

WASTE-TO-ENERGY FACILITY

Appendices of Emissions Testing Report November - December 2024 Survey Fourth Quarter 2024

Table of Contents

<u>Appendix</u>

- A Quality Assurance / Quality Control Results
- B Calculations
- C Laboratory Results
- D Computer Generated Results
- E Field Data Sheets
- F Calibration Sheets and Technician Certificates

APPENDIX - A

QUALITY ASSURANCE / QUALITY CONTROL RESULTS

Quality assurance / quality control (QA/QC) is divided into four categories: administration, preparation, testing, and analysis. The following sections detail results found for the above four categories.

Administration:

- All field, process, and analytical data was reviewed to ensure data integrity and accuracy.
- Duplicate proof of draft and final report, including data entry, conducted.

Preparation:

- All glassware cleaned
- Blank samples of reagents collected.

Testing:

- Stack diameter and absence of cyclonic flow confirmed
- Calibrated magnehelic used for all velocity measurements
- All trains past pre- and post- leak checks.
- Isokinetics all within $100\% \pm 10\%$.

Analysis:

- Trace Metals and Mercury analysis conducted at Element Labs, Surrey, B.C.
- Fluoride (HF) analysis conducted at Element Labs in Surrey, B.C.
- Nitrous Oxide (N₂O) analysis conducted at Bureau Veritas in Mississauga, ON.
- Volatile Organic Compounds (VOC) analysis conducted at ALS Environmental in Simi Valley, CA.
- Particulate analysis conducted at A. Lanfranco and Associates Inc., Surrey, BC.
- Chain of Custody protocols followed for all samples.
- Acceptable blank values for all sample types. All samples blank corrected.

Sample Type	Blank Value					
Fourth Quarter 2024	Unit 1	Unit 2	Unit 3			
Filter	0.2 mg	0.0 mg	0 mg			
Front Half Washings	-0.1 mg	-1.8 mg	-1.9 mg			
Mercury Front	<0.02 ug	<0.02 ug	<0.02 ug			
Mercury Back	<0.20 ug	<0.18 ug	<0.17 ug			
Trace Metals Front *	<57.9 ug	<85.6 ug	<85.7 ug			
Trace Metals Back*	<23.1 ug	<32.1 ug	<28.4 ug			
Ammonia	14.0 ug	6 ug	6.7 ug			
Fluoride	<7 ug	<7 ug	<7 ug			

Sum of all reported elements except Hg*

APPENDIX - B CALCULATIONS

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-11 were used to calculate particulate concentration at standard conditions on a dry basis. Equations 12-26 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 27-29 were used to calculate the volumetric flowrate of the stack flue gas.

App B.1

pp B.1	Contaminant Concentration Calculations	
	$c = \frac{m}{V_{std}}$	Equation 1
	$m_{part} = m_{filter} + m_{pw}$	Equation 2
	$m_i = m_{ana,i} - m_{blank}$	Equation 3
	$V_{std} = \frac{V_{std(imp)}}{35.315}$	Equation 4
	$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$	Equation 5
	$V_{samp} = V_{final} - V_{init}$	Equation 6
	$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$	Equation 7
ΔH_{av}	$h_{pe} = rac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}$, where $n=$ the number of points	Equation 8
	$OC = \frac{20.9 - \%O_{2c}}{20.9 - \%O_{2m}}$	Equation 9
$%O_{2m} = \frac{1}{2}$	$\frac{1}{n}\sum_{i=1}^{n}\%O_{2i}$, where $n=$ the number of O_{2} measurements	Equation 10
% <i>CO</i> ₂ =	$= \frac{1}{n} \sum_{i=1}^{n} \%CO_{2i}, where n = the number of CO_{2} measurements$	Equation 11

Where,

c = Contaminant concentration

m = Contaminant mass

 m_i = Net analytical mass (mg, ng, or μ g) $m_{ana,i}$ = Analytical mass (mg, ng, or μ g) m_{blank} = Blank analytical mass (mg, ng, or μ g)

 m_{part} = Total particulate mass (mg)

 m_{filter} = Net particulate gain from filter (mg)

 m_{pw} = Net particulate gain from probe wash (mg) $V_{std(imp)}$ = Sample volume at standard conditions (ft³) V_{samp} = Sample volume at actual conditions (ft³)

 V_{final} = Final gas meter reading (ft³) V_{init} = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) T_m = Gas meter temperature (°F)

 $T_{m(ave)}$ = Average gas meter temperature (°F) P_m = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg)

 ΔH_{ave} = Average of individual point orifice pressures (inches of H_2O) $\Delta H_{i(act)}$ = Individual recorded point orifice pressures (inches of H_2O)

OC = Oxygen correction factor (dimensionless)

 $%O_{2c}$ = Oxygen concentration to correct to (% dry basis)

 $\%O_{2m}$ = Average measured stack gas oxygen concentration (% dry basis) $\%CO_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant. For particulate, m is the sum of the mass contributed from probe washing and filter particulate.

App B.2 Isokinetic Variation Calculations

$$\Delta H_{l} = \frac{2.62 \times 10^{7} \times c_{p} \times A_{n} \times (1 - B_{wo}) \times M_{D} \times (T_{m} + 459.67) \times \Delta p_{l}}{k_{o} \times M_{w} \times (T_{Stk} + 459.67)} \qquad \text{Equation } 12$$

$$R_{m} = 85.49 \times c_{p} \times \sqrt{\Delta p_{l}} \times \sqrt{\frac{(T_{stk_{l}} + 459.67)}{M_{w} \times P_{B}}} \times 60 \times A_{n} \times \frac{(T_{m_{l}} + 459.67) \times (1 - B_{wo})}{(T_{stk_{l}} + 459.67) \times y} \qquad \text{Equation } 13$$

$$A_{n} = \pi \left(\frac{d_{n}}{24}\right)^{2} \qquad \qquad \text{Equation } 14$$

$$M_{w} = M_{D} \times (1 - B_{wo}) + 18 \times B_{wo} \qquad \qquad \text{Equation } 15$$

$$M_{D} = 0.44 \times \% CO_{2} + 0.32 \times \% O_{2} + 0.28 \times (100 - \% CO_{2} - \% O_{2}) \qquad \qquad \text{Equation } 16$$

$$T_{Stk} = \frac{1}{n} \sum_{l=1}^{n} T_{Stk_{l}}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation } 17$$

$$B_{wo} = \frac{V_{cond}}{V_{cond} + V_{std(limp)}} \qquad \qquad \text{Equation } 18$$

$$V_{cond} = 0.04707 \times V_{gain} \qquad \qquad \text{Equation } 19$$

$$Iso = \frac{1}{n} \sum_{l=1}^{n} Iso_{l}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation } 20$$

$$Iso_{l} = \frac{v_{nzi}}{v_{l}} \qquad \qquad \text{Equation } 21$$

$$v_{l} = 85.49 \times c_{p} \times \sqrt{\Delta p_{l}} \times \sqrt{\frac{(T_{Stk_{l}} + 459.67)}{(P_{Stk} \times M_{W})}} \qquad \qquad \text{Equation } 22$$

$$v_{nzi} = \frac{(V_{l} - V_{l-1}) \times y \times (T_{Stk_{l}} + 459.67) \times (P_{B} + \frac{\Delta H_{l(act)}}{13.6})}{A_{n} \times t_{l} \times 60 \times (T_{m(l)} + 459.67) \times P_{stk} \times (1 - B_{wo})} \qquad \qquad \text{Equation } 23$$

$$P_{stk} = P_B + \frac{P_g}{13.6}$$
 Equation 24

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
 , where $n =$ the number of points

Equation 25

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
, where $n =$ the number of points

Equation 26

Where,

 $A_n = Nozzle area (ft^2)$

 d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H₂O)

 P_g = Stack Static pressure (inches of H_2O) P_{stk} = Absolute stack pressure (inches of H_B) M_W = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

*%CO*₂ = Stack gas carbon dioxide concentration (% dry basis)

 $\%O_2$ = Stack gas oxygen concentration (% dry basis) B_{wo} = Stack gas water vapour, proportion by volume

V_{cond} = Total volume of water vapor collected, corrected to standard conditions

 (ft^3)

 V_{gain} = Condensate gain of impinger contents (mL) P_{std} = Standard pressure (29.92 inches of Hg)

 v_{stk} = Average flue gas velocity (ft/sec)

 v_i = Individual point flue gas velocity (ft/sec)

 v_{nz} = Average velocity at nozzle(ft/sec)

 v_{nzi} = Individual point velocity at nozzle(ft/sec) Iso_i = Individual point isokinetic variation (%)

Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (ft^3 /min)

App B.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$

$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
Equation 28

$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
 Equation 29

Where,

 $Q_A = Actual flowrate (Am^3/min)$

 $Qs = Flowrate (m^3/min)$ at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)

d = Diameter of stack (inches)

APPENDIX - C LABORATORY RESULTS

T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784769

Control Number:

Date Received: Dec 18, 2024
Date Reported: Jan 13, 2025
Report Number: 3091767
Report Type: Final Report

Contact	Company	Address	
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 881-2581	
		Email: mark.lanfranco@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	COA / COC	
Email	PDF	COC / Test Report	
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 881-2581	
		Email: missy@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	Invoice	

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784769

Control Number:

Date Received: Dec 18, 2024 Date Reported: Jan 13, 2025 Report Number: 3091767 Report Type: Final Report

Reference Number Sample Date Sample Time **Sample Location**

1784769-1 Dec 12, 2024 NA

1784769-2 NA

1784769-3 Dec 13, 2024

Dec 13, 2024 NA

Sample Description Unit 1 Run 1 ('MV1-

blk' + 4 Bottles) / 17.1 °C

Unit 1 Run 2 ('MV Unit 1 Run 2' + 4 Bottles) / 17.1 °C

Unit 1 Run 3 ('MV Unit 3 Run 2' + 4 Bottles) / 17.1 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals F	raction 1A					
Aluminum		μg	28	36	20	5
Antimony		μg	9	<2	7	2.5
Arsenic		μg	1	2.7	<1	1
Cadmium		μg	<0.3	0.3	<0.3	0.25
Chromium		μg	0.25	0.45	1.8	0.2
Cobalt		μg	0.5	0.5	0.5	0.25
Copper		μg	0.8	1	0.9	0.25
Lead		μg	2.9	6.1	2.6	1.5
Manganese		μg	2	1	2	0.25
Nickel		μg	0.6	1	2	0.5
Phosphorus		μg	49	43	48	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	<2	<2	5.4	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	24	22	22	0.5
Back Half Metals F	raction 2A					
Aluminum		μg	27	20	20	5
Antimony		μg	<2	<2	4	2.5
Arsenic		μg	<0.9	<0.9	3.1	1
Cadmium		μg	<0.2	0.4	<0.2	0.25
Chromium		μg	0.79	3.28	0.52	0.2
Cobalt		μg	<0.2	<0.2	0.7	0.25
Copper		μg	1	<0.2	0.6	0.25
Lead		μg	4.3	<1	2.2	1.5
Manganese		μg	1	2	1	0.25
Nickel		μg	2	2	1	0.5
Phosphorus		μg	20	20	20	2.5
Selenium		μg	<1	<1	<1	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<1	2.3	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	11	9.1	9.4	0.5
Volume	Sample	mL	648	590	660	
Volume	aliquot volume	mL	598	540	610	
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05	<0.05	<0.05	0.05

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Metals and Hg Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784769

Control Number:

Date Received: Dec 18, 2024 Date Reported: Jan 13, 2025 Report Number: 3091767 Report Type: Final Report

Reference Number 1784769-1 1784769-2 1784769-3 Sample Date Dec 12, 2024 Dec 13, 2024 Dec 13, 2024 Sample Time NA NA NA

Sample Location

Sample Description Unit 1 Run 1 ('MV1-Unit 1 Run 2 ('MV Unit 1 Run 3 ('MV Unit 1 Run 2' + 4 blk' + 4 Bottles) / Unit 3 Run 2' + 4

17.1 °C Bottles) / 17.1 °C Bottles) / 17.1 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - Co	ntinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	0.12	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	648	590	660	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	0.65	<0.2	<0.3	
Mercury	As Tested	μg/L	0.40	0.34	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	100	97	98	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	0.065	0.053	<0.008	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.04	<0.04	<0.04	
Mercury	As Tested	μg/L	0.18	0.70	0.12	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.059	0.22	0.038	

Approved by:

Rachel Eden, B. Sc. **Operations Manager**

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE Project Name: Metals and Hg Samples

Element

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784769

Control Number:

Date Received: Dec 18, 2024 Date Reported: Jan 13, 2025 Report Number: 3091767 Report Type: Final Report

Method of Analysis								
Method Name	Reference	Method	Date Analysis Started	Location				
Mercury in Air (VAN) - 1B	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver				
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver				
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver				
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver				
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver				
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 08, 2025	Element Vancouver				
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 08, 2025	Element Vancouver				

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780836

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 16, 2024
Report Number: 3085250
Report Type: Final Report

Contact	Company	Address		
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street		
		Surrey, BC V4N 4W7		
		Phone: (604) 881-2582 Fa	ax:	(604) 881-2581
		Email: mark.lanfranco@alanfranco.com	1	
Delivery	<u>Format</u>	<u>Deliverables</u>		
Email	PDF	COA / COC		
Email	PDF	COC / Test Report		
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street		
		Surrey, BC V4N 4W7		
		Phone: (604) 881-2582 Fa	ax:	(604) 881-2581
		Email: missy@alanfranco.com		
Delivery	<u>Format</u>	<u>Deliverables</u>		
Email	PDF	Invoice		

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Element Surrey, British Columbia T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780836

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 16, 2024 Report Number: 3085250 Report Type: Final Report

Reference Number Sample Date Sample Time **Sample Location**

1780836-1 Nov 19, 2024 NA

1780836-2 Nov 20, 2024 NA

1780836-3 Nov 20, 2024

NA

Sample Description Unit 2 Run 1 ('Unit 2

R-1' + 4 Bottles) / 20.8 °C

Unit 2 Run 2 ('MV Unit 2 Run 2' + 4 Bottles) / 20.8 °C

Unit 2 Run 3 ('MV Unit 2 Run 3' + 4 Bottles) / 20.8 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	ction 1A					
Aluminum		μg	10	33	20	5
Antimony		μg	7	5	4	2.5
Arsenic		μg	2	<1	2	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	3.02	2.5	6.03	0.2
Cobalt		μg	<0.3	<0.3	0.3	0.25
Copper		μg	0.6	0.7	0.6	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	2	1	2	0.25
Nickel		μg	6.4	5.3	8.7	0.5
Phosphorus		μg	60	63	50	2.5
Selenium		μg	5.7	<2	<2	1.5
Tellurium		μg	3.4	<2	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	12	9.7	10	0.5
Back Half Metals Frac	ction 2A					
Aluminum		μg	10	9	9	5
Antimony		μg	<2	<2	6	2.5
Arsenic		μg	<0.9	<0.9	1	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	0.26	0.64	1.7	0.2
Cobalt		μg	<0.2	<0.2	<0.2	0.25
Copper		μg	<0.2	<0.2	<0.2	0.25
Lead		μg	<1	<1	<1	1.5
Manganese		μg	2.5	1	0.4	0.25
Nickel		μg	<0.4	<0.4	0.4	0.5
Phosphorus		μg	20	26	20	2.5
Selenium		μg	5.1	<1	<1	1.5
Tellurium		μg	<2	<2	4.7	2
Thallium		μg	5.7	3.0	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	0.9	0.9	5.7	0.5
Volume	Sample	mL	802	765	695	
Volume	aliquot volume	mL	752	715	645	
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05

Surrey, British Columbia

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780836

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 16, 2024 Report Number: 3085250 Report Type: Final Report

Reference Number 1780836-1 1780836-2 1780836-3 Sample Date Nov 19, 2024 Nov 20, 2024 Nov 20, 2024 Sample Time NA NA NA

Sample Location

Sample Description Unit 2 Run 1 ('Unit 2 Unit 2 Run 2 ('MV Unit 2 Run 3 ('MV Unit 2 Run 2' + 4 Unit 2 Run 3' + 4 R-1' + 4 Bottles) /

20.8 °C Bottles) / 20.8 °C Bottles) / 20.8 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	802	765	695	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	133	118	116	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.01	< 0.009	< 0.009	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	< 0.04	< 0.04	< 0.04	
Mercury	As Tested	μg/L	0.08	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.03	<0.02	<0.02	

Element Surrey, British Columbia T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE Metals and Hg Samples

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780836

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 16, 2024 Report Number: 3085250 Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location

1780836-4 Nov 18, 2024 NA

1780836-5 Nov 19, 2024 NA

1780836-6 Nov 19, 2024

NA

Sample Description Unit 3 Run 1 ('Unit 3

R-1' + 4 Bottles) / 20.8 °C

MV Unit 3 Run 2 ('MV U3 Run 2' + 4 Bottles) / 20.8 °C

MV Unit 3 Run 3 ('MV U3 Run 3' + 4 Bottles) / 20.8 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fi	raction 1A					2
Aluminum		μg	20	20	20	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1	1	1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	1.8	4.28	1.8	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	2.9	2.7	2	0.25
Lead		μg	4.7	4.1	8.5	1.5
Manganese		μg	2	2	1	0.25
Nickel		μg	7.9	8.7	5.0	0.5
Phosphorus		μg	72	72	66	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	40.7	42.9	44.5	0.5
Back Half Metals Fr	action 2A					
Aluminum		μg	23	24	28	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<0.9	<0.9	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	3.19	0.55	5.89	0.2
Cobalt		μg	<0.2	<0.2	<0.2	0.25
Copper		μg	<0.2	0.4	0.9	0.25
Lead		μg	<1	<1	<1	1.5
Manganese		μg	3.2	1.0	2	0.25
Nickel		μg	1	<0.4	0.7	0.5
Phosphorus		μg	25	26	23	2.5
Selenium		μg	<1	<1	<1	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	2	1	6.8	0.5
Volume	Sample	mL	670	705	720	
Volume	aliquot volume	mL	620	655	670	
Mercury by CVAA						
Mercury	As Tested	μg/L	0.11	< 0.05	< 0.05	0.05

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Metals and Hg Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780836

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 16, 2024 Report Number: 3085250

Report Type: Final Report

Reference Number Sample Date Sample Time

1780836-4 Nov 18, 2024 NA

1780836-5 Nov 19, 2024 NA

1780836-6 Nov 19, 2024 NA

Sample Location

Sample Description Unit 3 Run 1 ('Unit 3

R-1' + 4 Bottles) / 20.8 °C

MV Unit 3 Run 2 ('MV U3 Run 2' + 4 Bottles) / 20.8 °C

MV Unit 3 Run 3 ('MV U3 Run 3' + 4 Bottles) / 20.8 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	0.045	<0.02	<0.02	
Mercury	As Tested	μg/L	0.14	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	670	705	720	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	0.74	<0.3	<0.3	
Mercury	As Tested	μg/L	0.12	0.06	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	106	134	130	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	0.021	0.01	<0.01	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	µg/sample	< 0.04	<0.04	< 0.04	
Mercury	As Tested	μg/L	0.11	0.41	0.16	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.035	0.13	0.052	

Approved by:

Rachel Eden, B. Sc. **Operations Manager**

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE Metals and Hg Samples

Element

#104, 19575-55 A Ave.

