒ No
	Name of Association:	Registration #
3.	Brief description of professional se	
	Environmental consulting, spe	cializing in air and atmospheric sciences
pro pul car pe	otection of Privacy Act for the purportessional ethics and accountability blication and its disclosure outside mot be revoked. If you have any q	ected under section 26(c) of the <i>Freedom of Information and</i> oses of increasing government transparency and ensuring a. By signing and submitting this statement you consent to its of Canada. This consent is valid from the date submitted and uestions about the collection, use or disclosure of your he Ministry of Environment and Climate Change Strategy 57.
		<u>Declaration</u>
	·	knowledge, skills and experience to provide expert ndations in relation to the specific work described above.
Sig	nature:	Witnessed by:
<u>X</u>	Liam Forrer	x Daryl Sampson
Pri	Liam Forrer nt Name: Liam Forrer	x Daryl Sampson Print Name: Daryl Sampson
Da	te signed: July 12, 2023	

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

A.Lanfranco & Associates inc.

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: JU 14

0028-030615-1

8-Jan-25

Barometric Pressure: 30.43 (in. Hg)

Theoretical Critical Vacuum: 14.35 (in. Hg)

!!!!!!!!!

Serial #:

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

	DRY GAS METER READINGS									-CRITICAL ORIFICE READINGS-						
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Te Inlet (deg F)	omps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Temperat Final (deg F)	ure Averag (deg F		
4.15	15.00	922.156	937.700	15.544	68.0	68.0	70.0	70.0	73	0.8185	15.5	71.0	75.0	73.0		
2.25	15.00	937.700	949.240	11.540	70.0	70.0	72.0	72.0	63	0.5956	17.0	72.0	77.0	74.5		
1.35	15.00	949.240	958.128	8.888	72.0	72.0	73.0	73.0	55	0.4606	18.5	76.0	80.0	78.0		
0.83	15.00	958.128	965.090	6.962	69.0	73.0	69.0	74.0	48	0.3560	20.0	79.0	81.0	80.0		
0.39	19.00	965.090	971.095	6.005	68.0	74.0	69.0	74.0	40	0.2408	21.5	79.0	82.0	80.5		
DRY GA	S METER			ORIFICE		****** RES	DRY GAS		*******	******		ORIFICE				
VOLUME	VOLUME		VOLUME	VOLUME	VOLUME	****** RES		S METER ON FACTOR	******		 IBRATION FA					
				ORIFICE		****** RES	DRY GAS	S METER	******					Ko (value		
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr	****** RES	DRY GAS CALIBRATIO	S METER ON FACTOR Y Variation	******	CAL Value	 LIBRATION FA dH@ Value	CTOR Variation		Ko (value 0.660		
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)	****** RES	DRY GAS CALIBRATIO Value (number)	ON FACTOR Y Variation (number)	******	CAL Value (in H2O)	LIBRATION FA dH@ Value (mm H2O)	Variation (in H2O)		(value		
VOLUME CORRECTED Vm(std) (cu ft) 15.931	VOLUME CORRECTED Vm(std) (liters) 451.2		VOLUME CORRECTED Vcr(std) (cu ft) 16.183	VOLUME CORRECTED Vcr(std) (liters) 458.3	VOLUME NOMINAL Vcr (cu ft) 16.068	****** RES	DRY GAS CALIBRATION Value (number) 1.016	ON FACTOR Y Variation (number) 0.015	********	CAL Value (in H2O) 2.036	LIBRATION FA dH@ Value (mm H2O) 51.71	Variation (in H2O) -0.084		0.660 0.663		
VOLUME CORRECTED Vm(std) (cu ft) 15.931 11.729	VOLUME CORRECTED Vm(std) (liters) 451.2 332.2		VOLUME CORRECTED Vcr(std) (cu ft) 16.183 11.759	VOLUME CORRECTED Vcr(std) (liters) 458.3 333.0	VOLUME NOMINAL Vcr (cu ft) 16.068 11.709	****** RES	DRY GAS CALIBRATIO Value (number) 1.016 1.003	N FACTOR Y Variation (number) 0.015 0.002	***********	CAL Value (in H2O) 2.036 2.083	LIBRATION FA dH@ Value (mm H2O) 51.71 52.90	Variation (in H2O) -0.084 -0.037		(value 0.660		
VOLUME CORRECTED Vm(std) (cu ft) 15.931 11.729 8.989	VOLUME CORRECTED Vm(std) (liters) 451.2 332.2 254.6		VOLUME CORRECTED Vcr(std) (cu ft) 16.183 11.759 9.064	VOLUME CORRECTED Vcr(std) (liters) 458.3 333.0 256.7	VOLUME NOMINAL Vcr (cu ft) 16.068 11.709 9.085	******* RES	DRY GAS CALIBRATIO Value (number) 1.016 1.003 1.008	S METER ON FACTOR Y Variation (number) 0.015 0.002 0.007	***********	CAL Value (in H2O) 2.036 2.083 2.097	JIBRATION FA dH@ Value (mm H2O) 51.71 52.90 53.27	Variation (in H2O) -0.084 -0.037 -0.023		0.660 0.663 0.658		