Surrey, British Columbia

V3S 8P8, Canada

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780836

Page 5 of 5

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 16, 2024 Report Number: 3085250 Report Type: Final Report

Method of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 06, 2024	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 05, 2024	Element Vancouver

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780806

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 5, 2024
Report Number: 3085202
Report Type: Final Report

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

• Reduction of analytical volume was necessary for anion analysis due to matrix effects in lot 1780806. Detection limits are adjusted accordingly.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780806

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 5, 2024
Report Number: 3085202
Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location

1780806-1 Nov 20, 2024 NA 1780806-2 Nov 20, 2024 1780806-3 Nov 20, 2024

NA

NA

. .

Sample Description Unit #2 HF Run 1 / 19.8 °C

Unit #2 HF Run 2 / 19.8 °C Unit #2 HF Run 3 / 19.8 °C

Stack Samples Stack Samples Stack Samples Matrix Nominal Detection **Analyte** Units Results Results Results Limit Air Quality 351 351 353 Volume Sample mL fluoride 10.00 Dilution Factor 10.00 10.00 mg/L Fluoride As Tested < 0.3 < 0.3 < 0.3 0.03 Fluoride Water Soluble µg/sample <100 <100 <100

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: **HF Samples**

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780806

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 5, 2024 Report Number: 3085202 Report Type: Final Report

Reference Number 1780806-4 1780806-5 1780806-6 Sample Date Nov 19, 2024 Nov 19, 2024 Nov 19, 2024 Sample Time NA NA NA

Sample Location

Matrix

Sample Description Unit #3 HF Run 1 / Unit #3 HF Run 2 / Unit #3 HF Run 3 / 19.8 °C 19.8 °C 19.8 °C

> Stack Samples Stack Samples Stack Samples

	Units	Results	Results	Results	Nominal Detection Limit
Sample	mL	371	269	335	
fluoride		10.00	10.00	10.00	
As Tested	mg/L	<0.3	<0.3	<0.3	0.03
Water Soluble	μg/sample	<100	<80	<100	
	fluoride As Tested	Sample mL fluoride As Tested mg/L	Sample mL 371 fluoride 10.00 As Tested mg/L <0.3	Sample mL 371 269 fluoride 10.00 10.00 As Tested mg/L <0.3	Sample mL 371 269 335 fluoride 10.00 10.00 10.00 As Tested mg/L <0.3

Approved by:

Rachel Eden, B. Sc. **Operations Manager**

Methodology and Notes

Bill To: A. Lanfranco & Associates #101, 9488 - 189 Street

Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: **HF Samples**

Project Location: LSD:

P.O.:

Proj. Acct. code:

Lot ID: 1780806

Control Number:

Date Received: Nov 29, 2024 Dec 5, 2024 Date Reported: Report Number: 3085202 Report Type: Final Report

Method of Analysis

Method Name Reference Method Date Analysis Location Started Anions by IEC in air (VAN) **EMC** Determination of Hydrogen Halide & Dec 03, 2024 **Element Vancouver** Halogen Emissions from Stationary

> Sources (Isokinetic), 26A * Reference Method Modified

References

EMC Emission Measurement Center of EPA

Comments:

• Reduction of analytical volume was necessary for anion analysis due to matrix effects in lot 1780806. Detection limits are adjusted accordingly.

Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780816

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 16, 2024
Report Number: 3085219
Report Type: Final Report

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Sampled By: Company:

Attn: Missy

Project ID: Metro Vancouver WTE Filter Reagent Blanks

Project Name: **Project Location:**

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780816

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 16, 2024 Report Number: 3085219 Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location

1780816-1 Nov 18, 2024

1780816-2 Nov 18, 2024 NA

NA

Sample Description Reagent Blank Unit 2 Reagent Blank Unit 3

Container 1 (filter) / Container 1 (filter) / 19.8 °C

19.8 °C

Stack Samples

		Matrix	Stack Samples	Stack Samples		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	tion 1A					
Aluminum		μg	6	<5		5
Antimony		μg	<2	6		2.5
Arsenic		μg	<1	2		1
Cadmium		μg	<0.3	<0.3		0.25
Chromium		μg	0.44	<0.2		0.2
Cobalt		μg	<0.3	<0.3		0.25
Copper		μg	<0.3	<0.3		0.25
Lead		μg	<2	2		1.5
Manganese		μg	<0.3	<0.3		0.25
Nickel		μg	0.9	0.6		0.5
Phosphorus		μg	62	47		2.5
Selenium		μg	<2	<2		1.5
Tellurium		μg	<2	<2		2
Thallium		μg	<2	<2		1.5
Vanadium		μg	<1	<1		1
Zinc		μg	0.7	4.2		0.5
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05		0.05
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	250	250		
Volume	aliquot volume	mL	25	25		
Volume	Final	mL	40	40		
Mercury	Fraction 1B	μg/sample	<0.02	<0.02		

Approved by:

Rachel Eden, B. Sc. **Operations Manager**

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Me

Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Metro Vancouver WTE

Filter Reagent Blanks

Lot ID: 1780816

Control Number:
Date Received: Nov 29, 2024
Date Reported: Dec 16, 2024

Report Number: 3085219

Report Type: Final Report

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Dec 09, 2024	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 05, 2024	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780832

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 16, 2024
Report Number: 3085235
Report Type: Final Report

Contact	Company	Address	
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 881-2581	
		Email: mark.lanfranco@alanfranco.com	
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	COA / COC	
Email	PDF	COC / Test Report	
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 881-2581	
		Email: missy@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	Invoice	

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Field Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780832

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 16, 2024 Report Number: 3085235 Report Type: Final Report

Reference Number Sample Date Sample Time **Sample Location**

1780832-1 Nov 20, 2023 NA

1780832-2 Nov 19, 2024 NA

Sample Description Field Blank Unit 2 (Unit 2 BLK + 4

Field Blank Unit 3 (Unit 3 Blank + 4 Bottles) / 19.8 °C Bottles) / 19.8 °C

Matrix

Stack Samples

Stack Samples

		Matrix	Stack Samples	Stack Samples		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	ction 1A					
Aluminum		μg	20	20		5
Antimony		μg	<2	<2		2.5
Arsenic		μg	<1	<1		1
Cadmium		μg	<0.3	<0.3		0.25
Chromium		μg	0.38	<0.2		0.2
Cobalt		μg	<0.3	<0.3		0.25
Copper		μg	<0.3	<0.3		0.25
Lead		μg	<2	<2		1.5
Manganese		μg	<0.3	0.3		0.25
Nickel		μg	2	2		0.5
Phosphorus		μg	56	60		2.5
Selenium		μg	<2	<2		1.5
Tellurium		μg	<2	<2		2
Thallium		μg	<2	<2		1.5
Vanadium		μg	<1	<1		1
Zinc		μg	7.2	3.4		0.5
Back Half Metals Frac	ction 2A					
Aluminum		μg	5	7		5
Antimony		μg	<2	<2		2.5
Arsenic		μg	<0.9	<0.9		1
Cadmium		μg	<0.2	<0.2		0.25
Chromium		μg	0.2	0.41		0.2
Cobalt		μg	0.3	<0.2		0.25
Copper		μg	<0.2	<0.2		0.25
Lead		μg	<1	<1		1.5
Manganese		μg	0.2	<0.2		0.25
Nickel		μg	0.8	<0.5		0.5
Phosphorus		μg	20	20		2.5
Selenium		μg	<1	<1		1.5
Tellurium		μg	<2	<2		2
Thallium		μg	<1	<1		1.5
Vanadium		μg	<0.9	<0.9		1
Zinc		μg	5.6	1.0		0.5
Volume	Sample	mL	434	350		
Volume	aliquot volume	mL	384	300		
Mercury by CVAA	·					
Mercury	As Tested	μg/L	< 0.05	< 0.05		0.05

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Field Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780832

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 16, 2024 Report Number: 3085235 Report Type: Final Report

Reference Number 1780832-1 Sample Date Sample Time

Sample Location

Nov 20, 2023 NA

1780832-2 Nov 19, 2024 NA

Sample Description Field Blank Unit 2 (Unit 2 BLK + 4

Field Blank Unit 3 (Unit 3 Blank + 4 Bottles) / 19.8 °C

Bottles) / 19.8 °C Matrix Stack Samples Stack Samples

			Otdok Gampico	Otdok Gampios		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	250	250		
Volume	aliquot volume	mL	25	25		
Volume	Final	mL	40	40		
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02		
Mercury	As Tested	μg/L	< 0.05	< 0.05		0.05
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	434	350		
Volume	aliquot volume	mL	5.0	5.0		
Volume	Final	mL	40	40		
Mercury	Fraction 2B	µg/sample	<0.2	<0.1		
Mercury	As Tested	μg/L	< 0.05	<0.05		0.05
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	98	101		
Volume	aliquot volume	mL	25	25		
Volume	Final	mL	40	40		
Mercury	Fraction 3A	µg/sample	<0.008	<0.008		
Mercury	As Tested	μg/L	< 0.05	<0.05		0.05
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	500	500		
Volume	aliquot volume	mL	25	25		
Volume	Final	mL	40	40		
Mercury	Fraction 3B	μg/sample	< 0.04	<0.04		
Mercury	As Tested	μg/L	< 0.05	<0.05		0.05
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	200	200		
Volume	aliquot volume	mL	25	25		
Volume	Final	mL	40	40		
Mercury	Fraction 3C	μg/sample	<0.02	<0.02		

Approved by:

Rachel Eden, B. Sc.

Operations Manager

Surrey, British Colun V3S 8P8, Canada

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780832

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 16, 2024
Report Number: 3085235
Report Type: Final Report

Method of Analysis			<u> </u>	
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Metals in Stack Samples - Back half VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 06, 2024	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 05, 2024	Element Vancouve
		* Reference Method Modified		

Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780800

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 5, 2024
Report Number: 3085195
Report Type: Final Report

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: HF Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780800

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 5, 2024
Report Number: 3085195
Report Type: Final Report

Reference Number

Sample Date Sample Time 1780800-1 Nov 20, 2024 NA 1780800-2 Nov 19, 2024 NA

Sample Location
Sample Description U

Unit #2 HF Blank / 19.8 °C Unit #3 HF Blank / 19.8 °C

Matrix Stack Samples

Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Volume	Sample	mL	231	232		
Dilution Factor	fluoride		1.00	1.00		
Fluoride	As Tested	mg/L	< 0.03	< 0.03		0.03
Fluoride	Water Soluble	μg/sample	<7	<7		

Approved by:

Rachel Eden , B. Sc.

Operations Manager

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Element

#104, 19575-55 A Ave.

V3S 8P8, Canada

Surrey, British Columbia

Project Name: HF Blanks

LSD: P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1780800

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 5, 2024
Report Number: 3085195
Report Type: Final Report

Method of Analysis

Method Name

Reference

Method

Date Analysis
Started

Anions by IEC in air (VAN)

EMC

* Determination of Hydrogen Halide & Dec 03, 2024

Halogen Emissions from Stationary

Element Vancouver

Sources (Isokinetic), 26A
*Reference Method Modified

References

EMC Emission Measurement Center of EPA

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780797

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 6, 2024
Report Number: 3085189
Report Type: Final Report

Contact	Company	Address	
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 881-	2581
		Email: mark.lanfranco@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	COA / COC	
Email	PDF	COC / Test Report	
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 881-	2581
		Email: missy@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	Invoice	

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780797

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 6, 2024 Report Number: 3085189 Report Type: Final Report

Reference Number Sample Date

Sample Time

Sample Location

1780797-1 Nov 20, 2024

Element

#104, 19575-55 A Ave.

V3S 8P8, Canada

Surrey, British Columbia

1780797-2 Nov 19, 2024 NA

NA

Sample Description Unit # 2 NH3 Blk /

19.8 °C

Unit #3 NH3 Blk / 19.8 °C

Stack Samples Matrix

Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Ammonium - N	As Tested	μg/L	29	29		25
Dilution Factor	As Tested		1.00	1.00		
Sample Volume	Sample volume	mL	196	232		
Ammonium - N		μg/sample	5.7	6.7		

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE NH3 Blanks

Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780797

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 6, 2024 Report Number: 3085189 Report Type: Final Report

		lysis

Method Name	Reference	Method	Date Analysis Started	Location	
Ammonium in Impingers	АРНА	* Automated Phenate Method, 4500-NH3 G	Dec 05, 2024	Element Edmonton - Roper Road	_

^{*} Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780818

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 16, 2024
Report Number: 3085222
Report Type: Final Report

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

#104, 19575-55 A Ave. Surrey, British Columbia T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780818

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 16, 2024 Report Number: 3085222 Report Type: Final Report

Reference Number Sample Date Sample Time

1780818-1 Nov 18, 2024

1780818-2 Nov 18, 2024

NA

NA

Sample Location

Sample Description Reagent Blank Unit 2 Reagent Blank Unit 3 / 19.8 °C / 19.8 °C

Stack Samples Stack Samples Matrix Nominal Detection Units Results Results Results Analyte Limit Front Half Metals Fraction 1A 5 5 Aluminum <5 μg 3 2.5 Antimony <2 μg Arsenic <1 <1 1 μg Cadmium μg < 0.3 <0.3 0.25 Chromium 0.32 0.63 0.2 μg Cobalt < 0.3 <0.3 0.25 μg 0.25 Copper < 0.3 0.4 μg <2 <2 Lead μg 1.5 Manganese μg < 0.3 <0.3 0.25 Nickel 1 2 0.5 μg 5 Phosphorus 9 2.5 μg Selenium <2 <2 1.5 μg Tellurium μg <2 <2 2 Thallium <2 <2 1.5 μg Vanadium <1 <1 1 μg 0.5 Zinc < 0.5 3.7 μg **Back Half Metals Fraction 2A** 7 8 5 Aluminum μg Antimony μg <3 <3 2.5 Arsenic μg <1 <1 1 0.25 Cadmium < 0.3 < 0.3 μg Chromium 0.37 < 0.2 0.2 μg Cobalt < 0.3 < 0.3 0.25 μg Copper < 0.3 < 0.3 0.25 μg Lead <2 <2 1.5 μg Manganese 0.4 0.3 0.25 μg <0.5 0.5 Nickel <0.5 μg Phosphorus 20 20 2.5 μg Selenium <2 <2 1.5 μg Tellurium <2 <2 2 μg Thallium <2 <2 1.5 μg Vanadium <1 <1 1 μg 5.9 0.5 Zinc μg 4.9 Volume Sample mL 205 211 Volume aliquot volume mL 155 161 Mercury by CVAA Mercury As Tested μg/L < 0.05 < 0.05 0.05 As Tested 1 Dilution Factor 1

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780818

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 16, 2024 Report Number: 3085222 Report Type: Final Report

Reference Number 1780818-1 1780818-2 Sample Date Nov 18, 2024 Nov 18, 2024 Sample Time NA NA

Sample Location

Sample Description Reagent Blank Unit 2 Reagent Blank Unit 3

/ 19.8 °C

/ 19.8 °C Stack Samples

Analyte Units Results Results Mercury by CVAA - Continued MI 250 250 Volume Sample mL 250 250 Volume aliquot volume mL 25 25 Volume Final mL 40 40 Mercury Fraction 1B μg/sample <0.02 <0.02 Mercury As Tested μg/L <0.05 <0.05 Dilution Factor As Tested mL 205 211 Volume Sample mL 5.0 5.0 Volume Final mL 40 40 Mercury Fraction 2B μg/sample <0.08 <0.08 Mercury As Tested μg/L <0.05 <0.05 Dilution Factor As Tested μg/L <0.05 <0.05 Volume Sample mL 98 101 Volume aliquot volume mL 25 25 Volume		
Volume Sample mL 250 250 Volume aliquot volume mL 25 25 Volume Final mL 40 40 Mercury Fraction 1B μg/sample <0.02 <0.02 Mercury As Tested μg/L <0.05 <0.05 Dilution Factor As Tested πL 205 211 Volume Sample mL 5.0 5.0 Volume Final mL 40 40 Mercury Fraction 2B μg/sample <0.08 <0.08 Mercury As Tested μg/L <0.05 <0.05 Dilution Factor As Tested πL 98 101 Volume sample mL 98 101 Volume aliquot volume mL 25 25	Results	Nominal Detection Limit
Volume aliquot volume mL 25 25 Volume Final mL 40 40 Mercury Fraction 1B μg/sample <0.02		-
Volume Final mL 40 40 Mercury Fraction 1B μg/sample <0.02		
Mercury Fraction 1B μg/sample <0.02 <0.02 Mercury As Tested μg/L <0.05		
Mercury As Tested μg/L <0.05 <0.05 Dilution Factor As Tested 1 1 1 Volume Sample mL 205 211 Volume aliquot volume mL 5.0 5.0 Volume Final mL 40 40 Mercury Fraction 2B μg/sample <0.08		
Dilution Factor As Tested 1 1 Volume Sample mL 205 211 Volume aliquot volume mL 5.0 5.0 Volume Final mL 40 40 Mercury Fraction 2B μg/sample <0.08		
Volume Sample mL 205 211 Volume aliquot volume mL 5.0 5.0 Volume Final mL 40 40 Mercury Fraction 2B μg/sample <0.08		0.05
Volume aliquot volume mL 5.0 5.0 Volume Final mL 40 40 Mercury Fraction 2B μg/sample <0.08		
Volume Final mL 40 40 Mercury Fraction 2B μg/sample <0.08		
Mercury Fraction 2B μg/sample <0.08 <0.08 Mercury As Tested μg/L <0.05		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Dilution Factor As Tested 1 1 Volume Sample mL 98 101 Volume aliquot volume mL 25 25		
VolumeSamplemL98101Volumealiquot volumemL2525		0.05
Volume aliquot volume mL 25 25		
•		
Volume Final mL 40 40		
· · · · · · · · · · · · · · · · · · ·		
Mercury Fraction 3A μg/sample <0.008 <0.008		
Mercury As Tested μ g/L <0.05 <0.05		0.05
Dilution Factor As Tested 1 1		
Volume Sample mL 500 500		
Volume aliquot volume mL 25 25		
Volume Final mL 40 40		
Mercury Fraction 3B μg/sample <0.04 <0.04		
Mercury As Tested μg/L <0.05 <0.05		0.05
Dilution Factor As Tested 1 1		
Volume Sample mL 200 200		
Volume aliquot volume mL 25 25		
Volume Final mL 40 40		
Mercury Fraction 3C μg/sample <0.02 <0.02		

Approved by:

Rachel Eden, B. Sc.

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE Reagent Blanks

Element

#104, 19575-55 A Ave.

V3S 8P8, Canada

Surrey, British Columbia

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780818

Control Number:

Date Received: Nov 29, 2024 Date Reported: Dec 16, 2024 Report Number: 3085222 Report Type: Final Report

Method of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 09, 2024	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 06, 2024	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 05, 2024	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780810

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 6, 2024
Report Number: 3085210
Report Type: Final Report

Contact	Company	Address	
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 88	31-2581
		Email: mark.lanfranco@alanfranco.com	
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	COA / COC	
Email	PDF	COC / Test Report	
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street	
		Surrey, BC V4N 4W7	
		Phone: (604) 881-2582 Fax: (604) 88	31-2581
		Email: missy@alanfranco.com	
Delivery	<u>Format</u>	<u>Deliverables</u>	
Email	PDF	Invoice	

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location: LSD:

P.O.:

Proj. Acct. code:

Lot ID: 1780810

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 6, 2024
Report Number: 3085210
Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location

1780810-1 Nov 20, 2024 NA 1780810-2 Nov 20, 2024 1780810-3 Nov 20, 2024

NA NA

Sample Description Unit 2 Run 1 NH3 / 19.8 °C

Unit 2 Run 2 NH3 / 19.8 °C

3 / Unit 2 Run 3 NH3 / 19.8 °C

Stack Samples Stack Samples Stack Samples Matrix Nominal Detection Analyte Units Results Results Results Limit **Air Quality** Ammonium - N As Tested 1210 507 175 25 μg/L Dilution Factor As Tested 1.00 1.00 1.00 Sample Volume Sample volume mL 416 434 388 Ammonium - N µg/sample 502 220 67.9

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

NH3 Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1780810

Control Number:

T: +1 (604) 514-3322

W: www.element.com

Date Received: Nov 29, 2024 Date Reported: Dec 6, 2024 Report Number: 3085210

Report Type: Final Report

Reference Number Sample Date Sample Time

Sample Location **Sample Description**

1780810-4 Nov 19, 2024 NA

1780810-5 Nov 19, 2024

1780810-6 Nov 19, 2024 NA

NA

Unit 3 Run 1 NH3 / 19.8 °C

Unit 3 Run 2 NH3/ 19.8 °C

Unit 3 Run 3 NH3/ 19.8 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Ammonium - N	As Tested	μg/L	6490	606	262	25
Dilution Factor	As Tested		1.00	1.00	1.00	
Sample Volume	Sample volume	mL	368	438	422	
Ammonium - N		µg/sample	2390	265	111	

Approved by:

nthony Weuman Anthony Neumann, MSc

General Manager

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

LSD: P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1780810

Control Number:

Date Received: Nov 29, 2024
Date Reported: Dec 6, 2024
Report Number: 3085210
Report Type: Final Report

Method of Analysis

Method Name

Reference

Method

Date Analysis
Started

Ammonium in Impingers

APHA

* Automated Phenate Method, 4500-NH3
G

Date Analysis
Started

Location

Element Edmonton Roper Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784773

Control Number:

Date Received: Dec 18, 2024
Date Reported: Jan 13, 2025
Report Number: 3091772
Report Type: Final Report

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784773

Control Number:

Date Received: Dec 18, 2024
Date Reported: Jan 13, 2025
Report Number: 3091772
Report Type: Final Report

Reference Number Sample Date 1784773-1 Dec 13, 2024 NA

Sample Time N
Sample Location

Sample Description Field Blank Unit 1

('MT Blk' + 4 Bottles) / 15.8 °C

Matrix Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection
	ation 4A	Units	Results	Results	Results	Limit
Front Half Metals Fra	ction 1A		_			_
Aluminum		μg	<5			5
Antimony		μg	<2			2.5
Arsenic		μg	1			1
Cadmium		μg	<0.3			0.25
Chromium		μg	<0.2			0.2
Cobalt		μg	0.7			0.25
Copper		μg	<0.3			0.25
Lead		μg	<2			1.5
Manganese		μg	<0.3			0.25
Nickel		μg	1			0.5
Phosphorus		μg	49			2.5
Selenium		μg	<2			1.5
Tellurium		μg	<2			2
Thallium		μg	<2			1.5
Vanadium		μg	<1			1
Zinc		μg	6.2			0.5
Back Half Metals Frac	ction 2A					
Aluminum		μg	5			5
Antimony		μg	<2			2.5
Arsenic		μg	<1.0			1
Cadmium		μg	<0.2			0.25
Chromium		μg	<0.2			0.2
Cobalt		μg	<0.2			0.25
Copper		μg	<0.2			0.25
Lead		μg	<1			1.5
Manganese		μg	<0.2			0.25
Nickel		μg	2			0.5
Phosphorus		μg	10			2.5
Selenium		μg	<1			1.5
Tellurium		μg	<2			2
Thallium		μg	<1			1.5
Vanadium		μg	<1.0			1
Zinc		μg	6.1			0.5
Volume	Sample	mL	299			
Volume	aliquot volume	mL	249			
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05			0.05

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784773

Control Number:

Date Received: Dec 18, 2024 Date Reported: Jan 13, 2025 Report Number: 3091772 Report Type: Final Report

Reference Number 1784773-1 Sample Date Dec 13, 2024

Sample Time

NA

Sample Location Sample Description

Field Blank Unit 1 ('MT Blk' + 4 Bottles)

/ 15.8 °C

Matrix Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1			
Volume	Sample	mL	250			
Volume	aliquot volume	mL	25			
Volume	Final	mL	40			
Mercury	Fraction 1B	μg/sample	< 0.02			
Mercury	As Tested	μg/L	0.08			0.05
Dilution Factor	As Tested		1			
Volume	Sample	mL	299			
Volume	aliquot volume	mL	5.0			
Volume	Final	mL	40			
Mercury	Fraction 2B	µg/sample	0.2			
Mercury	As Tested	μg/L	< 0.05			0.05
Dilution Factor	As Tested		1			
Volume	Sample	mL	99			
Volume	aliquot volume	mL	25			
Volume	Final	mL	40			
Mercury	Fraction 3A	µg/sample	<0.008			
Mercury	As Tested	μg/L	< 0.05			0.05
Dilution Factor	As Tested		1			
Volume	Sample	mL	500			
Volume	aliquot volume	mL	25			
Volume	Final	mL	40			
Mercury	Fraction 3B	µg/sample	<0.04			
Mercury	As Tested	μg/L	< 0.05			0.05
Dilution Factor	As Tested		1			
Volume	Sample	mL	200			
Volume	aliquot volume	mL	25			
Volume	Final	mL	40			
Mercury	Fraction 3C	μg/sample	< 0.02			

Approved by:

Rachel Eden, B. Sc.

Page 3 of 3

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID:

Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Metro Vancouver WTE

Element

#104, 19575-55 A Ave.

Surrey, British Columbia

V3S 8P8, Canada

Field Blanks

Lot ID: 1784773 Control Number:

Date Received: Dec 18, 2024 Date Reported: Jan 13, 2025 Report Number: 3091772

Report Type: Final Report

netnoa	OI	Analysis	

mound of Amaryolo				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Jan 10, 2025	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 08, 2025	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 08, 2025	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784948

Control Number:

Date Received: Dec 18, 2024
Date Reported: Jan 15, 2025
Report Number: 3092122
Report Type: Final Report

Contact	Company	Address						
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street						
		Surrey, BC V4N 4W7						
		Phone: (604) 881-2582 Fax: (604) 881-2581						
		Email: mark.lanfranco@alanfranco.com						
Delivery	<u>Format</u>	<u>Deliverables</u>						
Email	PDF	COA / COC						
Email	PDF	COC / Test Report						
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street						
		Surrey, BC V4N 4W7						
		Phone: (604) 881-2582 Fax: (604) 881-2581						
		Email: missy@alanfranco.com						
Delivery	<u>Format</u>	<u>Deliverables</u>						
Email	PDF	Invoice						

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Filter Reagent Blanks

Project Location: LSD:

P.O.:

Proj. Acct. code:

Lot ID: 1784948

Control Number:

Date Received: Dec 18, 2024 Date Reported: Jan 15, 2025 Report Number: 3092122 Report Type: Final Report

Reference Number

1784948-1 Dec 12, 2024

Sample Date Sample Time

NA

Sample Location

Sample Description Reagent Blank Unit 1 Container 1 (filter) /

14.7 °C

Matrix Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	ction 1A					
Aluminum		μg	<5			5
Antimony		μg	<2			2.5
Arsenic		μg	<1			1
Cadmium		μg	<0.3			0.25
Chromium		μg	<0.2			0.2
Cobalt		μg	0.4			0.25
Copper		μg	0.6			0.25
Lead		μg	<2			1.5
Manganese		μg	<0.3			0.25
Nickel		μg	<0.5			0.5
Phosphorus		μg	51			2.5
Selenium		μg	<2			1.5
Tellurium		μg	6.1			2
Thallium		μg	<2			1.5
Vanadium		μg	<1			1
Zinc		μg	6.1			0.5
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05			0.05
Dilution Factor	As Tested		1			
Volume	Sample	mL	250			
Volume	aliquot volume	mL	25			
Volume	Final	mL	40			
Mercury	Fraction 1B	μg/sample	<0.02			

Approved by:

Max Hewitt

Operations Manager

Methodology and Notes

Bill To: A. Lanfranco & Associates #101, 9488 - 189 Street

Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID:

Metro Vancouver WTE Project Name: Filter Reagent Blanks

Element

#104, 19575-55 A Ave.

Surrey, British Columbia

V3S 8P8, Canada

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784948

Control Number:

Date Received: Dec 18, 2024 Date Reported: Jan 15, 2025 Report Number: 3092122 Report Type: Final Report

Meth	nod	of	Ana	lysis

mounda on randiyono				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Jan 10, 2025	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Jan 08, 2025	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

T: +1 (604) 514-3322 E: info.vancouver@element.com W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: HF Samples

Project Location: LSD:

P.O.:

Proj. Acct. code:

Lot ID: 1784782

Control Number:

Date Received: Dec 18, 2024
Date Reported: Dec 20, 2024
Report Number: 3091784

Report Type: Final Report

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

Notes To Clients:

• Reduction of analytical volume was necessary for fluoride analysis due to matrix effects in lot 1784782. Detection limits are adjusted accordingly.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: **HF Samples**

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784782

Control Number:

Date Received: Dec 18, 2024 Date Reported: Dec 20, 2024 Report Number: 3091784

Report Type: Final Report

Reference Number Sample Date Sample Time

1784782-1 Dec 13, 2024 NA

1784782-2 Dec 13, 2024

1784782-3 Dec 13, 2024

NA

NA

Sample Location **Sample Description**

Unit #1 HF Run 1 / 14.7 °C

Unit #1 HF Run 2 / 14.7 °C

Unit #1 HF Run 3 / 14.7 °C

Stack Samples Stack Samples Stack Samples Matrix Nominal Detection Analyte Units Results Results Results Limit Air Quality 344 318 330 Volume Sample mL fluoride 10.00 Dilution Factor 10.00 10.00 mg/L Fluoride As Tested < 0.3 < 0.3 < 0.3 0.03 Fluoride Water Soluble µg/sample <100 <100 <100

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: **HF Samples**

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784782

Control Number:

Date Received: Dec 18, 2024 Date Reported: Dec 20, 2024 Report Number: 3091784 Report Type: Final Report

Reference Number 1784782-4

Sample Date Dec 13, 2024 Sample Time NA

Sample Location

Sample Description Unit #1 HF Blank /

14.7 °C

Matrix Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Volume	Sample	mL	231			
Dilution Factor	fluoride		1.00			
Fluoride	As Tested	mg/L	< 0.03			0.03
Fluoride	Water Soluble	μg/sample	<7			

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By: Company:

Attn: Missy

Project ID: Metro Vancouver WTE

Project Name: **HF Samples**

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784782

Control Number:

Date Received: Dec 18, 2024 Dec 20, 2024 Date Reported: Report Number: 3091784 Report Type: Final Report

Method of Analysis

Method Name Reference Method Date Analysis Location Started Anions by IEC in air (VAN) **EMC** Determination of Hydrogen Halide & Dec 20, 2024 **Element Vancouver** Halogen Emissions from Stationary

> Sources (Isokinetic), 26A * Reference Method Modified

References

EMC Emission Measurement Center of EPA

Comments:

• Reduction of analytical volume was necessary for fluoride analysis due to matrix effects in lot 1784782. Detection limits are adjusted accordingly.

T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784783

Control Number:

Date Received: Dec 18, 2024
Date Reported: Dec 30, 2024
Report Number: 3091785

Report Type: Final Report

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

LSD: P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1784783

Control Number:

Date Received: Dec 18, 2024 Date Reported: Dec 30, 2024 Report Number: 3091785

Report Type: Final Report

Reference Number Sample Date Sample Time

1784783-1 Dec 13, 2024 NA

1784783-2 Dec 13, 2024

1784783-3 Dec 13, 2024

NA

NA

Sample Location **Sample Description**

Unit 1 Run 1 NH3 / 19.6 °C

Unit 1 Run 2 NH3 / 19.6 °C

Unit 1 Run 3 NH3 / 19.6 °C

Stack Samples Stack Samples Stack Samples Matrix Nominal Detection Analyte Units Results Results Results Limit **Air Quality** Ammonium - N As Tested 3040 6190 14600 25 μg/L Dilution Factor As Tested 1.00 1.00 10.0 Sample Volume Sample volume mL 312 316 312 Ammonium - N µg/sample 948 1950 4570

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By: Company:

Project ID:

Metro Vancouver WTE

Element

#104, 19575-55 A Ave.

V3S 8P8, Canada

Surrey, British Columbia

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784783

Control Number:

Date Received: Dec 18, 2024 Date Reported: Dec 30, 2024 Report Number: 3091785 Report Type: Final Report

1784783-4 Reference Number

Sample Date Dec 13, 2024 Sample Time NA

Sample Location **Sample Description**

Unit 1 NH3 Blank / 19.6 °C

Matrix Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						_
Ammonium - N	As Tested	μg/L	62			25
Dilution Factor	As Tested		1.00			
Sample Volume	Sample volume	mL	228			
Ammonium - N		μg/sample	14			

Element

#104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

NH3 Samples Project Name:

LSD: P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1784783

Control Number:

Date Received: Dec 18, 2024 Date Reported: Dec 30, 2024 Report Number: 3091785 Report Type: Final Report

Method of Analysis

Method Name Reference Method Date Analysis Location Started Ammonium in Impingers **APHA** Automated Phenate Method, 4500-NH3 Dec 30, 2024 Element Edmonton -G Roper Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

T: +1 (604) 514-3322 E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784775

Control Number:

Date Received: Dec 18, 2024
Date Reported: Jan 13, 2025
Report Number: 3091774
Report Type: Final Report

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Missy	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: missy@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	Invoice

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

LSD: P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1784775

Control Number:

Date Received: Dec 18, 2024 Date Reported: Jan 13, 2025 3091774 Report Number: Report Type: Final Report

Reference Number Sample Date

1784775-1 Dec 13, 2024

Sample Time

NA

Sample Location

Sample Description Reagent Blank Unit 1 / 18.9 °C

> Matrix Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	ction 1A					•
Aluminum		μg	<5			5
Antimony		μg	5			2.5
Arsenic		μg	2			1
Cadmium		μg	<0.3			0.25
Chromium		μg	<0.2			0.2
Cobalt		μg	0.8			0.25
Copper		μg	<0.3			0.25
Lead		μg	<2			1.5
Manganese		μg	<0.3			0.25
Nickel		μg	<0.5			0.5
Phosphorus		μg	<2			2.5
Selenium		μg	<2			1.5
Tellurium		μg	2.7			2
Thallium		μg	<2			1.5
Vanadium		μg	<1			1
Zinc		μg	2.9			0.5
Back Half Metals Frac	ction 2A					
Aluminum		μg	6			5
Antimony		μg	<3			2.5
Arsenic		μg	2.8			1
Cadmium		μg	<0.3			0.25
Chromium		μg	<0.2			0.2
Cobalt		μg	0.3			0.25
Copper		μg	<0.3			0.25
Lead		μg	2.9			1.5
Manganese		μg	<0.3			0.25
Nickel		μg	1			0.5
Phosphorus		μg	20			2.5
Selenium		μg	<2			1.5
Tellurium		μg	3.6			2
Thallium		μg	<2			1.5
Vanadium		μg	<1			1
Zinc		μg	4.5			0.5
Volume	Sample	mL	196			
Volume	aliquot volume	mL	146			
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05			0.05
Dilution Factor	As Tested		1			

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

element

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1784775

Control Number:

Date Received: Dec 18, 2024 Date Reported: Jan 13, 2025 Report Number: 3091774 Report Type: Final Report

Reference Number 1784775-1

> Sample Date Sample Time

Dec 13, 2024 NA

Sample Location

Sample Description Reagent Blank Unit 1

/ 18.9 °C

Matrix Stack Samples

		IVIALITA	Stack Samples			
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Volume	Sample	mL	250			
Volume	aliquot volume	mL	25			
Volume	Final	mL	40			
Mercury	Fraction 1B	μg/sample	<0.02			
Mercury	As Tested	μg/L	0.10			0.05
Dilution Factor	As Tested		1			
Volume	Sample	mL	196			
Volume	aliquot volume	mL	5.0			
Volume	Final	mL	40			
Mercury	Fraction 2B	μg/sample	0.16			
Mercury	As Tested	μg/L	< 0.05			0.05
Dilution Factor	As Tested		1			
Volume	Sample	mL	96			
Volume	aliquot volume	mL	25			
Volume	Final	mL	40			
Mercury	Fraction 3A	μg/sample	<0.008			
Mercury	As Tested	μg/L	< 0.05			0.05
Dilution Factor	As Tested		1			
Volume	Sample	mL	500			
Volume	aliquot volume	mL	25			
Volume	Final	mL	40			
Mercury	Fraction 3B	μg/sample	<0.04			
Mercury	As Tested	μg/L	< 0.05			0.05
Dilution Factor	As Tested		1			
Volume	Sample	mL	200			
Volume	aliquot volume	mL	25			
Volume	Final	mL	40			
Mercury	Fraction 3C	μg/sample	<0.02			

Approved by:

Rachel Eden, B. Sc. **Operations Manager**

Methodology and Notes

Attn: Missy

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By: Company:

Project ID: Metro Vancouver WTE Reagent Blanks

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

#104, 19575-55 A Ave.

Surrey, British Columbia

V3S 8P8, Canada

Element

Lot ID: 1784775 Control Number:

Date Received: Dec 18, 2024 Date Reported: Jan 13, 2025 Report Number: 3091774 Report Type: Final Report

Method of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Jan 10, 2025	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 10, 2025	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 08, 2025	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Jan 08, 2025	Element Vancouver
		+0.4 14 14 17 1		

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

LABORATORY REPORT

January 7, 2025

Mark Lanfranco A. Lanfranco and Associates Inc. Unit 101 - 9488 189 St. Surrey, BC V4N 4W7

RE: MV WTEF

Dear Mark:

Enclosed are the results of the samples submitted to our laboratory on December 18, 2024. For your reference, these analyses have been assigned our service request number P2405118.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

ALS | Environmental

By Sue Anderson at 2:12 pm, Jan 07, 2025

Sue Anderson Project Manager

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

Client: A. Lanfranco and Associates Inc. Service Request No: P2405118

Project: MV WTEF

CASE NARRATIVE

The samples were received intact under chain of custody on December 18, 2024 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

C3 through C6 Hydrocarbon Analysis

The samples were analyzed per modified EPA Method TO-3 for C3 through >C6 hydrocarbons using a gas chromatograph equipped with a flame ionization detector (FID). This procedure is described in laboratory SOP VOA-TO3C1C6. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP accreditation.