				TEMPERATU	RE CALIBRA	TION					
Calibration Stand	lard>	Omega Model	CL23A S/N:T-2		nperature Devic	e Reading					
Set-Point	Sta	ack	Hot Box		Pro	be	Imp	Out	Aux		
(deg F)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	
32	33	0.20%	31	-0.20%	30	-0.41%	33	0.20%	33	0.20%	
100	101	0.18%	99	-0.18%	98	-0.36%	101	0.18%	101	0.18%	
300	301	0.13%	299	-0.13%	298	-0.26%	301	0.13%	301	0.13%	
500	501	0.10%	499	-0.10%	498	-0.21%	501	0.10%	501	0.10%	
1000	1000	0.00%	998	-0.14%	997	-0.21%	1001	0.07%	1000	0.00%	

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH @, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2. For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer

Date: January 8, 2025

Justin Ching

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 26, 2023

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

	Decidiation	
Justin Ching	, as a member of	Air and Waste Management Association
declare		
Select one of the following:		
Absence from conflict of interest		
Other than the standard fee I will recei	ive for my profession	al services, I have no financial or
other interest in the outcome of this	project	. I further declare that should a
conflict of interest arise in the future d	luring the course of t	his work, I will fully disclose the
circumstances in writing and without o	•	g on the side of caution.

\square Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conducting and standards of practice.	ng my work in accordance with my Code of Ethics
In addition, I will take the following step have disclosed, to ensure the public int	ps to mitigate the real or perceived conflict(s) I erest remains paramount:
•	ure may be interpreted as a threat to my y the statutory decision maker accordingly.
Information and Protection of Privacy Act for transparency and ensuring professional ethic statement you consent to its publication and	its disclosure outside of Canada. This consent is revoked. If you have any questions about the information please contact the Ministry of
Signature: X Questin Ching Print name: Justin Ching	Witnessed by: Mark Lanfranco Print name:
Date: June 28, 2023	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Liam Forrer

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 26, 2023

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

☐ Real or perceived conflict of interest	t
Description and nature of conflict(s)):
I will maintain my objectivity, condu	acting my work in accordance with my Code of Ethics
In addition, I will take the following have disclosed, to ensure the public	steps to mitigate the real or perceived conflict(s) I interest remains paramount:
	closure may be interpreted as a threat to my
·	ed by the statutory decision maker accordingly.
	ent is collected under section 26(c) of the <i>Freedom of</i> for the purposes of increasing government
transparency and ensuring professional ensuring ensurin	thics and accountability. By signing and submitting this and its disclosure outside of Canada. This consent is be revoked. If you have any questions about the
collection, use or disclosure of your perso Environment and Climate Change Strategy	nal information please contact the Ministry of y Headquarters Office at 1-800-663-7867.
Signature:	Witnessed by:
x Liam Forrer	X
Print name: Liam Forrer	Mark Lanfranco Print name:
Date: July 12, 2023	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU A Date: 7-Jan-25

Serial #: Kimmon 186 Barometric Pressure: 30.41 (in. Hg)

Theoretical Critical Vacuum: 14.34 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

!!!!!!!!!!