Methane, Ethane and Ethylene Analysis

The samples were also analyzed for methane, ethane and ethylene per modified EPA Method TO-3 using a gas chromatograph equipped with a flame ionization detector (FID). This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	https://dec.alaska.gov/spar/csp/lab-approval/list-of-approved-labs	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental-laboratories/index.html	E871020
Louisiana DEQ (NELAP)	https://internet.deq.louisiana.gov/portal/divisions/lelap/accredited-laboratories	203013
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtm	CA012627
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	006-999-456
New Jersey DEP (NELAP)	https://dep.nj.gov/dsr/oqa/certified-laboratories/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oklahoma DEQ (NELAP)	labaccreditation.deq.ok.gov/labaccreditation/	2207
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	4068
Pennsylvania DEP	hhttp://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration only)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env lab accreditation.html	T104704413
Utah DOH (NELAP)	https://uphl.utah.gov/certifications/environmental-laboratory-certification/	CA01627
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

ALS ENVIRONMENTAL

DETAIL SUMMARY REPORT

Client: A. Lanfranco and Associates Inc. Service Request: P2405118

Project ID: MV WTEF

Date Received: 12/18/2024

Time Received: 09:29

			Date	Time	Container	Pi1	Pf1	-3 Modified
Client Sample ID	Lab Code	Matrix	Collected	Collected	ID	(psig)	(psig)	
MV WTEF Unit 1 Run 1	P2405118-001	Air	12/13/2024	10:15	AC01564	-3.70	3.69	X X
MV WTEF Unit 1 Run 2	P2405118-002	Air	12/13/2024	11:53	AS01349	-2.56	3.71	X X
MV WTEF Unit 1 Run 3	P2405118-003	Air	12/13/2024	13:10	AS01417	-2.87	3.75	X X

ALS Environmental 2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

Air - Chain of Custody Record & Analytical Service Request

Page _____ of ____

Filone (805)	320-7101			Requested Turnard						ALS Project	No.	
				1 Day (100%) 2 Da	y (75%) 3 Day (50%	%) 4 Day (35%)	5 Day (25%) 10	Day-Stan	ALS Contact	<u> </u>	Ī	-
Company Name & Address (Reporting		,		Project Name	11 11 145	: E						
A Lanbarco + As	social	res in	C.	Project Number	NWTE					Method		
Project Manager				P.O. # / Billing Inform	mation				(E)			
Caster Lanto	ance						_		36		Comments	
6049812582	hax			6	ill to a	cean			10		e.g. Actual Preservative or	
mail Address for Result Reporting	- Brance	0.000	14	Sampler (Print & Sign)					TO 3 (1stan Ale)		specific instructions	;
Client Sample ID	Laboratory	Date	Time	Canister ID (Bar code # -	Flow Controller ID (Bar code # -	Canister Start Pressure	Canister End Pressure	Sample	(0)			
	ID Number	Collected	Collected	AC, SC, etc.)	FC #)	"Hg	"Hg/psig	Volume				_
MU WIEF UNH I RUN !		Dec:13/24		AC01564	0A00920	-28	-9		//	-		
MU LUTEF UNIT I Run 2		6 (10:53	A501349	0A2261	-29	-7		1			
My WIEF UNT I RUN 3		11	13:10-	A501917	0A00367	-28	-5		V			
			15.0									
												_
												_
										1		-
												-
												_
												_
Repor Fier I - Results (Default if not specified)		- please sele (Results + QC		ummaries)	EDD required Ye	es / No		Chain of (Custody Seal:	(Circle)	Project Requirement (MRLs, QAPP)	s
Fier II (Results + QC Summaries)	Tier IV	/ (Data Validatio	on Package) 10	% Surcharge	Type:	Units:		INTACT	BROKEN	ABSENT		
Relinquished by: (Signature)			Date: 13/4	Time: 9:45	Received by: (Signat	ture) FE	DEX		Date:	Time:		
Relinquished by: (Signature)	DER		Date:	Time:	Received by: (Signat		-		Date: 18.24	78929	Cooler / Blank Temperature°C	_
Cianatura danatas assentance e	FALC CHALL	n LICA Com	. Tormo ou	d Conditions De	tallad Tarma 0 (Canditions	n ha wassiassiani	ad Ale a Tire		10 1		-

ALS Environmental Sample Acceptance Check Form

	Mv WTEF	and Associates Inc.			-	Work order:	P2405118			
Sample((s) received on:	12/18/2024			Date opened:	12/18/2024	by:	ANTHO	ONY.VA	SQUEZ
<u>Vote:</u> This	form is used for all	l samples received by ALS.	The use of this f	orm for custody se	eals is strictly me	eant to indicate prese	nce/absence and n	ot as an ir	ndication	of
compliance	or nonconformity.	Thermal preservation and	pH will only be e	valuated either at	the request of the	e client and/or as requ	aired by the metho	d/SOP. Yes	<u>No</u>	<u>N/A</u>
1	Were sample	containers properly n	narked with cl	ient sample ID	?			×		
2	-	ontainers arrive in go		F				X		
3	Were chain-o	f-custody papers used	l and filled out	?				X		
4	Did sample co	ontainer labels and/or	r tags agree wi	th custody pap	ers?			X		
5	Was sample v	volume received adequ	ate for analys	is?				X		
6	Are samples w	vithin specified holdin	g times?					X		
7	Was proper te	emperature (thermal p	preservation) o	of cooler at reco	eipt adhered t	o?				X
8	Were custody	seals on outside of co	ooler/Roy/Con	tainer?					\boxtimes	
O	were custous	Location of seal(s)?		tumer.			Sealing Lid?			X
	Were signatur	re and date included?					_ Seaming Ela.			×
	Were seals int									X
9		ers have appropriate p o	reservation, a	ccording to me	thod/SOP or	Client specified	information?			X
		ent indication that the s		•		•				X
	Were VOA v	rials checked for prese	nce/absence of	f air bubbles?						X
	Does the clien	nt/method/SOP require	that the analy	st check the sa	mple pH and	if necessary alter	: it?			X
10	Tubes:	Are the tubes cap	ped and intact?	?		•				X
11	Badges:	Are the badges pr	roperly capped	and intact?						X
		Are dual bed bad	ges separated a	and individuall	v capped and	intact?				X
12	Lab Notificati		-							X
13	Client Notifica	ation: Client has been n	otified regarding	g HT exceedance	es and/or other	CoC discrepancie	s?			X
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Recei	pt / Pres	ervation	1
		Description	pH *	pН	pН	(Presence/Absence)		Comme	nts	
P2405118		6.0 L Ambient Can								
P2405113 P2405113		6.0 L Silonite Can 6.0 L Silonite Can								
F 2403110	5-005.01	6.0 L Silonite Can								
Explain	n any discrepanc	ies: (include lab sample	ID numbers):							

ALS ENVIRONMENTAL

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: MV WTEF Unit 1 Run 1

Client Project ID: MV WTEF

ALS Project ID: P2405118

ALS Sample ID: P2405118-001

Test Code: EPA TO-3 Modified Date Collected: 12/13/24
Instrument ID: HP5890 II/GC8/FID Date Received: 12/18/24
Analyst: Stephanie Reynoso Date Analyzed: 12/26/24

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: AC01564

Initial Pressure (psig): -3.70 Final Pressure (psig): 3.69

Container Dilution Factor: 1.67

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.84	
C ₄ as n-Butane	ND	0.84	
C ₅ as n-Pentane	ND	0.84	
C ₆ as n-Hexane	ND	0.84	
C ₆ + as n-Hexane	ND	5.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: MV WTEF Unit 1 Run 2
Client Project ID: MV WTEF

ALS Project ID: P2405118
ALS Sample ID: P2405118-002

Test Code: EPA TO-3 Modified Date Collected: 12/13/24
Instrument ID: HP5890 II/GC8/FID Date Received: 12/18/24
Analyst: Stephanie Reynoso Date Analyzed: 12/26/24

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: AS01349

Initial Pressure (psig): -2.56 Final Pressure (psig): 3.71

Container Dilution Factor: 1.52

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.76	
C ₄ as n-Butane	ND	0.76	
C ₅ as n-Pentane	ND	0.76	
C ₆ as n-Hexane	ND	0.76	
C ₆ + as n-Hexane	ND	4.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: MV WTEF Unit 1 Run 3

Client Project ID: P2405118

ALS Project ID: P2405118-003

Test Code: EPA TO-3 Modified Date Collected: 12/13/24
Instrument ID: HP5890 II/GC8/FID Date Received: 12/18/24
Analyst: Stephanie Reynoso Date Analyzed: 12/26/24
Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: AS01417

Initial Pressure (psig): -2.87 Final Pressure (psig): 3.75

Container Dilution Factor: 1.56

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.78	_
C ₄ as n-Butane	ND	0.78	
C ₅ as n-Pentane	ND	0.78	
C ₆ as n-Hexane	ND	0.78	
C ₆ + as n-Hexane	ND	4.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Method BlankALS Project ID: P2405118Client Project ID:MV WTEFALS Sample ID: P241226-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 12/26/24
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.50	
C ₄ as n-Butane	ND	0.50	
C ₅ as n-Pentane	ND	0.50	
C ₆ as n-Hexane	ND	0.50	
C ₆ + as n-Hexane	ND	3.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Duplicate Lab Control Sample
Client Project ID: MV WTEF

ALS Project ID: P2405118
ALS Sample ID: P241226-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 12/26/24
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

	Spike Amount	Result		ALS					
Compound	LCS / DLCS	LCS	DLCS	% Recovery		Acceptance	RPD	RPD	Data
-	ppmV	ppmV	ppmV	LCS DLCS		Limits		Limit	Qualifier
Propane	1,000	1,140	1,130	114	113	92-120	0.9	6	
n-Butane	1,000	1,140	1,130	114	113	91-121	0.9	6	
n-Pentane	1,000	1,110	1,100	111	110	89-118	0.9	6	
n-Hexane	1,000	1,170	1,160	117	116	92-125	0.9	6	

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: MV WTEF Unit 1 Run 1

Client Project ID: MV WTEF

ALS Project ID: P2405118

ALS Sample ID: P2405118-001

Test Code: EPA TO-3 Modified Date Collected: 12/13/24
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 12/18/24
Analyst: Stephanie Reynoso Date Analyzed: 1/3/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: AC01564

Initial Pressure (psig): -3.70 Final Pressure (psig): 3.69

Container Dilution Factor: 1.67

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	7.7	2.2	12	3.3	
74-85-1	Ethene	ND	1.1	ND	1.0	
74-84-0	Ethane	ND	1.2	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: MV WTEF Unit 1 Run 2
Client Project ID: MV WTEF

ALS Project ID: P2405118
ALS Sample ID: P2405118-002

Test Code: EPA TO-3 Modified Date Collected: 12/13/24
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 12/18/24
Analyst: Stephanie Reynoso Date Analyzed: 1/3/25

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: AS01349

Initial Pressure (psig): -2.56 Final Pressure (psig): 3.71

Container Dilution Factor: 1.52

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.0	ND	3.0	
74-85-1	Ethene	ND	1.0	ND	0.91	
74-84-0	Ethane	ND	1.1	ND	0.91	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: MV WTEF Unit 1 Run 3

Client Project ID: P2405118

ALS Project ID: P2405118-003

Test Code: EPA TO-3 Modified Date Collected: 12/13/24
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 12/18/24
Analyst: Stephanie Reynoso Date Analyzed: 1/3/25

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: AS01417

Initial Pressure (psig): -2.87 Final Pressure (psig): 3.75

Container Dilution Factor: 1.56

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.0	ND	3.1	_
74-85-1	Ethene	ND	1.1	ND	0.94	
74-84-0	Ethane	ND	1.2	ND	0.94	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Method BlankALS Project ID: P2405118Client Project ID:MV WTEFALS Sample ID: P250103-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID/TCD Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 1/03/25

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	1.3	ND	2.0	_
74-85-1	Ethene	ND	0.69	ND	0.60	
74-84-0	Ethane	ND	0.74	ND	0.60	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

6.0 L Summa Canister

Client Sample ID:Duplicate Lab Control SampleALS Project ID: P2405118Client Project ID:MV WTEFALS Sample ID: P250103-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID/TCD Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 1/03/25

Sampling Media: Test Notes:

		Spike Amount	Re	sult			ALS			
CAS#	Compound	LCS / DLCS	LCS	LCS DLCS % Rec		covery	Acceptance	RPD	RPD	Data
		ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
74-82-8	Methane	7.60	7.87	7.71	104	101	70-130	3	15	
74-85-1	Ethene	7.53	7.66	7.48	102	99	70-130	3	15	
74-84-0	Ethane	7 49	7.81	7 66	104	102	70-130	2	15	

Volume(s) Analyzed:

NA ml(s)

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

LABORATORY REPORT

December 12, 2024

Mark Lanfranco A. Lanfranco and Associates Inc. Unit 101 - 9488 189 St. Surrey, BC V4N 4W7

RE: Metro Van WTE

Dear Mark:

Enclosed are the results of the samples submitted to our laboratory on November 26, 2024. For your reference, these analyses have been assigned our service request number P2404828.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

ALS | Environmental

Shaarazetta.1001113011 12/12/24 0.04 p

for Sue Anderson Project Manager

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

Client: A. Lanfranco and Associates Inc. Service Request No: P2404828

Project: Metro Van WTE

CASE NARRATIVE

The samples were received intact under chain of custody on November 26, 2024 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

C3 through C6 Hydrocarbons, Methane, Ethene and Ethane Analysis

The samples were analyzed per modified EPA Method TO-3 for C3 through >C6 hydrocarbons and methane, ethene and ethane using a gas chromatograph equipped with a flame ionization detector (FID). This procedure is described in laboratory SOP VOA-TO3C1C6. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AIHA-LAP, LLC accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

ALS Environmental

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	https://dec.alaska.gov/spar/csp/lab-approval/list-of-approved-labs	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental-laboratories/index.html	E871020
Louisiana DEQ (NELAP)	https://internet.deq.louisiana.gov/portal/divisions/lelap/accredited-laboratories	203013
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtm	CA01627
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	006-999-456
New Jersey DEP (NELAP)	https://dep.nj.gov/dsr/oqa/certified-laboratories/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oklahoma DEQ (NELAP)	labaccreditation.deq.ok.gov/labaccreditation/	2207
Oregon PHD (NELAP)	https://orelap.state.or.us/searchLabs	4068-012
Pennsylvania DEP	hhttp://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env lab accreditation.html	T104704413
Utah DOH (NELAP)	https://uphl.utah.gov/certifications/environmental-laboratory-certification/	CA016272024 -16
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Container

ID

AS01381

AC02114

AS01627

AC01860

AS00356

AS00880

Pi1

(psig)

-2.63

-4.99

-0.59

-0.32

-2.80

-2.76

Pf1

(psig)

3.73

3.64

3.80

3.80

3.80

3.85

Client: A. Lanfranco and Associates Inc.

Matrix

Air

Air

Air

Air

Air

Air

Date

Collected

11/20/2024

11/20/2024

11/20/2024

11/19/2024

11/19/2024

11/19/2024

Time

Collected

00:00

11:55

13:10

11:11

12:51

14:16

Project ID: Metro Van WTE

Lab Code

P2404828-001

P2404828-002

P2404828-003

P2404828-004

P2404828-005

P2404828-006

Date Received: 11/26/2024

Time Received: 09:48

Client Sample ID

Unit 2 Run 1

Unit 2 Run 2

Unit 2 Run 3

Unit 3 Run 1

Unit 3 Run 2

Unit 3 Run 3

TO-3 Modified - C1C	TO-3 Modified - MEE	
X	X	
X	X	
X	X	
X	X	

Service Request: P2404828

X X

X

X

Air - Chain of Custody Record & Analytical Service Request

Page of _____

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

Requested Turnaround Time in Business Days (Surcharges) please circle

1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-Standard

				1 Day (100%) 2 Day	(75%) 3 Day (30%	1) 4 Day (3378)	5 Day (2076) 10	Day Starte	ALS Contact:		
Ar Lan Aranco	A. Lan Aranco É Associates Two					Project Name Met la Vom VTE Project Number					
Mark Lont		P.O. # / Billing Information							Comments e.g. Actual Preservative or		
604861 2562 Email Address for Result Reporting Mark, Jantzanca Qalan	trans	,com		Sampler (Print & Sign)	Flore Controller ID	Canister	Canister		P'd		specific instructions
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code # - FC #)	Start Pressure "Hg	End Pressure "Hg/psig	Sample Volume	III		
Unit 2 Run 1		2016/24		AS01381		-28	-6		1		
Unit 2 Run2		2016/24	1058155	ACG2114		-27,5	-11		//		
Unit 2 Rum 3		2016/24	12101310	A50 1627		-13	-2		/		
Unit 3 Run 1		19 Nov 24	1011	AC01860		-15	-3		1		
Unit 3 Run 2			116/251	ASQ0386		-29	-3		//		
Unit 3 Run 3		19 NOV24	1319-1416	A500880		-29	-7				
											D to 1 D miles of
Report Tier I - Results (Default if not specified) Tier II (Results + QC Summaries)	Tier II		& Calibration S	summaries) Surcharge	EDD required Y			Chain of INTAC	Custody Sea T BROKEN	l: (Circle) ABSENT	Project Requirements (MRLs, QAPP)
Relinquished by: (Signature)			Date:	Time:	Received by: (Signa	ature) FED	75		Date:	Time:	
Relinquished by: (Signature)	1		Date:	Time: Pa	ageR 5cefv24 by: (Sign:	ature)	==		Date: 11-26 24	Time 948	Cooler / Blank Temperature°C

ALS Environmental Sample Acceptance Check Form

	A. Lanfranco Metro Van W	and Associates Inc.		e Acceptance	<u>-</u>		P2404828			
•	s) received on				Date opened:	11/26/24	by:	ANTHO	ONY.VA	SQUEZ
-				•	-		· -			
		all samples received by ALS		-	-	_			dication	of
compliance	or nonconformity	y. Thermal preservation and	l pH will only be e	valuated either at	the request of th	e client and/or as requi	red by the metho	d/SOP. Yes	No	N/A
1	Wana gammle	o aantainana maanaalee	montrod with ali	ant samula ID	9			$\overline{\mathbf{x}}$	<u>No</u> □	
1	-	e containers properly a containers arrive in go		ient sample 1D						
2	•	9		0				X		
3		of-custody papers use			0			X		
4	_	container labels and/o			ers?			X		
5	_	volume received adeq	•	is?				X		
6	-	within specified holding	_					$\overline{\times}$		
7	Was proper t	emperature (thermal	preservation) o	f cooler at reco	eipt adhered t	to?				X
8	Were custod	y seals on outside of c	ooler/Box/Con	tainer?					\boxtimes	
	.,	Location of seal(s)?					Sealing Lid?			X
	Were signatu	are and date included?					Staring Livi			X
	Were seals in									X
9		ers have appropriate p	recervation a	ccording to me	ethod/SOP or	Client specified in	formation?			×
		ent indication that the		_		Chefit specified if	normation.			\boxtimes
		vials checked for prese	_		escr ved:					\boxtimes
	· ·				mmla mII and	if managemy alter	:+9			X
10		nt/method/SOP require	•		шріе рн апа	ii necessary after	11.7			
10	Tubes:	Are the tubes cap	-							\boxtimes
11	Badges:	Are the badges p								X
		Are dual bed bad				intact?				X
12	Lab Notificat	•	I were alerted of		•					X
13	Client Notific	cation: Client has been r	notified regarding	g HT exceedance	es and/or other	CoC discrepancies	?			X
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Recei	ot / Pres	ervatior	
	- · · ·	Description	pH *	pН	pН	(Presence/Absence)		Comme		
P2404828	3-001.01	6.0 L Silonite Can								
P2404828	3-002.01	6.0 L Ambient Can								
P2404828		6.0 L Silonite Can								
P2404828		6.0 L Ambient Can								
P2404828		6.0 L Silonite Can								
P2404828	3-006.01	6.0 L Silonite Can								
Explain	n any discrepan	cies: (include lab sample	ID numbers):							

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1

Client Project ID: P2404828

Client Project ID: Metro Van WTE

ALS Project ID: P2404828-001

Test Code: EPA TO-3 Modified Date Collected: 11/20/24
Instrument ID: HP5890 II/GC8/FID Date Received: 11/26/24
Analyst: Braden Kalous Date Analyzed: 12/4/24

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: AS01381

Initial Pressure (psig): -2.63 Final Pressure (psig): 3.73

Container Dilution Factor: 1.53

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.77	
C ₄ as n-Butane	ND	0.77	
C ₅ as n-Pentane	ND	0.77	
C ₆ as n-Hexane	ND	0.77	
C ₆ + as n-Hexane	ND	4.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: Metro Van WTE

ALS Project ID: P2404828

ALS Sample ID: P2404828-002

Test Code: EPA TO-3 Modified Date Collected: 11/20/24
Instrument ID: HP5890 II/GC8/FID Date Received: 11/26/24
Analyst: Braden Kalous Date Analyzed: 12/4/24

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: AC02114

Initial Pressure (psig): -4.99 Final Pressure (psig): 3.64

Container Dilution Factor: 1.89

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.95	
C ₄ as n-Butane	ND	0.95	
C ₅ as n-Pentane	ND	0.95	
C ₆ as n-Hexane	ND	0.95	
C ₆ + as n-Hexane	ND	5.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: P2404828

ALS Project ID: P2404828-003

ALS Sample ID: P2404828-003

Test Code: EPA TO-3 Modified Date Collected: 11/20/24
Instrument ID: HP5890 II/GC8/FID Date Received: 11/26/24
Analyst: Braden Kalous Date Analyzed: 12/4/24

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: AS01627

Initial Pressure (psig): -0.59 Final Pressure (psig): 3.80

Container Dilution Factor: 1.31

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.66	
C ₄ as n-Butane	ND	0.66	
C ₅ as n-Pentane	ND	0.66	
C ₆ as n-Hexane	ND	0.66	
C ₆ + as n-Hexane	ND	3.9	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2404828
Client Project ID: Metro Van WTE ALS Sample ID: P2404828-004

Test Code: EPA TO-3 Modified Date Collected: 11/19/24
Instrument ID: HP5890 II/GC8/FID Date Received: 11/26/24
Analyst: Stephanie Reynoso Date Analyzed: 12/6/24

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: AC01860

Initial Pressure (psig): -0.32 Final Pressure (psig): 3.80

Container Dilution Factor: 1.29

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.65	
C ₄ as n-Butane	ND	0.65	
C ₅ as n-Pentane	ND	0.65	
C ₆ as n-Hexane	ND	0.65	
C ₆ + as n-Hexane	ND	3.9	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: Metro Van WTE

ALS Project ID: P2404828

ALS Sample ID: P2404828-005

Test Code: EPA TO-3 Modified Date Collected: 11/19/24
Instrument ID: HP5890 II/GC8/FID Date Received: 11/26/24
Analyst: Stephanie Reynoso Date Analyzed: 12/6/24

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: AS00356

Initial Pressure (psig): -2.80 Final Pressure (psig): 3.80

Container Dilution Factor: 1.55

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.78	
C ₄ as n-Butane	ND	0.78	
C ₅ as n-Pentane	ND	0.78	
C ₆ as n-Hexane	ND	0.78	
C ₆ + as n-Hexane	ND	4.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: P2404828

ALS Project ID: P2404828

ALS Sample ID: P2404828-006

Test Code: EPA TO-3 Modified Date Collected: 11/19/24
Instrument ID: HP5890 II/GC8/FID Date Received: 11/26/24
Analyst: Stephanie Reynoso Date Analyzed: 12/6/24

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: AS00880

Initial Pressure (psig): -2.76 Final Pressure (psig): 3.85

Container Dilution Factor: 1.55

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.78	
C ₄ as n-Butane	ND	0.78	
C ₅ as n-Pentane	ND	0.78	
C ₆ as n-Hexane	ND	0.78	
C ₆ + as n-Hexane	ND	4.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Method Blank
Client Project ID: Metro Van WTE

ALS Project ID: P2404828
ALS Sample ID: P241204-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Braden Kalous Date Analyzed: 12/04/24

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 1.0 ml(s)

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.50	
C ₄ as n-Butane	ND	0.50	
C ₅ as n-Pentane	ND	0.50	
C ₆ as n-Hexane	ND	0.50	
C ₆ + as n-Hexane	ND	3.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Method Blank
Client Project ID: Metro Van WTE

ALS Project ID: P2404828
ALS Sample ID: P241206-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 12/06/24
Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 1.0 ml(s)

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.50	
C ₄ as n-Butane	ND	0.50	
C ₅ as n-Pentane	ND	0.50	
C ₆ as n-Hexane	ND	0.50	
C ₆ + as n-Hexane	ND	3.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Duplicate Lab Control Sample
Client Project ID: P2404828
ALS Project ID: P241204-DLCS
ALS Sample ID: P241204-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Braden Kalous Date Analyzed: 12/04/24
Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

	Spike Amount	Re	sult			ALS			
Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
	ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
Propane	1,000	1,080	1,090	108	109	92-120	0.9	6	
n-Butane	1,000	1,090	1,090	109	109	91-121	0	6	
n-Pentane	1,000	1,060	1,060	106	106	89-118	0	6	
n-Hexane	1,000	1,110	1,110	111	111	92-125	0	6	

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Duplicate Lab Control Sample
Client Project ID: P2404828
ALS Project ID: P241206-DLCS
ALS Sample ID: P241206-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 12/06/24
Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

	Spike Amount	Re	sult			ALS			
Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
	ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
Propane	1,000	1,140	1,120	114	112	92-120	2	6	
n-Butane	1,000	1,150	1,130	115	113	91-121	2	6	
n-Pentane	1,000	1,120	1,100	112	110	89-118	2	6	
n-Hexane	1,000	1,170	1,150	117	115	92-125	2	6	

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1

Client Project ID: P2404828

Client Project ID: Metro Van WTE

ALS Project ID: P2404828-001

Test Code:EPA TO-3 ModifiedDate Collected: 11/20/24Instrument ID:HP5890A/GC10/FID/TCDDate Received: 11/26/24Analyst:Stephanie ReynosoDate Analyzed: 12/5/24

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: AS01381

Initial Pressure (psig): -2.63 Final Pressure (psig): 3.73

Container Dilution Factor: 1.53

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.0	ND	3.1	
74-85-1	Ethene	ND	1.1	ND	0.92	
74-84-0	Ethane	ND	1.1	ND	0.92	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: Metro Van WTE

ALS Project ID: P2404828

ALS Sample ID: P2404828-002

Test Code: EPA TO-3 Modified Date Collected: 11/20/24
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 11/26/24
Analyst: Stephanie Reynoso Date Analyzed: 12/5/24

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: AC02114

Initial Pressure (psig): -4.99 Final Pressure (psig): 3.64

Container Dilution Factor: 1.89

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.5	ND	3.8	
74-85-1	Ethene	ND	1.3	ND	1.1	
74-84-0	Ethane	ND	1.4	ND	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: P2404828

ALS Project ID: P2404828-003

ALS Sample ID: P2404828-003

Test Code: EPA TO-3 Modified Date Collected: 11/20/24
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 11/26/24
Analyst: Stephanie Reynoso Date Analyzed: 12/5/24

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: AS01627

Initial Pressure (psig): -0.59 Final Pressure (psig): 3.80

Container Dilution Factor: 1.31

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	1.8	1.7	2.7	2.6	
74-85-1	Ethene	ND	0.90	ND	0.79	
74-84-0	Ethane	ND	0.97	ND	0.79	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2404828
Client Project ID: Metro Van WTE ALS Sample ID: P2404828-004

Test Code:EPA TO-3 ModifiedDate Collected: 11/19/24Instrument ID:HP5890A/GC10/FID/TCDDate Received: 11/26/24Analyst:Stephanie ReynosoDate Analyzed: 12/5/24

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: AC01860

Initial Pressure (psig): -0.32 Final Pressure (psig): 3.80

Container Dilution Factor: 1.29

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.2	1.7	3.4	2.6	
74-85-1	Ethene	ND	0.89	ND	0.77	
74-84-0	Ethane	ND	0.95	ND	0.77	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: Metro Van WTE

ALS Project ID: P2404828

ALS Sample ID: P2404828-005

Test Code:EPA TO-3 ModifiedDate Collected: 11/19/24Instrument ID:HP5890A/GC10/FID/TCDDate Received: 11/26/24Analyst:Stephanie ReynosoDate Analyzed: 12/5/24

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: AS00356

Initial Pressure (psig): -2.80 Final Pressure (psig): 3.80

Container Dilution Factor: 1.55

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.0	ND	3.1	_
74-85-1	Ethene	ND	1.1	ND	0.93	
74-84-0	Ethane	ND	1.1	ND	0.93	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: P2404828

ALS Project ID: P2404828

ALS Sample ID: P2404828-006

Test Code: EPA TO-3 Modified Date Collected: 11/19/24
Instrument ID: HP5890A/GC10/FID/TCD Date Received: 11/26/24
Analyst: Stephanie Reynoso Date Analyzed: 12/5/24

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: AS00880

Initial Pressure (psig): -2.76 Final Pressure (psig): 3.85

Container Dilution Factor: 1.55

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	2.0	ND	3.1	_
74-85-1	Ethene	ND	1.1	ND	0.93	
74-84-0	Ethane	ND	1.1	ND	0.93	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

6.0 L Silonite Canister

Client Sample ID: Method Blank
Client Project ID: Metro Van WTE

ALS Project ID: P2404828
ALS Sample ID: P241205-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID/TCD Date Received: NA
Analyst: Stephanie Reynoso Date Analyzed: 12/05/24

Test Notes:

Sampling Media:

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	1.3	ND	2.0	_
74-85-1	Ethene	ND	0.69	ND	0.60	
74-84-0	Ethane	ND	0.74	ND	0.60	

Volume(s) Analyzed:

0.50 ml(s)

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Duplicate Lab Control SampleALS Project ID: P2404828Client Project ID:Metro Van WTEALS Sample ID: P241205-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID/TCD Date Received: NA

Analyst: Stephanie Reynoso Date Analyzed: 12/05/24
Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

CAS#	Compound	Spike Amount	1		0/ Do	ALS % Recovery Acceptance RPD				Data
CAS#	Compound	ppmV	ppmV	ppmV	LCS	DLCS	Acceptance Limits	KPD	RPD Limit	Qualifier
		ppiliv	ppmv	ppmv	LCS	DLCS	Lillius		LIIIII	Qualifier
74-82-8	Methane	7.60	7.50	6.87	99	90	70-130	10	15	
74-85-1	Ethene	7.53	7.61	7.04	101	93	70-130	8	15	
74-84-0	Ethane	7.49	7.77	7.13	104	95	70-130	9	15	

Appendix B - Particulate Analysis

Client:Metro VancouverSample Date:Nov 18-20 & Dec 13, 2024Source:Units 1, 2, and 3Location:WTE (Burnaby, B.C)

A. Lanfranco & Associates Standard Operating Procedure:

SOP 1.2.1 Gravimetric determination of total particulate matter

 •		
	lection	

Filter Collection:						
Test #	Initi	al	Final	Net	Blank	
				Diference	Adjusted	
	(gram	s)	(grams)	(grams)	(grams)	
Unit 1 Blank	0.444	18	0.4450	0.0002		
Unit 1 Run 1	0.446		0.4463		ND	
Unit 1 Run 2	0.448		0.4489	0.0002	ND	
Unit 1 Run 3	0.446		0.4470		ND	
Unit 2 Blank	0.471	10	0.4710	0.0000		
Unit 2 Run 1	0.47		0.4710		ND	
Unit 2 Run 2	0.449		0.4720	-0.0004	ND	
Unit 2 Run 3	0.446		0.4458	-0.0003	ND	
Unit 3 Blank	0.475	-0	0.4758	0.0000		
Unit 3 Run 1	0.475		0.4756	0.0000 0.0018	0.0018	
Unit 3 Run 2	0.467		0.4770	0.0015	0.0015	
Unit 3 Run 3	0.472		0.4740	0.0015	0.0015	
Front Half Washings:						
Test #	Initi	al	Final	Net	Blank	
				Diference	Adjusted	
	(gram	s)	(grams)	(grams)	(grams)	
Unit 1 Blank	125.744	19	125.7448	-0.0001		
Unit 1 Run 1	118.930		118.9297	-0.0007	ND	
Unit 1 Run 2	122.244		122.2441	-0.0001	ND	
Unit 1 Run 3	104.450		104.4500	-0.0005	ND	
Unit 2 Blank	96.055	53	96.0535	-0.0018		
Unit 2 Run 1	118.570		118.5688	-0.0015	0.0003	
Unit 2 Run 2	110.959		110.9585	-0.0007	0.0011	
Unit 2 Run 3	86.477		86.4771	-0.0007	0.0011	
Heit O Disale	440.00	10	440 2200	0.0040		
Unit 3 Blank	119.331		119.3299	-0.0019	0.0004	
Unit 3 Run 1	123.758		123.7570	-0.0015	0.0004	
Unit 3 Run 2 Unit 3 Run 3	125.086 117.347		125.0857 117.3460	-0.0007 -0.0017	0.0012 0.0002	
Task	Unit	Personnel		Date	Quality Control	Y/N
Fiter Recovery:	Unit 1	J. Ching		12-13-Dec-24	Adequate PW volume:	Y
	Unit 2	J. Ching		19-20-Nov-24	No sample leakage:	Y
	Unit 3	J. Ching		18-19-Nov-24	Filter not compromised:	Y
PW Initial Analysis:	Unit 1	C. De La O		16-Dec-24		
	Unit 2	J. Ching		22-Nov-24		
	Unit 3	J. Ching		22-Nov-24		
PW, FilterFinal Analysis:	Unit 1	J. Ching		18-Dec-24		
	Unit 2	J. Ching		29-Nov-24		
	Unit 3	J. Ching		29-Nov-24		
Data entered to computer:	All	C. Lanfranco		6-Jan-24		

Comments:

No problems encountered in sample analysis.

Your Project #: MVWTE

Site#: C4A1686

Site Location: BURNABY,BC

Your C.O.C. #: C4A1686-ONTV-01-01

Attention: Shanaz Akbar

Bureau Veritas 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2025/01/03

Report #: R8465817

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4BJ246 Received: 2024/12/17, 09:12

Sample Matrix: Tedlar Bag # Samples Received: 3

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Nitrous Oxide	3	N/A	2024/12/17	7 CAM SOP-00203	GC/ECD

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: MVWTE

Site#: C4A1686

Site Location: BURNABY,BC

Your C.O.C. #: C4A1686-ONTV-01-01

Attention: Shanaz Akbar

Bureau Veritas 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2025/01/03

Report #: R8465817 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4BJ246

Received: 2024/12/17, 09:12

Encryption Key

Julian Tong Project Manager Assistant 03 Jan 2025 16:48:59

Please direct all questions regarding this Certificate of Analysis to:

Julian Tong, Project Manager Assistant Email: Julian.Tong@bureauveritas.com

Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Bureau Veritas Job #: C4BJ246 Report Date: 2025/01/03 Bureau Veritas

Client Project #: MVWTE
Site Location: BURNABY,BC

COMPRESSED GAS PARAMETERS (TEDLAR BAG)

Bureau Veritas ID		ALXF44	ALXF44	ALXF45	ALXF46		
a P Data		2024/12/13	2024/12/13	2024/12/13	2024/12/13		
Sampling Date		09:15	09:15	10:53	12:10		
COC Number		C4A1686-ONTV-01-01	C4A1686-ONTV-01-01	C4A1686-ONTV-01-01	C4A1686-ONTV-01-01		
	UNITS	DCC147-UNIT 1 BAG 1	DCC147-UNIT 1 BAG 1 Lab-Dup	DCC148-UNIT 1 BAG 2	DCC149-UNIT 1 BAG 3	RDL	QC Bato
Gas							
Nitrous Oxide	ppmy	5.5	5.3	6.2	5.3	0.1	9854213

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas Job #: C4BJ246

Report Date: 2025/01/03

Bureau Veritas

Client Project #: MVWTE

Site Location: BURNABY,BC

TEST SUMMARY

Bureau Veritas ID: ALXF44

Sample ID: DCC147-UNIT 1 BAG 1

Matrix: Tedlar Bag

Collected:

2024/12/13

Shipped: Received:

2024/12/17

Date Analyzed Analyst Extracted Test Description Instrumentation Batch 9854213 N/A 2024/12/17 Cathy Li Nitrous Oxide GC/ECD

Bureau Veritas ID: Sample ID:

ALXF44 Dup

DCC147-UNIT 1 BAG 1

Matrix: **Tedlar Bag** Collected:

2024/12/13

Shipped: Received:

2024/12/17

Extracted Date Analyzed Analyst Batch **Test Description** Instrumentation N/A 2024/12/17 Cathy Li GC/ECD 9854213 Nitrous Oxide

Bureau Veritas ID: ALXF45

DCC148-UNIT 1 BAG 2

Sample ID: Tedlar Bag Matrix:

Collected:

2024/12/13

Shipped: Received:

2024/12/17

Extracted **Date Analyzed Analyst** Instrumentation Batch **Test Description** GC/ECD 9854213 N/A 2024/12/17 Cathy Li Nitrous Oxide

Bureau Veritas ID: ALXF46

Sample ID: DCC149-UNIT 1 BAG 3

Matrix: Tedlar Bag

Collected: 2024/12/13

Shipped:

Received: 2024/12/17

Extracted **Date Analyzed Analyst** Instrumentation Batch **Test Description** 2024/12/17 Cathy Li GC/ECD 9854213 N/A Nitrous Oxide

Bureau Veritas
Client Project #: MVWTE

Site Location: BURNABY,BC

GENERAL COMMENTS

Sample were analy	sed 4 days aft	er the date of sampli	ng. The recommended	holding time is 2 days.
-------------------	----------------	-----------------------	---------------------	-------------------------

Results relate only to the items tested.