			DRY GA	S METER READIN	NGS					-CI	RITICAL ORIF	ICE READING	SS-	
dH	Time	Volume Initial				Initial Temps. Final Temps.			Orifice Serial#	K' Orifice Coefficient	Actual Vacuum	Ambient Temperatur		
ан (in H2O)	(min)	(m ³)	Final (m³)	Total (cu ft)	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	(number)	(see above)	(in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)
0.00	15.00	634.455	634.652	6.957	63.0	63.0	69.0	69.0	48	0.3560	20.0	70.0	79.0	74.5
0.00	15.00	634.652	634.851	7.028	68.0	68.0	71.0	71.0	48	0.3560	20.0	77.0	81.0	79.0
0.00	15.00	634.851	635.049	6.992	70.0	70.0	73.0	73.0	48	0.3560	20.0	78.0	79.0	78.5
			****	*******	*****	****** DE S	III TS *****	*****	*****	****	***			
DRY GA	S METER			ORIFICE		REO		S METER				ORIFICE		
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y		CAL	IBRATION FA.	CTOR		
Vm(std) (cu ft)	Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		
7.095	200.9		7.024	198.9	6.999		0.990	0.002		0.000	0.00	0.000		
7.120	201.6		6.995	198.1	7.028		0.982	-0.006		0.000	0.00	0.000		
7.057	199.9		6.998	198.2	7.025		0.992	0.004		0.000	0.00	0.000		

January 7, 2025

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2. For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer Signature:

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-D Date: 7-Jan-25

Serial #: Wizit 4618 Barometric Pressure: 30.41 (in. Hg)

Theoretical Critical Vacuum: 14.34 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)/3*(deg R)/0.5/((in.Hg)*(min)).

!!!!!!!!!

			DRY GA	S METER READIN	NGS	-				-CI	RITICAL ORIF	ICE READING	SS-	
dH	Time	Volume Initial	Volume Final	Volume Total	Initial To Inlet	emps. Outlet	Final Inlet	Temps. Outlet	Orifice Serial#	K' Orifice Coefficient	Actual Vacuum	Am Initial	bient Tempera Final	ature Average
(in H2O)	(min)	(m ³)	(m ³)	(cu ft)	(deg F)	(deg F)	(deg F)	(deg F)	(number)	(see above)	(in Hg)	(deg F)	(deg F)	(deg F)
0.00	15.00	209.180	209.377	6.957	60.0	60.0	65.0	65.0	48	0.3560	20.0	63.0	68.0	65.5
0.00	15.00	209.377	209.574	6.957	66.0	66.0	68.0	68.0	48	0.3560	20.0	67.0	70.0	68.5
0.00	15.00	209.574	209.771	6.957	68.0	68.0	69.0	69.0	48	0.3560	20.0	68.0	69.0	68.5
DRY GAS	S METER			***** ORIFICE		******* RES		************* S METER	******	******		ORIFICE		
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y		CAL	IBRATION FA dH@	CTOR		
Vm(std) (cu ft)	Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		
7.143	202.3		7.084	200.6	6.940		0.992	-0.005		0.000	0.00	0.000		
7.082	200.5		7.064	200.0	6.959		0.997	0.001		0.000	0.00	0.000		
7.061	200.0		7.064	200.0	6.959		1.000	0.004		0.000	0.00	0.000		
					Avera	age Y>	0.9965	Avera	ige dH@>	0.0000	0.00			

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer Signature: Date: January 7, 2025

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

GLASS NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Christian De La O Date: 18-Feb-25

Signature:

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
A	0.1270	0.1270	0.1255	0.0015	0.1265	0.0000873
G-165	0.1650	0.1660	0.1645	0.0015	0.1652	0.0001488
G-170	0.1700	0.1710	0.1695	0.0015	0.1702	0.0001579
G-178	0.1760	0.1770	0.1790	0.0030	0.1773	0.0001715
E	0.1950	0.1930	0.1960	0.0030	0.1947	0.0002067
Q	0.2030	0.2040	0.2050	0.0020	0.2040	0.0002270
L	0.2100	0.2070	0.2090	0.0030	0.2087	0.0002375
P-2240	0.2160	0.2155	0.2170	0.0015	0.2162	0.0002549
P-224	0.2160	0.2170	0.2150	0.0020	0.2160	0.0002545
G-221	0.2160	0.2185	0.2190	0.0030	0.2178	0.0002588
G-2232	0.2210	0.2200	0.2215	0.0015	0.2208	0.0002660
P-223	0.2297	0.2296	0.2298	0.0002	0.2297	0.0002878
P-250	0.2500	0.2495	0.2505	0.0010	0.2500	0.0003409
C-250	0.2500	0.2500	0.2500	0.0000	0.2500	0.0003409
C-280	0.2800	0.2800	0.2800	0.0000	0.2800	0.0004276
C-281	0.2800	0.2820	0.2780	0.0040	0.2800	0.0004276
C-282	0.2800	0.2800	0.2800	0.0000	0.2800	0.0004276
C-283	0.2800	0.2800	0.2800	0.0000	0.2800	0.0004276
G-33-13	0.3008	0.3009	0.3009	0.0001	0.3009	0.0004937
G-3121	0.3055	0.3063	0.3070	0.0015	0.3063	0.0005116
G-3092	0.3100	0.3085	0.3090	0.0015	0.3092	0.0005213
P-31	0.3120	0.312	0.3120	0.0000	0.3120	0.0005309
P-314	0.3135	0.3135	0.3140	0.0005	0.3137	0.0005366
P-315	0.3145	0.3145	0.3145	0.0000	0.3145	0.0005395
P-34	0.3430	0.3430	0.3430	0.0000	0.3430	0.0006417
343-GS	0.3430	0.3430	0.3430	0.0000	0.3430	0.0006417
G-345	0.3470	0.3475	0.3475	0.0005	0.3473	0.0006580
G-367	0.3680	0.3660	0.3658	0.0022	0.3666	0.0007330
G-372	0.3669	0.3700	0.3668	0.0032	0.3679	0.0007382
P-375	0.3705	0.3710	0.3709	0.0005	0.3708	0.0007499
P-38	0.3750	0.3750	0.3750	0.0000	0.3750	0.0007670
P-401	0.3980	0.3990	0.4000	0.0020	0.3990	0.0008683
P-405	0.4047	0.4055	0.4056	0.0009	0.4053	0.0008958
P-407	0.4065	0.4070	0.4072	0.0007	0.4069	0.0009030
P-406	0.4058	0.4062	0.4060	0.0004	0.4060	0.0008990
P-41	0.4060	0.4060	0.4060	0.0000	0.4060	0.0008990
G-433	0.4360	0.4360	0.4355	0.0005	0.4358	0.0010360
P-47	0.4680	0.4680	0.4680	0.0000	0.4680	0.0011946
P-29	0.4681	0.4683	0.4685	0.0004	0.4683	0.0011961
G-468	0.4700	0.4685	0.4720	0.0035	0.4702	0.0012057
P-7	0.4965	0.4945	0.4975	0.0030	0.4962	0.0013427
G-540	0.5400	0.5410	0.5400	0.0010	0.5403	0.0015924
	(-)	D4 D2 D2	- throo diffor		toro, ocob diameter	t l

- (a) D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.
- (b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.
- (c) Average = average of D1, D2 and D3

Pitot Tube Calibration

 Date:
 8-Jan-25
 Temp (R): 539

 Pbar (in.Hg):
 30.41
 Dn (in.): 0.25

Pitot ID: 7A-1

רווטו וט.	/ A-1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.220	0.310	31.1	0.8340	0.0030
0.310	0.430	36.9	0.8406	0.0036
0.400	0.560	41.9	0.8367	0.0003
0.480	0.670	45.9	0.8380	0.0010
0.570	0.800	50.0	0.8357	0.0013
		Average:	0.8370	0.0018