Bureau Veritas Job #: C4BJ246 Report Date: 2025/01/03

QUALITY ASSURANCE REPORT

Bureau Veritas Client Project #: MVWTE

Client Project #: MVWTE
Site Location: BURNABY,BC

			Method Blani	ank	RPD	
QC Batch	Parameter	Date	Value	UNITS	Value (%)	QC Limits
9854213	Nitrous Oxide	2024/12/17	<0.1	hmdd	NC	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Bureau Veritas Job #: C4BJ246 Report Date: 2025/01/03 Bureau Veritas Client Project #: MVWTE

Site Location: BURNABY,BC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Tom Mitchell, B.Sc, Supervisor, Compressed Gases

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Your Project #: MVWTE Site#: BURNABY, BC Site Location: C494906

Your C.O.C. #: C494906-ONTV-01-01

Attention: Shanaz Akbar

Bureau Veritas 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2024/11/27

Report #: R8422098 Version: 2 - Revision

CERTIFICATE OF ANALYSIS - REVISED REPORT

BUREAU VERITAS JOB #: C4AH840 Received: 2024/11/22, 09:11

Sample Matrix: Tedlar Bag # Samples Received: 6

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Nitrous Oxide	6	N/A	2024/11/2	2 CAM SOP-00203	GC/ECD

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: MVWTE Site#: BURNABY, BC Site Location: C494906

Your C.O.C. #: C494906-ONTV-01-01

Attention: Shanaz Akbar

Bureau Veritas 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2024/11/27

Report #: R8422098 Version: 2 - Revision

CERTIFICATE OF ANALYSIS - REVISED REPORT

BUREAU VERITAS JOB #: C4AH840

Received: 2024/11/22, 09:11

Encryption Key

Julian Tong Project Manager Assistan

Please direct all questions regarding this Certificate of Analysis to:

Julian Tong, Project Manager Assistant Email: Julian.Tong@bureauveritas.com

Phone# (905) 817-5700

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Bureau Veritas Job #: C4AH840 Report Date: 2024/11/27

Bureau Veritas

Client Project #: MVWTE Site Location: C494906

COMPRESSED GAS PARAMETERS (TEDLAR BAG)

Bureau Veritas ID		AJPT15	AJPT15		AJPT18		
Sampling Date		2024/11/19 11:05	2024/11/19 11:05		2024/11/19 12:51		
COC Number		C494906-ONTV-01-01	C494906-ONTV-01-01		C494906-ONTV-01-01		
	UNITS	DAU611-UNIT 3 BAG 1	DAU611-UNIT 3 BAG 1 Lab-Dup	RDL	DAU612-UNIT 3 BAG 2	RDL	QC Batch
Gas							
Nitrous Oxide	ppmv	4.3	4.2	0.25	3.7	0.1	9783693
RDL = Reportable Detec							

Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas ID		AJPT19	AJPT20	AJPT22	AJPT24		
		2024/11/19	2024/11/20	2024/11/20	2024/11/20		
Sampling Date		14:11	10:39	11:55	13:10		
COC Number		C494906-ONTV-01-01	C494906-ONTV-01-01	C494906-ONTV-01-01	C494906-ONTV-01-01		
		DAU613-UNIT 3 BAG	DAU614-UNIT 2 BAG	DAU615-UNIT 2 BAG	DAU616-UNIT 2 BAG	PDI	QC Batch
	UNITS	3	1	2	3	I.O.	QC Date
Gas							
Nitrous Oxide	ppmv	4.1	4.8	3.3	3.3	0.1	9783693
RDL = Reportable Detec	tion Limit						
QC Batch = Quality Cont	rol Batch						

Bureau Veritas Job #: C4AH840

Report Date: 2024/11/27

Bureau Veritas

Client Project #: MVWTE Site Location: C494906

TEST SUMMARY

Bureau Veritas ID: AJPT15

Sample ID: DAU611-UNIT 3 BAG 1

Matrix: Tedlar Bag

Collected: 2 Shipped:

2024/11/19

Received: 2024/11/22

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Nitrous Oxide
 GC/ECD
 9783693
 N/A
 2024/11/22
 Marina Tsoy

Bureau Veritas ID: AJPT15 Dup

Sample ID: DAU611-UNIT 3 BAG 1

Matrix: Tedlar Bag

Collected: 202 Shipped:

2024/11/19

Received: 2024/11/22

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Nitrous Oxide
 GC/ECD
 9783693
 N/A
 2024/11/22
 Marina Tsoy

Bureau Veritas ID: AJPT18

Sample ID: DAU612-UNIT 3 BAG 2

Matrix: Tedlar Bag

Collected: 2024/11/19

Shipped: Received: 2024/11/22

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Nitrous Oxide
 GC/ECD
 9783693
 N/A
 2024/11/22
 Marina Tsoy

Bureau Veritas ID: AJPT19

Sample ID: DAU613-UNIT 3 BAG 3

Matrix: Tedlar Bag

Collected: 2024/11/19

Shipped:

Received: 2024/11/22

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Nitrous Oxide
 GC/ECD
 9783693
 N/A
 2024/11/22
 Marina Tsoy

Bureau Veritas ID: AJPT20

Sample ID: DAU614-UNIT 2 BAG 1

Matrix: Tedlar Bag

Collected: 2024/11/20

Shipped:

Received: 2024/11/22

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Nitrous Oxide
 GC/ECD
 9783693
 N/A
 2024/11/22
 Marina Tsoy

Bureau Veritas ID: AJPT22

Sample ID: DAU615-UNIT 2 BAG 2

Matrix: Tedlar Bag

Collected: 2

2024/11/20

Shipped: Received: 2024/11/22

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystNitrous OxideGC/ECD9783693N/A2024/11/22Marina Tsoy

Bureau Veritas ID: AJPT24

Sample ID: DAU616-UNIT 2 BAG 3

Matrix: Tedlar Bag

Collected: 2024/11/20

Shipped: Received:

2024/11/22

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Nitrous Oxide
 GC/ECD
 9783693
 N/A
 2024/11/22
 Marina Tsoy

Bureau Veritas Job #: C4AH840 Report Date: 2024/11/27 Bureau Veritas Client Project #: MVWTE Site Location: C494906

GENERAL COMMENTS

Revised report - corrected job number

Sample AJPT15 [DAU611-UNIT 3 BAG 1]: The sample was analysed 3 days after the date of sampling. The recommended holding time is 2 days.

Sample AJPT18 [DAU612-UNIT 3 BAG 2]: The sample was analysed 3 days after the date of sampling. The recommended holding time is 2 days.

Sample AJPT19 [DAU613-UNIT 3 BAG 3]: The sample was analysed 3 days after the date of sampling. The recommended holding time is 2 days.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Bureau Veritas Client Project #: MVWTE

Site Location: C494906

RPD Value (%) S UNITS ppmv **Method Blank** Value **0**.1 2024/11/22 Date Nitrous Oxide Parameter N/A = Not Applicable QC Batch 9783693

QC Limits N/A

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Report Date: 2024/11/27

Bureau Veritas

Client Project #: MVWTE

Site Location: C494906

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Tom Mitchell, B.Sc, Supervisor, Compressed Gases

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

BUREAU VERITAS INTERLAB CHAIN OF CUSTODY RECORD

Page 01 of 01 COC# C494906-ONTV-01-01	福島を かかがり うちを聞 先		22-Nov-24 09:11	Colby Coutu		C4AH840		AIK-001		ADDITIONAL SAMPLE INFORMATION	(6.01)	(0.03)	(10.4)	(0.01)	(10.01)	(P: 01)				The state of the s	150	Rush Required		2024/12/05	Date Required	Phense inform us if nush charges will be incurred.	See Castagodo	Bureau Veritas Job #	TIME: (tH:MM) Samples Labels Verified	V
BUREAU VERITAS INTERLAB CHAIN OF CUSTODY RECORD	ANALYSIS RECHERTED	O TOTAL COLONIA																		SPECIAL INSTALLCTIONS	shmediately if you are not accedited for						COOLER ID:	Custody Seal Present Temp: Custody Seal Infact Cooling Media Present (*C)	RECEIVED BY: (SKGW & PRINT)	Jan Committee
BUREAU VI					T	Т	qns 6	0-1.9	Ind. on Report? Yes / No N	TIME SAMPLER SAMPLER INITIALS CONT.	╄	1251 1 X	+	+	+	13:10 1 X				REGULATORY CRITERIA								It / Temp:	TIME: (HH:MM) RECEIVED BY:	16.35
is Campobello reilo Road ON, LSN 21.8 7-5700			Columbia, VSG 1KS		Customersolationswest@b			(1301)		MATRIX SAMPLED SAM	AIR 2024/11/19 11	AJR 2024/11/19 12	AJR 2024/11/19 14	AIR 2024/11/20 10	AIR 2024/11/20 11	AIR 2024/11/20 13				REGULATI							COOLERID:	Custody Seal Present Custody Seal Intact Coolin, Media Present	Y/MM/DO)	2024/11/21
Sent to: Burrau Veritas Campobelio 6740 Campobelio Road Mississauga, OM, LSN 21.8 Tel: (905) 817-5700	DRMATION	Bureau Veritas	4606 Canada Way, Burnaby, British Colum	Ne: Shanaz Akbar	Shanaz Akbar@bureauveritas.com, Customensokutionswest@launeauweritas.com		C494906	TO: A. LANFRANCO & ASSOCIATES INC. (1301)	t To: A. LANFRANCO & ASSOCIATES INC. (1301)		DAUG11-UNIT 3 BAG 1	DAU612-UNIT 3 BAG 2	DAU613-UNIT 3 BAG 3	DAUG14-UNIT 2 BAG 1	DAU615-UNIT 2 BAG 2	DAU616-UNIT 2 BAG 3				. XC					PO/AFE, TASK ORDER/SERVICE ORDER, LINE ITEM:		64 352	Present Temp: Intact (°C)	D BY: (SIGN & PRINT)	The state of the s
	KEPURT INFORMATION	Company:	Address:	Contact Name:	Email:	Phone:	BV Project #.	Client Involce To:	Client Report To:	vi	-	2 DAU6	3 DAU6	4 DAU6	5 DAU6	-	1	01	97	SITE LOCATION:	BURNABY, BC	SITE #:	PROJECT #:	MVWTE	PO/AFE, TAS		COOKER ID:	Custody Seal Present Custody Seal Intact Cooling Media Present	RELINQUISH	L ALPRED MGA.

APPENDIX - D COMPUTER GENERATED RESULTS

Client: Metro Vancouver Date: 12-Dec-24

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time:** 11:20 - 13:22

Concentrations:

Particulate 0.04 mg/dscm 0.00002 gr/dscf

0.02 mg/Acm 0.00001 gr/Acf

Emission Rates:

Particulate 0.003 Kg/hr 0.007 lb/hr

Flue Gas Characteristics:

Flow 1196 dscm/min 42222 dscf/min

 19.93 dscm/sec
 704 dscf/sec

 2101 Acm/min
 74199 Acf/min

Velocity 13.748 m/sec 45.10 f/sec

Temperature 153.1 oC 307.7 oF

Moisture 13.3 %

Gas Analysis 9.7 % O2

10.6 % CO2

30.080 Mol. Wt (g/gmole) Dry 28.470 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.2872 dscm 80.771 dscf

Sample Time 120.0 minutes Isokineticity 101.1 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 12-Dec-24

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time**: 11:10 - 13:15

Control Unit (Y)	0.9812	Collection:		Gas Analys	is (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.2815	Filter (grams) 0.00005		CO2	O2	Impinger 1	159.0
Pitot Factor	0.8493	Washings (grams) 0.00005	Traverse 1	10.73	9.53	Impinger 2	76.0
Baro. Press. (in. Hg)	29.78		Traverse 2	10.40	9.93	Impinger 3	9.0
Static Press. (in. H20)	-16.50	Total (grams) 0.00010				Impinger 4	2.0
Stack Height (ft)	30					Impinger 5	3.0
Stack Diameter (in.)	70.90					Impinger 6	2.0
Stack Area (sq.ft.)	27.417			10.57	9.73	Gel	13.0
Minutes Per Reading	5.0						
Minutes Per Point	5.0					Gain (grams)	264.0

					Dry Gas	Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Traverse 1	0.0	732.135								
1	5.0	734.980	0.29	1.06	60	60	2.5	303	1.5	100.6
2	10.0	737.670	0.26	0.94	60	60	2.5	308	4.7	100.8
3	15.0	740.660	0.32	1.16	61	61	3	309	8.4	100.9
4	20.0	743.750	0.34	1.24	62	62	3	310	12.5	101.1
5	25.0	746.780	0.33	1.20	63	63	3	310	17.7	100.4
6	30.0	749.950	0.35	1.28	64	64	3	311	25.2	101.9
7	35.0	753.700	0.50	1.82	64	64	3	311	45.6	101.0
8	40.0	757.690	0.56	2.05	66	66	3	310	53.2	101.1
9	45.0	761.550	0.52	1.91	66	66	3.5	310	58.3	101.5
10	50.0	765.350	0.50	1.84	67	67	3.5	310	62.5	101.7
11	55.0	768.980	0.46	1.69	67	67	3	309	66.1	101.1
12	60.0	772.530	0.44	1.62	67	67	3	308	69.4	101.1
			•	*	•		•		*	
Traverse 2	0.0	772.530								
1	5.0	775.490	0.30	1.11	68	68	3	305	1.5	101.5
2	10.0	778.570	0.33	1.22	67	67	3	307	4.7	101.1
3	15.0	781.700	0.34	1.25	67	67	3	308	8.4	101.3
4	20.0	784.860	0.35	1.29	68	68	3	308	12.5	100.6
5	25.0	788.260	0.40	1.48	68	68	3	306	17.7	101.2
6	30.0	791.740	0.42	1.56	68	68	3	305	25.2	101.0
7	35.0	795.580	0.51	1.89	68	68	3	306	45.6	101.3
8	40.0	799.530	0.54	2.00	69	69	3	306	53.2	101.1
9	45.0	803.330	0.50	1.85	69	69	3	307	58.3	101.1
10	50.0	807.050	0.48	1.78	70	70	3	306	62.5	100.7
11	55.0	810.670	0.45	1.67	70	70	3	306	66.1	101.2
12	60.0	814.251	0.44	1.64	70	70	3	305	69.4	101.2
			-	-						
Average:			0.414	1.523	66.2	66.2	3.0	307.7		101.1

Client: Metro Vancouver Date: 13-Dec-24

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 1 **Run Time:** 8:21 - 10:24

Concentrations:

Particulate 0.04 mg/dscm 0.00002 gr/dscf

0.02 mg/Acm 0.00001 gr/Acf

Emission Rates:

Particulate 0.003 Kg/hr 0.007 lb/hr

Flue Gas Characteristics:

Flow 1185 dscm/min 41832 dscf/min

 19.74 dscm/sec
 697 dscf/sec

 2103 Acm/min
 74252 Acf/min

Velocity 13.758 m/sec 45.14 f/sec

Temperature 154.2 oC 309.5 oF

Moisture 13.5 %

Gas Analysis 9.8 % O2

10.0 % CO2

29.987 Mol. Wt (g/gmole) Dry 28.368 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.2656 dscm 80.010 dscf

Sample Time 120.0 minutes Isokineticity 101.1 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 13-Dec-24 Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals Source: Unit 1 Run Time: 8:21 - 10:24 Control Unit (Y) 0.9812 Collection Gas Analysis (Vol. %): Condensate Collection: 0.2815 Filter (grams) 0.00005 Impinger 1 Impinger 2 169.0 Nozzle Diameter (in.) Pitot Factor 0.8493 Washings (grams) 0.00005 77.0 Baro. Press. (in. Hg) 29.66 Traverse 2 10.20 9.73 Impinger 3 3.0 Total (grams) 0.00010 Static Press. (in. H20) -17.00 Impinger 4 0.0 Stack Height (ft) 30 0.0 Impinger 5 70.90 Stack Diameter (in.) 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 15.5 9.97 9 82 Gain (grams) 265.5 Minutes Per Reading 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 5.0 815.000 101.1 0.41 1.47 303 1.5 818.340 10.0 821.860 0.46 1.64 51 309 101.0 3 15.0 825,450 0.48 1.70 51 51 312 8.4 101.1 20.0 25.0 4 828.960 0.46 1.63 312 12.5 100.9 313 17.7 832.400 0.44 1.56 51 101.2 30.0 835.890).45 1.61 311 101.0 35.0 839.500 0.48 1.72 310 45.6 100.7 40.0 842.920 0.43 310 53.2 100.8 45.0 50.0 55.0 9 846.320 0.42 1.51 310 58.3 101.2 10 849.850 0.45 1.62 309 62.5 101.3 11 853.090 0.38 1.37 58 58 309 66.1 100.9 12 60.0 856.200 0.35 1.27 58 58 5 309 69.4 100.9 Traverse 2 0.0 5.0 856.200 858.980 0.28 1.02 100.5 305 0.98 1.09 10.0 861.700 0.27 59 59 308 4.7 100.1 310 15.0 59 59 864.600 0.30 8.4 101.4 3 20.0 867.250 0.25 0.91 310 101.3 5 25.0 870,200 0.31 1.12 60 60 310 17.7 101.3 6 30.0 873.000 0.28 1.01 60 60 311 25.2 101.2 35.0).54 45.6 101.5 876.900 1.96 310 8 40.0 880.640 0.50 1.82 61 310 101.1 45.0 9 884.450 0.52 1.89 61 61 310 58.3 101.0 50.0 888.100 0.48 1.75 310 10 62.5 100.5 62 55.0 60.0 891.700 0.46 1.68 62 62 309 66.1 101.2 895.275 62 62 12 0.43 1.57 309 69.4 103.9

57.2

57.2

5.4

309.5

101.1

0.410

1.477

Average:

Client: Metro Vancouver Date: 13-Dec-24

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 1 **Run Time:** 10:46 - 12:48

Concentrations:

Particulate0.0 mg/dscm0.0000 gr/dscf

0.0 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.003 Kg/hr 0.006 lb/hr

Flue Gas Characteristics:

Flow 1182 dscm/min 41751 dscf/min

 19.70 dscm/sec
 696 dscf/sec

 2114 Acm/min
 74644 Acf/min

Velocity 13.831 m/sec 45.38 f/sec

Temperature 152.5 oC 306.4 oF

Moisture 14.5 %

Gas Analysis 10.1 % O2

9.4 % CO2

29.903 Mol. Wt (g/gmole) Dry 28.177 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7015 dscm 95.403 dscf

Sample Time 120.0 minutes Isokineticity 102.4 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 13-Dec-24 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 1 **Run Time:** 10:46 - 12:48 Control Unit (Y) 0.9812 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3058 Filter (grams) 0.00005 9.47 Impinger 1 Impinger 2 244.0 Pitot Factor 0.8436 Washings (grams) 0.00005 51.0 Baro. Press. (in. Hg) 29.67 Traverse 2 9.30 10.03 Impinger 3 12.0 Total (grams) 0.00010 Static Press. (in. H20) -17.00 Impinger 4 0.0 Stack Height (ft) 30 20.0 Impinger 5 Stack Diameter (in.) 70.90 0.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 17.0 9 38 10 05 Gain (grams) 344 0 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Time Dry Gas Meter Pitot ^P Traverse / Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 0.0 896.200 0.31 1.56 60 60 301 1.5 102.6 5.0 899,690 0.34 1.71 10.0 903.330 60 60 300 4.7 102.2 3 15.0 906.750 0.30 1.50 60 60 304 8.4 102.4 4 20.0 910.100 0.29 1.45 60 60 309 12.5 102.3 0.30 60 309 17.7 25.0 913.500 1.49 60 102.1 30.0 917.060 0.33 1.64 60 310 25.2 102.1 35.0 921.400 0.49 2.44 60 309 45.6 102.2 40.0 925.880 0.52 2.60 309 53.2 102.3 45.0 930.540 0.56 2.80 307 58.3 102.5 303 301 10 50.0 55.0 935,100 0.53 2.67 62 62 62.5 102.6 939.500 0.49 2.48 62 66.1 102.7 11 12 60.0 943.780 0.46 2.33 63 63 300 69.4 102.8 Traverse 2 943.780 0.0 947.700 0.39 102.3 63 63 10.0 951.750 0.42 2.11 63 308 4.7 102.3 15.0 955.690 0.40 2.00 8.4 102.1 20.0 960.010 0.48 2.40 12.5 102.3 5 25.0 964,250 0.46 2.30 63 63 310 17.7 102.5 6 30.0 968.430 0.45 2.25 63 63 4 311 25.2 102.3 972.700 0.47 2.35 310 45.6 102.2 35.0 40.0 976.990 0.47 2.36 64 310 53.2 102.5