Pitot ID: ST 8A

TROUB. CICA											
Reference S-Type		Air	Pitot	Deviation							
Pitot	Pitot	Velocity	Coeff.	(absolute)							
(in H2O)	(in H2O)	(ft/s)	Ср								
0.220	0.300	31.1	0.8478	0.0128							
0.340	0.480	38.6	0.8332	0.0018							
0.430	0.610	43.4	0.8312	0.0038							
0.520	0.740	47.8	0.8299	0.0051							
0.630 0.890		52.6	0.8329	0.0021							
		Average:	0.8350	0.0051							

Pitot ID: 7B

PILOLID.	<i>1</i> D			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.180	0.240	28.1	0.8574	0.0084
0.290	0.400	35.7	0.8430	0.0060
0.390	0.530	41.4	0.8492	0.0003
0.480	0.650	45.9	0.8507	0.0018
0.560	0.770	49.6	0.8443	0.0046
		Average:	0.8489	0.0042

Pitot ID: ST 8B

TROUB! CIGE											
Reference S-Type		Air	Pitot	Deviation							
Pitot	Pitot Pitot		Coeff.	(absolute)							
(in H2O)	(in H2O)	(ft/s)	Ср								
0.200	0.280	29.6	0.8367	0.0030							
0.310	0.440	36.9	0.8310	0.0027							
0.390	0.550	41.4	0.8337	0.0000							
0.520	0.730	47.8	0.8356	0.0019							
0.670 0.950		54.2	0.8314	0.0023							
		Average:	0.8337	0.0020							

Pitot ID: **7 AL GVRD-1**

	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
	0.200	0.270	16.3	0.8521	0.0016
	0.290	0.400	19.9	0.8430	0.0075
	0.390	0.530	25.3	0.8492	0.0012
	0.480	0.650	35.8	0.8507	0.0003
0.570		0.760	48.4	0.8574	0.0069
			Average:	0.8505	0.0035

Pitot ID: ST 8C

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.210	0.290	14.9	0.8425	0.0063
0.310	0.440	19.4	0.8310	0.0052
0.430	0.600	29.0	0.8381	0.0019
0.520	0.730	43.1	0.8356	0.0006
0.610	0.860	52.8	0.8338	0.0024
		Average:	0.8362	0.0033

Pitot ID: 7C

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.200	0.280	29.6	0.8367	0.0009
0.300	0.420	16.3	0.8367	0.0009
0.430	0.600	43.4	0.8381	0.0005
0.530	0.740	30.5	0.8378	0.0002
0.610	0.850	47.0	0.8387	0.0011
	<u> </u>	Average:	0.8376	0.0007

Pitot ID:

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average:		
		Average :		

Calibrated by: Sean Verby

Signature. — www.

Date:

Jan 8, 2025

^{*} Average absolute deviation must not exceed 0.01.

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Calibrated by: Christian De La O

Date: 8-Jan-25

Signature:

TEMPERATURE DEVICE CALIBRATIONS

Reference Device								Temp	erature Set	tings (degre	es F)					
Model CL23A Calibrator		32 10		00	2	00	300		500		800		1700			
Device	ALA#	Serial #	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation
TPI 341K	7	20314590036	30.1	-0.39%	97.8	-0.39%	197.6	-0.36%	297.2	-0.37%	496.6	-0.35%	795.9	-0.33%	1693	-0.32%
TPI 341K	8	20313490047	31.1	-0.18%	99	-0.18%	198.6	-0.21%	298.3	-0.22%	497.6	-0.25%	797.1	-0.23%	1695	-0.23%
TPI 341K	11	20345510024	31.7	-0.06%	98.9	-0.20%	198.7	-0.20%	298.5	-0.20%	498	-0.21%	797.8	-0.17%	1696	-0.19%
TPI 341K	12	20345510031	32.7	0.14%	100.1	0.02%	199.9	-0.02%	299.8	-0.03%	499.4	-0.06%	798.8	-0.10%	1697	-0.14%
TPI 341K	18	20329480036		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%
TPI 341K	20	20329480013	29.8	-0.45%	98.1	-0.34%	198	-0.30%	297.8	-0.29%	497.6	-0.25%	797.5	-0.20%	1697	-0.14%
TPI 341K	22	20329480041	30	-0.41%	98.1	-0.34%	197.7	-0.35%	297	-0.39%	497.1	-0.30%	796.8	-0.25%	1696	-0.19%
TPI 341K	24	20142030017	31.4	-0.12%	99.6	-0.07%	199.6	-0.06%	299.4	-0.08%	499	-0.10%	798.8	-0.10%	1697	-0.14%
TPI 341K	26	20345510036	31.6	-0.08%	99.6	-0.07%	199.2	-0.12%	299	-0.13%	498.7	-0.14%	798.4	-0.13%	1696	-0.19%
TPI 341K	28	20142030009	31	-0.20%	99.3	-0.13%	199.4	-0.09%	299.3	-0.09%	498.6	-0.15%	798.8	-0.10%	1697	-0.14%
TPI 341K	30	20345510023	31.7	-0.06%	99.3	-0.13%	198.9	-0.17%	298.7	-0.17%	498.4	-0.17%	797.8	-0.17%	1696	-0.19%
TPI 341K	32	20142030028	31.3	-0.14%	99.5	-0.09%	199.4	-0.09%	299	-0.13%	498.9	-0.11%	798.7	-0.10%	1697	-0.14%
Reference device is																

Variation expressed as a percentage of the absolute temperature must be within 1.5 %

Calibration Certificate

 Date:
 10-Jan-25
 Insrtument Calibrated:
 Testo 3 (340)

 Calibrated by:
 Serial #:
 64057016

 Authorizing Signature:
 Customer:
 ALA

Ambient Conditions: Temperature: 8 °C Barometric Pressure: 102.1 kPa Relative Humidity: 77%

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

O ₂		Initial Evalu	ation		After Calibration				
Gas	Instrument Reading (vol %)	Calibration Error	Pass/Fail	Notes	Instrument Reading (vol %) Calibration Error Pass/Fail Notes			Notes	Certified Value (vol %)
Zero	0.13	0.13	Pass			0.00	Pass		0
O ₂ Ambient	11.12 20.85	0.29 0.11	Pass Pass			10.83 20.96	Fail Fail		10.83 20.96

Performance Specification: +/- 1% O₂ (absolute diff)

CO		Initial Evalua	After Calibration						
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Read (ppm)	ing % Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero	2	0.7%	Pass			0.0%	Pass		0
1 Gas	254	0.0%	Pass			100.0%	Fail		254
2 Gas	500	1.2%	Pass			100.0%	Fail		494
3 Gas	937	1.7%	Pass			100.0%	Fail		953

Performance Specification: +/- 5% of Certified Gas Value

NO	Initial Evaluation				After Calibration				Contifical Value
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Readi (ppm)	ng % Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero	2	0.7%	Pass		0	0.0%	Pass		0
1 Gas	47	4.9%	Pass		46	2.7%	Pass		44.8
2 Gas	93	4.4%	Pass		92	3.2%	Pass		89.1
3 Gas	255	2.2%	Pass		250	0.2%	Pass		249.6

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure (PSI)	NO (ppm)	O ₂ (Vol. %)	CO (ppm)
Zero Gas (N ₂)	353			1550	0	0	0
1 Gas	435	12/19/2023	12/20/2031	500	44.81	0	254.1
2 Gas	K9P	4/15/2024	4/15/2032	1500	89.11	0	494.2
3 Gas	K2H	5/22/2024	5/22/2032	1750	249.6	0	952.9
O ₂ /CO ₂	A1M	3/14/2024	3/14/2032	1400	0	10.83	0

Note: National Institute of Standards and Technology traceable certificates are available upon request.