64

64

64

62.1

64

64

64

64

62.1

4

4

3.9

308

305

305

303

306.4

58.3

62.5

66.1

69.4

102.5

102.1

102.1

102.6

102.4

9

10

12

Average:

45.0

50.0

55.0

60.0

981,150

985.110

988.920

992.650

0.44

0.40

0.37

0.35

0.418

2.21

2.02

1.87

1.77

2.095

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 1

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date		13-Dec-24	13-Dec-24	13-Dec-24
Test Time		09:15 - 10:15	10:53 - 11:53	12:10 - 13:10
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	29.66	29.66	29.66
DGM Factor	(Y)	1.0207	1.0207	1.0207
Initial Reading	(m^3)	207.262	207.821	208.445
Final Reading	(m ³)	207.816	208.439	209.041
Temp. Outlet	(Avg. oF)	52.7	51.0	55.3
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.58	0.65	0.62
HF	(mg)	0.053	0.053	0.053
Oxygen	(Vol. %)	9.7	9.8	10.1
HF	(mg/Sm³)	0.091	0.081	0.085
HF	(mg/Sm ³ @ 11% O2)	0.081	0.073	0.078
Moisture	(Vol. %)	13.5	13.5	14.5

Pstd. (in. Hg)

29.92

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

68

Source: Unit 1

Tstd. (oF)

Sample Type: NH₃

Sample Type: Parameter	NH ₃	Test 1	Test 2	Test 3
Test Date Test Time Test Duration	(min.)	13-Dec-24 09:15 - 10:15 60	13-Dec-24 10:53 - 11:53 60	13-Dec-24 12:10 - 13:10 60
Baro. Press.	(in. Hg)	29.66	29.66	29.66
DGM Factor	(Y)	0.9950	0.9950	0.9950
Initial Reading	(m³)	632.516	633.126	633.652
Final Reading	(m³)	633.119	633.646	634.378
Temp. Outlet	(Avg. oF)	50.3	50.7	52.3
Orifice Press.	(∆H in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.62	0.53	0.74
NH ₃	(mg)	1.1	2.4	5.5
Oxygen	(Vol. %)	9.7	9.8	10.1
NH ₃	(mg/Sm³)	1.8	4.4	7.5
NH ₃	(mg/Sm³ @ 11% O2)	1.6	4.0	6.8
Moisture	(Vol. %)	13.5	13.5	14.5

Tstd. (oF) 68 Pstd. (in. Hg) 29.92

Client: Metro Vancouver Date: 19-Nov-24

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 2 **Run Time:** 10:38 - 12:42

Concentrations:

Particulate 0.1 mg/dscm 0.0001 gr/dscf

0.1 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.009 Kg/hr 0.020 lb/hr

Flue Gas Characteristics:

Flow 1192 dscm/min 42102 dscf/min

 19.87 dscm/sec
 702 dscf/sec

 2138 Acm/min
 75511 Acf/min

Velocity 13.991 m/sec 45.90 f/sec

Temperature 148.1 oC 298.5 oF

Moisture 15.8 %

Gas Analysis 10.8 % O2

9.8 % CO2

29.990 Mol. Wt (g/gmole) Dry 28.098 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7392 dscm 96.735 dscf

Sample Time 120.0 minutes Isokineticity 104.1 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 19-Nov-24 Run: Jobsite: WTE (Burnaby, B.C) 1 - Particulate / Metals Source: Unit 2 Run Time: 10:38 - 12:42 Control Unit (Y) 0.9899 Gas Analysis (Vol. %): Condensate Collection: 0.3040 Nozzle Diameter (in.) Filter (grams) 0.00005 9.50 O2 11.00 244.0 Impinger 1 Pitot Factor 0.8483 Washings (grams) 0.00030 Traverse 1 Impinger 2 102.0 Baro. Press. (in. Hg) 29.86 Traverse 2 10.00 10.50 Impinger 3 13.0 Total (grams) 0.00035 Static Press. (in. H20) -19.00 Impinger 4 2.0 Stack Height (ft) 30 4.0 Impinger 5 Stack Diameter (in.) 70.90 Impinger 6 0.0 27.417 Stack Area (sq.ft.) Gel 20.2 Minutes Per Reading 9.75 10.75 Gain (grams) 385.2 5.0 Minutes Per Point 5.0 Dry Gas Temperature Wall Stack Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 934.800 292 105.3 0.38 1.90 49 49 1.5 5.0 938.570 10.0 942.440 0.40 2.00 52 295 105.0 3 15.0 946.170 0.37 1.85 52 302 8.4 105.7 4 20.0 949.740 0.34 1.70 53 305 12.5 105.5 5 0.33 17.7 25.0 953.250 1.65 306 105.1 30.0 956.920 0.36 1.80 308 25.2 105.0 35.0 961.570 0.58 2.91 304 45.6 104.8 40.0 966.420 0.63 3.16 104.9 45.0 971.390 0.66 3.31 58 300 58.3 104.4 10 50.0 976.280 0.64 3.21 295 62.5 104.0 981.090 0.62 3.11 292 11 55.0 66.1 103.9 12 60.0 985.920 0.62 3.11 57 5 290 69.4 104.2 Traverse 2 0.0 985.920 990.330 2.61 290 103.7 5.0 2.51 2 10.0 994.650 0.50 58 58 292 4.7 103.5 58 296 15.0 998.970 0.50 8.4 103.8 20.0 1003.200 0.48 2.40 300 12.5 103.8 5 25.0 1007,430 0.48 2.40 60 60 301 17.7 103.6 6 30.0 1011.620 0.47 2.35 60 60 302 25.2 103.8 35.0 1015.130 0.33 1.65 300 45.6 103.5 40.0 1018.490 0.30 1.50 297 103.4 9 45.0 1021.550 0.25 1.25 60 60 300 58.3 103.5 1.15 50.0 62.5 10 1024.480 0.23 302 103.5 60 60 55.0 1027.350 1.10 62 298 66.1 102.9 60.0 0.22 62 294 12 1030.220 1.10 69.4 102.7 Average: 0.435 2.177 57.3 57.3 4.3 298.5 104.1

Client: Metro Vancouver Date: 20-Nov-24

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 2 **Run Time:** 09:07 - 11:11

Concentrations:

Particulate 0.50 mg/dscm 0.00022 gr/dscf

0.27 mg/Acm 0.00012 gr/Acf

Emission Rates:

Particulate 0.036 Kg/hr 0.080 lb/hr

Flue Gas Characteristics:

Flow 1207 dscm/min 42619 dscf/min

 20.11 dscm/sec
 710 dscf/sec

 2195 Acm/min
 77510 Acf/min

Velocity 14.362 m/sec 47.12 f/sec

Temperature 145.2 oC 293.3 oF

Moisture 16.7 %

Gas Analysis 9.7 % O2

10.5 % CO2

30.069 Mol. Wt (g/gmole) Dry 28.054 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.3010 dscm 81.261 dscf

Sample Time 120.0 minutes Isokineticity 105.9 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 20-Nov-24 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: 09:07 - 11:11 Source: Unit 2 Run Time: Control Unit (Y) 0.9899 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.2818 Filter (grams) 0.00005 CO2 10.00 O2 10.45 225.0 Impinger 1 Pitot Factor 0.8483 Washings (grams) 0.00110 Traverse 1 Impinger 2 Baro. Press. (in. Hg) 29.58 Traverse 2 11.00 9.00 Impinger 3 11.0 Total (grams) 0.00115 Static Press. (in. H20) -19.0 Impinger 4 0.0 Stack Height (ft) 30 3.0 Impinger 5 Stack Diameter (in.) 70.90 Impinger 6 0.0 27.417 Stack Area (sq.ft.) Gel 16.1 10.50 9 73 Gain (grams) 346 1 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 30.599 105.9 1.54 54 54 285 1.5 5.0 33.975 0.40 10.0 37.378 0.41 1.56 293 106.0 3 15.0 40.325 0.31 1.17 54 298 8.4 105.9 54 54 20.0 43.166 0.29 1.09 54 54 300 12.5 105.6 0.31 1.17 17.7 46.100 25.0 299 105.5 30.0 49.244 0.35 1.33 294 105.8 35.0 53.425 0.62 2.36 56 298 45.6 106.1 40.0 57.860 0.70 2.67 53.2 105.8 45.0 62.828 0.87 58 58 297 58.3 106.2 10 50.0 67.777 0.85 3.29 59 59 289 62.5 106.3 72.570 59 59 290 11 55.0 0.80 3.09 66.1 106.1 12 60.0 76.720 0.60 2.32 59 290 69.4 105.9 76.720 Traverse 2 0.0 80.905 0.61 2.32 293 105.9 61 62 10.0 84.878 0.55 2.11 61 62 298 4.7 106.0 300 15.0 89.025 0.60 2.30 8.4 105.9 20.0 92.966 0.54 63 303 106.0 5 25.0 96 855 0.52 2.01 64 64 296 17.7 105.9 6 30.0 100.444 0.44 1.71 65 65 294 25.2 105.8 103.375 0.29 1.14 288 45.6 105.9 35.0 8 40.0 106.048 0.24 0.95 65 65 282 53.2 105.7 9 45.0 108.666 0.23 0.91 65 65 283 58.3 105.8 65 111.155 0.21 290 105.7 10 50.0 0.82 65 62.5 11 55.0 113.759 0.23 0.90 65 65 292 66.1 105.8 60.0 116.190 0.20 0.78 66 66 290 12 69.4 105.6 0.465 Average: 1.789 60.0 60.0 4.8 293.3 105.9

Client: Metro Vancouver Date: 20-Nov-24

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 2 **Run Time:** 11:27 - 13:30

Concentrations:

Particulate0.5 mg/dscm0.0002 gr/dscf

0.3 mg/Acm 0.0001 gr/Acf

Emission Rates:

Particulate 0.03 Kg/hr 0.076 lb/hr

Flue Gas Characteristics:

Flow 1123 dscm/min 39670 dscf/min

 18.72 dscm/sec
 661 dscf/sec

 2053 Acm/min
 72485 Acf/min

Velocity 13.431 m/sec 44.06 f/sec

Temperature 149.1 oC 300.3 oF

Moisture 16.2 %

Gas Analysis 9.5 % O2

11.0 % CO2

30.140 Mol. Wt (g/gmole) Dry 28.172 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.2432 dscm 79.218 dscf

Sample Time 120.0 minutes Isokineticity 105.3 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 20-Nov-24 Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals Unit 2 Run Time: 11:27 - 13:30 Source: Control Unit (Y) 0.9899 Collection Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.2818 Filter (grams) 0.00005 CO2 11.00 Impinger 1 Impinger 2 241.0 Pitot Factor 0.8493 Washings (grams) 0.00110 Traverse 1 Baro. Press. (in. Hg) 29.58 Traverse 2 11.00 9.50 Impinger 3 11.0 Total (grams) 0.0011 Static Press. (in. H20) -19.50 Impinger 4 0.0 Stack Height (ft) 30 1.0 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 14.7 Minutes Per Reading 11.00 9 50 Gain (grams) 325.7 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Traverse / Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 116.500 105.4 0.40 1.54 65 65 4.5 301 1.5 5.0 119,909 4.5 10.0 123.394 0.42 1.62 65 65 303 105.3 3 15.0 126,992 0.45 1.73 65 65 4.5 304 8.4 105.1 4 20.0 130.515 0.43 1.65 65 4.5 304 12.5 105.3 65 4.5 17.7 133.658 0.34 1.31 65 301 25.0 105.3 30.0 136.653 0.31 1.20 65 65 4.5 300 105.0 35.0 139.294 0.24 0.93 65 4.5 300 45.6 105.2 40.0 141.936 0.24 0.93 4.5 301 53.2 105.3 45.0 144.688 0.26 1.01 65 65 4.5 300 58.3 105.3 10 50.0 147.545 0.28 1.09 65 65 4.5 298 62.5 105.3 55.0 11 150.248 0.25 0.97 65 65 4.5 299 66.1 105.4 12 60.0 153.000 0.26 1.01 66 66 4.5 300 69.4 105.1 Traverse 2 0.0 153.000 5.0 156.055 1.24 299 105.2 0.32 66 66 300 301 10.0 159.016 0.30 1.16 66 4 4.7 105.3 161.770 15.0 0.26 1.01 66 8.4 105.3 3 20.0 164.477 66 105.3 5 25.0 167.235 0.26 1.01 66 66 4 300 17.7 105.4 6 30.0 170.338 0.33 1.28 66 66 300 25.2 105.3 35.0 174.865 0.70 2.72 5.5 45.6 105.6 299 40.0 179.560 0.75 2.93 67 67 294 105.5 0.77 9 45.0 184.310 2.98 67 67 5.5 301 58.3 105.8 0.70 188.825 2.70 304 105.6 50.0 5.5 10 62.5 11 55.0 193.175 0.65 2.52 1.75 68 68 5.5 302 66.1 105.2 60.0 196.810 68 5.5 12 0.45 68 298 69.4 105.2 0.401 Average: 1.553 65.9 65.9 3.0 300.3 105.3

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 2

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date Test Time Test Duration	(min.)	20-Nov-24 09:39 - 10:39 60	20-Nov-24 10:55 - 11:55 60	20-Nov-24 12:10 - 13:10 60
Baro. Press.	(in. Hg)	29.60	29.60	29.60
DGM Factor	(Y)	1.0207	1.0207	1.0207
Initial Reading	(m ³)	203.427	204.037	204.662
Final Reading	(m ³)	204.032	204.659	205.254
Temp. Outlet	(Avg. oF)	52.2	59.0	60.5
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.63039	0.64009	0.60716
HF	(mg)	0.053	0.053	0.053
Oxygen	(Vol. %)	10.8	9.7	9.5
HF	(mg/Sm³)	0.084	0.082	0.087
HF	(mg/Sm³ @ 11% O2)	0.081	0.073	0.075
Moisture (isokinetic)	(Vol. %)	15.8	16.7	16.2

*Wet Basis Calculated on moisture from isokinetic tests Tstd. (oF) 68

Pstd. (in. Hg)

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 2

Sample Type: NH_3

Parameter		Test 1	Test 2	Test 3
Test Date Test Time Test Duration	(min.)	20-Nov-24 09:39 - 10:39 60	20-Nov-24 10:55 - 11:55 60	20-Nov-24 12:10 - 13:10 60
Baro. Press.	(in. Hg)	29.60	29.60	29.60
DGM Factor	(Y)	1.0355	1.0355	1.0355
Initial Reading	(m ³)	315.205	315.749	316.247
Final Reading	(m ³)	315.744	316.243	316.786
Temp. Outlet	(Avg. oF)	52.4	57.7	61.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.56969	0.51619	0.56028
NH ₃	(mg)	0.6	0.3	0.1
Oxygen	(Vol. %)	10.8	9.7	9.5
NH ₃	(mg/Sm³)	1.1	0.5	0.1
	(mg/Sm³ @ 11% O2)	1.0	0.4	0.1
Moisture (isokinetic)	(Vol. %)	15.8	16.7	16.2

*Wet Basis Calculated on moisture from isokinetic tests

68

Tstd. (oF)

29.92

Client: Metro Vancouver Date: 18-Nov-24

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 3 **Run Time:** 12:17 - 14:22

Concentrations:

Particulate 1.02 mg/dscm 0.00045 gr/dscf

0.57 mg/Acm 0.00025 gr/Acf

Emission Rates:

Particulate 0.069 Kg/hr 0.153 lb/hr

Flue Gas Characteristics:

Flow 1132 dscm/min 39991 dscf/min

 18.87 dscm/sec
 667 dscf/sec

 2022 Acm/min
 71391 Acf/min

Velocity 13.228 m/sec 43.40 f/sec

Temperature 154.9 oC 310.8 oF

Moisture 13.8 %

Gas Analysis 10.1 % O2

10.0 % CO2

30.003 Mol. Wt (g/gmole) Dry 28.350 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.1572 dscm 76.181 dscf

Sample Time 120.0 minutes Isokineticity 100.5 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 18-Nov-24 1 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: 12:17 - 14:22 Source: Unit 3 **Run Time:** Control Unit (Y) 0.9792 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.2818 Filter (grams) 0.00180 Impinger 1 Impinger 2 144.0 Pitot Factor 0.8493 Washings (grams) 0.00040 82.0 Baro. Press. (in. Hg) 29.78 Traverse 2 10.00 9.90 Impinger 3 17.0 Total (grams) 0.00220 Static Press. (in. H20) -19.00 Impinger 4 1.0 1.0 Stack Height (ft) 30 Impinger 5 Stack Diameter (in.) 70.90 0.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 13.6 10.00 10 08 Gain (grams) 258 6 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Time Dry Gas Meter Pitot ^P Orifice ^H Traverse / Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 532.049 0.49 1.79 57 57 313 1.5 100.6 5.0 535.688 10.0 56 539.535 0.55 56 312 4.7 100.6 2.01 3 15.0 543.280 0.52 1.90 56 56 312 8.4 100.7 20.0 546.810 0.46 1.68 56 56 311 12.5 100.8 56 312 17.7 25.0 550.400 0.48 1.76 56 100.4 30.0 553.939 0.46 1.69 311 100.9 35.0 556.924 0.33 1.21 45.6 100.4 40.0 559.820 0.31 1.14 53.2 100.3 45.0 562.682 0.30 1.10 59 59 313 58.3 100.6 10 50.0 565.410 0.28 1.03 60 60 313 62.5 99.0 11 55.0 568.170 0.28 1.03 60 60 313 66.1 100.2 12 60.0 570.794 0.25 0.92 61 61 311 69.4 100.5 0.0 570.794 573.625 0.29 100.5 62

Client: Metro Vancouver Date: 19-Nov-24

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 3 **Run Time:** 09:13 - 11:17

Concentrations:

Particulate 1.21 mg/dscm 0.00053 gr/dscf

0.66 mg/Acm 0.00029 gr/Acf

Emission Rates:

Particulate 0.083 Kg/hr 0.183 lb/hr

Flue Gas Characteristics:

Flow 1145 dscm/min 40443 dscf/min

 19.09 dscm/sec
 674 dscf/sec

 2101 Acm/min
 74193 Acf/min

Velocity 13.747 m/sec 45.10 f/sec

Temperature 156.1 oC 313.0 oF

Moisture 16.1 %

Gas Analysis 10.0 % O2

10.3 % CO2

30.038 Mol. Wt (g/gmole) Dry 28.100 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.2397 dscm 79.095 dscf

Sample Time 120.0 minutes Isokineticity 103.0 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 19-Nov-24 Run: Jobsite: WTE (Burnaby, B.C) 2 - Particulate / Metals 09:13 - 11:17 Source: Unit 3 Run Time: Control Unit (Y) 0.9792 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.2818 Filter (grams) 0.00150 CO2 10.50 157.0 Nozzle Diameter (in.) Impinger 1 Pitot Factor 0.8493 Washings (grams) 0.00120 Impinger 2 122.0 Baro. Press. (in. Hg) 29.86 Traverse 2 10.00 10.10 Impinger 3 17.0 Total (grams) 0.00270 Static Press. (in. H20) -19.00 Impinger 4 10.0 Stack Height (ft) 30 3.0 Impinger 5 70.90 Stack Diameter (in.) 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 12.5 10.25 9 95 Gain (grams) 322 5 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Wall Stack Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 609.129 104.9 0.28 1.01 49 49 310 1.5 5.0 611.894 10.0 4.7 614.779 0.33 1.19 48 48 313 101.2 3 15.0 617.525 0.29 1.04 48 48 313 8.4 102.7 4 20.0 620.128 0.26 0.94 48 48 312 12.5 102.8 25.0 0.27 313 17.7 622.780 0.97 48 48 102.8 30.0 625.588 0.30 1.08 49 49 313 103.1 35.0 629.277 0.52 1.87 49 49 6.5 313 45.6 103.1 40.0 633.279 0.61 2.20 50 6.5 314 53.2 103.2 45.0 50.0 55.0 9 0.60 2.17 313 58.3 103.1 10 641.139 0.57 2.06 51 6.5 312 62.5 103.2 0.56 314 644.989 2.03 52 6.5 66.1 103.2 12 60.0 648.240 0.40 1.45 53 6.5 313 69.4 102.7 Traverse 2 648.240 0.0 5.0 651.965 0.52 1.90 313 102.9 10.0 655,769 0.54 1.96 55 6.5 315 4.7 103.2 15.0 659.710 0.58 314 8.4 2.12 56 56 6.5 103.0 3 20.0 663.455 1.90 6.5 314 103.3 5 25.0 667,129 0.50 1.83 6.5 314 17.7 103.1 6 30.0 670.766 0.49 1.79 6.5 313 25.2 103.0 35.0 673.835 0.35 1.28 313 45.6 102.8 8 40.0 676.780 0.32 1.17 57 312 53.2 103.0 45.0 9 679.728 0.32 1.18 58 58 312 58.3 102.9 50.0 0.27 311 102.8 10 682.435 62.5 0.99 55.0 60.0 685.030 0.25 0.92 58 58 313 66.1 102.5 687.360 0.20 0.73 59 12 59 314 69.4 102.7 Average: 0.410 1.491 51.2 53.3 5.5 313.0 103.0

Client: Metro Vancouver Date: 19-Nov-24

Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals

Source: Unit 3 **Run Time:** 11:51 - 13:55

Concentrations:

Particulate 0.76 mg/dscm 0.00033 gr/dscf

0.42 mg/Acm 0.00018 gr/Acf

Emission Rates:

Particulate 0.053 Kg/hr 0.117 lb/hr

Flue Gas Characteristics:

Flow 1159 dscm/min 40927 dscf/min

 19.32 dscm/sec
 682 dscf/sec

 2090 Acm/min
 73804 Acf/min

Velocity 13.675 m/sec 44.86 f/sec

Temperature 155.6 oC 312.2 oF

Moisture 14.7 %

Gas Analysis 10.2 % O2

10.0 % CO2

30.007 Mol. Wt (g/gmole) Dry 28.238 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.2301 dscm 78.757 dscf

Sample Time 120.0 minutes Isokineticity 101.5 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 19-Nov-24 Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals Source: Unit 3 **Run Time:** 11:51 - 13:55 Control Unit (Y) 0.9792 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.2818 Filter (grams) 0.00150 215.0 Impinger 1 Pitot Factor 0.8495 Washings (grams) 0.00020 Impinger 2 Baro. Press. (in. Hg) 29.86 Traverse 2 10.00 10.55 Impinger 3 -3.0 Total (grams) 0.00170 Static Press. (in. H20) -19.00 Impinger 4 0.0 Stack Height (ft) 30 1.0 Impinger 5 70.90 Stack Diameter (in.) Impinger 6 0.0 27.417 Gel Stack Area (sq.ft.) 12.2 10.00 10 18 Gain (grams) 289 2 Minutes Per Reading 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 0.0 687.700 101.7 0.48 1.75 54 54 3.5 311 1.5 5.0 691.285 54 54 10.0 694.902 0.49 1.79 3.5 312 101.6 3 15.0 698.600 0.51 1.09 55 55 3.5 313 8.4 101.5 4 20.0 702.185 0.48 1.75 55 55 3.5 312 12.5 101.5 5 0.47 55 3.5 312 17.7 101.7 705.740 1.72 55 25.0 30.0 709.148 0.43 1.57 3.5 312 101.7 35.0 712.129 0.33 1.21 3.5 312 45.6 101.5 40.0 715.065 0.32 56 3.5 310 53.2 101.4 45.0 717.765 0.27 0.99 3.5 312 58.3 101.4 10 50.0 720,420 0.26 0.95 57 57 3.5 314 314 62.5 101.7 3.5 101.1 11 55.0 722.740 0.73 58 58 66.1 12 60.0 725.060 0.20 0.73 58 58 3.5 313 69.4 101.0

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 3

Sample Type: Parameter	HF	Test 1	Test 2	Test 3
Test Date		19-Nov-24	19-Nov-24	19-Nov-24
Test Time		10:05 - 11:05	11:51 - 12:51	13:11 - 14:11
Test Duration	(min.)	60	60	60
	,			
Baro. Press.	(in. Hg)	29.86	29.86	29.86
DGM Factor	(Y)	1.0207	1.0207	1.0207
Initial Reading	(m ³)	201.428	202.117	202.726
Final Reading	(m ³)	202.108	202.718	203.407
· ·				
Temp. Outlet	(Avg. oF)	49.2	49.3	54.0
Orifice Press.	(ΔH in.H2O)	0.30	0.30	0.30
Gas Volume	(Sm ³)	0.71876	0.63492	0.71335
HF	(mg)	0.051	0.041	0.051
Oxygen	(Vol. %)	10.1	10.0	10.2
Охуден	(V OI. 70)	10.1	10.0	10.2
	((G 3)			
HF	(mg/Sm³)	0.072	0.065	0.072
HF	(mg/Sm ³ @ 11% O2)	0.065	0.059	0.067
Moisture (isokinetic)	(Vol. %)	13.8	16.1	14.7
*Wet Resis Calculated on moi	ist on form inclination to see			

*Wet Basis Calculated on moisture from isokinetic tests Tstd. (oF)

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 3

Sample Type: NH_3

Parameter Parameter	3	Test 1	Test 2	Test 3
Test Date		19-Nov-24	19-Nov-24	19-Nov-24
Test Time		10:05 - 11:05	11:51 - 12:51	13:11 - 14:11
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	29.86	29.86	29.86
DGM Factor	(Y)	1.0355	1.0355	1.0355
Initial Reading	(m ³)	313.585	314.078	314.632
Final Reading	(m ³)	314.078	314.629	315.199
Temp. Outlet	(Avg. oF)	45.7	52.3	55.5
Orifice Press.	(ΔH in.H2O)	0.30	0.30	0.30
Gas Volume	(Sm ³)	0.53196	0.58749	0.60040
NH ₃	(mg)	2.9	0.3	0.1
Oxygen	(Vol. %)	10.1	10.0	10.2
NH ₃	(mg/Sm³)	5.4	0.5	0.2
NH ₃	(mg/Sm ³ @ 11% O2)	5.0	0.5	0.2
Moisture (isokinetic)	(Vol. %)	13.8	16.1	14.7

*Wet Basis Calculated on moisture from isokinetic tests

Tstd. (oF)

Pstd. (in. Hg)

29.92

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Parameter: N₂O

Molecular Weight: 44.00 grams/mol Reportable Detection

Lab Detection Limit: 0.1 ppm Limit: 0.18 mg/Sm³

Sample ID	Date	Time	N₂O ppm	N₂O mg/Sm³	N₂O mg/Sm³ @ 11% O₂
Unit 1 - Run 1 Unit 1 - Run 2 Unit 1 - Run 3 Average Unit 2 - Run 1 Unit 2 - Run 2 Unit 2 - Run 3 Average Unit 3 - Run 1 Unit 3 - Run 1 Unit 3 - Run 2	December 13, 2024 December 13, 2024 December 13, 2024 November 20, 2024 November 20, 2024 November 20, 2024 November 19, 2024 November 19, 2024	09:15 - 10:15 10:53 - 11:53 12:10 - 13:10 09:39 - 10:39 10:55 - 11:55 12:10 - 13:10	5.50 6.20 5.30 4.80 3.30 3.30 4.30 3.70	10.07 11.35 9.70 8.79 6.04 6.04 7.87 6.77	8.93 10.15 8.86 9.31 8.58 5.36 5.25 6.39 7.20 6.13
Unit 3 - Run 3 Average	November 19, 2024	13:16 - 14:16	4.10	7.50	6.93 6.76

Date:	13-Dec-24			20-Nov-24			19-Nov-24		
	Unit 1 Run 1	Run 2	Run 3	Unit 2 Run 1	Run 2	Run 3	Unit 3 Run 1	Run 2	Run 3
Test Times:	09:15 - 10:15	10:53 - 11:53	12:10 - 13:10	09:39 - 10:39	10:55 - 11:55	12:10 - 13:10	10:11 - 11:11	11:51 - 12:51	13:16 - 14:16
Methane (ppmv) Ethane (ppmv)	12 ND	ND ND	ND ND	ND ND	ND ND	2.7 ND	3.4 ND	ND ND	ND ND
Ethene (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3 as Propane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C4 as n-Butane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C5 as n-Pentane (ppmv)	ND	ND	ND	ND	ND	ND	ND	ND	ND
C6 as n-Hexane (ppmv) C6+ as n-Hexane (ppmv)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Co+ as II-nexalie (ppiliv)	עא	ואט	ND	ואט	ND	טאו	ND	עאו	ND
Detection Limits:									
Methane	3.1	3.4	3.1	3.6	3.1	3.1	3.5	2.4	4.1
Ethane	0.92	1	0.92	1.1	0.9	0.94	1.00	0.73	1.20
Ethene	0.92	1	0.92	1.1	0.9	0.94	1.00	0.73	1.20
C3 as Propane	0.77	0.85	0.9	0.82	0.78	0.79	0.87	0.61	1
C4 as n-Butane	0.77	0.85	0.9	0.82	0.78	0.79	0.87	0.61	1
C5 as n-Pentane	0.77	0.85	0.9	0.82	0.78	0.79	0.87	0.61	1
C6 as n-Hexane C6+	0.77	0.85	0.9	0.82	0.78	0.79	0.87	0.61	1 2.1
C6+	1.5	1.7	1.8	1.6	1.6	1.6	1.7	1.2	2.1
Using 1/2 DL Convention									
Sample Date:	13-Dec-24 Unit 1			20-Nov-24 Unit 2			19-Nov-24 Unit 3		
Sample Date:	Unit 1	Run 2	Run 3	Unit 2	Run 2	Run 3	Unit 3	Run 2	Run 3
Sample Date: Test Times:		Run 2 10:53 - 11:53	Run 3 12:10 - 13:10		Run 2 10:55 - 11:55	Run 3 12:10 - 13:10		Run 2 11:51 - 12:51	Run 3 13:16 - 14:16
·	Unit 1 Run 1			Unit 2 Run 1			Unit 3 Run 1		
Test Times:	Unit 1 Run 1 09:15 - 10:15	10:53 - 11:53	12:10 - 13:10	Unit 2 Run 1 09:39 - 10:39	10:55 - 11:55	12:10 - 13:10	Unit 3 Run 1 10:11 - 11:11	11:51 - 12:51	13:16 - 14:16
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm)	Unit 1 Run 1 09:15 - 10:15 12.00 0.46 0.46	10:53 - 11:53 1.70 0.50 0.50	12:10 - 13:10 1.55 0.46 0.46	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55	10:55 - 11:55 1.55 0.47 0.47	12:10 - 13:10 2.70 0.47 0.47	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50	11:51 - 12:51 1.20 0.37 0.37	13:16 - 14:16 2.05 0.60 0.60
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm)	Unit 1 Run 1 09:15 - 10:15 12.00 0.46 0.46 0.39	10:53 - 11:53 1.70 0.50 0.50 0.43	12:10 - 13:10 1.55 0.46 0.46 0.45	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41	10:55 - 11:55 1.55 0.47 0.47 0.39	12:10 - 13:10 2.70 0.47 0.47 0.40	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44	11:51 - 12:51 1.20 0.37 0.37 0.31	13:16 - 14:16 2.05 0.60 0.60 0.50
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm)	Unit 1 Run 1 09:15 - 10:15 12.00 0.46 0.46 0.39 0.39	1.70 0.50 0.50 0.43 0.43	12:10 - 13:10 1.55 0.46 0.46 0.45 0.45	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41	10:55 - 11:55 1.55 0.47 0.47 0.39 0.39	12:10 - 13:10 2.70 0.47 0.47 0.40 0.40	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31	13:16 - 14:16 2.05 0.60 0.60 0.50 0.50
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm)	Unit 1 Run 1 09:15 - 10:15 12.00 0.46 0.46 0.39 0.39 0.39	1.70 0.50 0.50 0.43 0.43	1.55 0.46 0.46 0.45 0.45 0.45	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41	10:55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39	12:10 - 13:10 2.70 0.47 0.47 0.40 0.40 0.40	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31	13:16 - 14:16 2.05 0.60 0.60 0.50 0.50 0.50
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	Unit 1 Run 1 09:15 - 10:15 12.00 0.46 0.46 0.39 0.39 0.39 0.39	1.70 0.50 0.50 0.43 0.43 0.43	1.55 0.46 0.46 0.45 0.45 0.45 0.45	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41	10:55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39 0.39	12:10 - 13:10 2.70 0.47 0.47 0.40 0.40 0.40 0.40	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31 0.31	13:16 - 14:16 2.05 0.60 0.50 0.50 0.50 0.50
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm)	Unit 1 Run 1 09:15 - 10:15 12.00 0.46 0.46 0.39 0.39 0.39	1.70 0.50 0.50 0.43 0.43	1.55 0.46 0.46 0.45 0.45 0.45	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41	10:55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39	12:10 - 13:10 2.70 0.47 0.47 0.40 0.40 0.40	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31	13:16 - 14:16 2.05 0.60 0.60 0.50 0.50 0.50
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	Unit 1 Run 1 09:15 - 10:15 12.00 0.46 0.46 0.39 0.39 0.39 0.39	1.70 0.50 0.50 0.43 0.43 0.43	1.55 0.46 0.46 0.45 0.45 0.45 0.45	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41	10:55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39 0.39	12:10 - 13:10 2.70 0.47 0.47 0.40 0.40 0.40 0.40	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31 0.31	13:16 - 14:16 2.05 0.60 0.50 0.50 0.50 0.50
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	Unit 1 Run 1 09:15 - 10:15 12:00 0.46 0.46 0.39 0.39 0.39 0.39 0.39	10:53 - 11:53 1.70 0.50 0.50 0.43 0.43 0.43 0.43 0.43	12:10 - 13:10 1.55 0.46 0.46 0.45 0.45 0.45 0.45 0.45	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41 0.41 0.80	10:55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39 0.39 0.39 0.80	12:10 - 13:10 2.70 0.47 0.47 0.40 0.40 0.40 0.40 0.40 0.80	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44 0.44 0.85	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31 0.31 0.31 0.60	13:16 - 14:16 2.05 0.60 0.60 0.50 0.50 0.50 0.50 1.05
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm)	Unit 1 Run 1 09:15 - 10:15 12:00 0.46 0.46 0.39 0.39 0.39 0.39 0.75	10:53 - 11:53 1.70 0.50 0.50 0.43 0.43 0.43 0.43 0.43 0.85	1.55 0.46 0.46 0.45 0.45 0.45 0.45 0.90	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41 0.41 0.80	10:55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39 0.39 0.39 0.80	12:10 - 13:10 2.70 0.47 0.47 0.40 0.40 0.40 0.40 0.40 1.80	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44 0.44 0.85	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31 0.31 0.60	13:16 - 14:16 2.05 0.60 0.60 0.50 0.50 0.50 0.50 1.05
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄)	Unit 1 Run 1 09:15 - 10:15 12:00 0.46 0.46 0.39 0.39 0.39 0.39 0.75 8.01 0.31	10:53 - 11:53 1.70 0.50 0.50 0.43 0.43 0.43 0.43 0.85 1.13 0.33 0.33	1.55 0.46 0.45 0.45 0.45 0.45 0.45 0.90 1.03 0.31	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41 0.80 1.20 0.37 0.37	1.55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39 0.39 0.39 0.80 1.03 0.31	12:10 - 13:10 2.70 0.47 0.40 0.40 0.40 0.40 0.40 0.80 1.80 0.31	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44 0.44 0.85 2.27 0.33 0.33	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31 0.31 0.60 0.80 0.24 0.24	13:16 - 14:16 2.05 0.60 0.60 0.50 0.50 0.50 0.50 1.05 1.37 0.40 0.40
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄)	Unit 1 Run 1 09:15 - 10:15 12:00 0.46 0.46 0.39 0.39 0.39 0.39 0.75 8.01 0.31 0.31 0.26	1.70 0.50 0.50 0.43 0.43 0.43 0.43 0.43 0.85	1.55 0.46 0.45 0.45 0.45 0.45 0.45 0.90 1.03 0.31 0.31	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41 0.80 1.20 0.37 0.37 0.27	1.55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39 0.39 0.39 0.39 0.31 0.31 0.26	12:10 - 13:10 2.70 0.47 0.40 0.40 0.40 0.40 0.80 1.80 0.31 0.31 0.26	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44 0.44 0.85 2.27 0.33 0.33 0.29	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31 0.31 0.60 0.80 0.24 0.24 0.20	13:16 - 14:16 2.05 0.60 0.50 0.50 0.50 0.50 1.05 1.37 0.40 0.40 0.33
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄)	Unit 1 Run 1 09:15 - 10:15 12:00 0.46 0.46 0.39 0.39 0.39 0.75 8.01 0.31 0.31 0.26 0.26	1.70 0.50 0.50 0.43 0.43 0.43 0.43 0.85 1.13 0.33 0.33 0.28 0.28	1.55 0.46 0.46 0.45 0.45 0.45 0.45 0.90 1.03 0.31 0.31 0.30 0.30	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41 0.80 1.20 0.37 0.37 0.27 0.27	1.55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39 0.39 0.39 0.39 0.31 0.31 0.26 0.26	12:10 - 13:10 2.70 0.47 0.40 0.40 0.40 0.40 0.80 1.80 0.31 0.31 0.26 0.26	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44 0.44 0.85 2.27 0.33 0.33 0.29 0.29	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31 0.31 0.60 0.80 0.24 0.24 0.20 0.20	13:16 - 14:16 2.05 0.60 0.60 0.50 0.50 0.50 1.05 1.37 0.40 0.40 0.33 0.33
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) Ethene (mg/m³ as CH ₄) C3 as Propane (mg/m³ as CH ₄) C4 as n-Butane (mg/m³ as CH ₄) C5 as n-Pentane (mg/m³ as CH ₄)	Unit 1 Run 1 09:15 - 10:15 12:00 0.46 0.46 0.39 0.39 0.39 0.39 0.75 8.01 0.31 0.31 0.26 0.26 0.26	1.70 0.50 0.50 0.43 0.43 0.43 0.43 0.85 1.13 0.33 0.33 0.28 0.28	1.55 0.46 0.45 0.45 0.45 0.45 0.45 0.45 0.90 1.03 0.31 0.30 0.30 0.30	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41 0.80 1.20 0.37 0.37 0.27 0.27 0.27	1.55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39 0.39 0.80 1.03 0.31 0.31 0.26 0.26 0.26	12:10 - 13:10 2.70 0.47 0.40 0.40 0.40 0.40 0.80 1.80 0.31 0.31 0.26 0.26 0.26	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44 0.85 2.27 0.33 0.33 0.29 0.29 0.29	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31 0.60 0.80 0.24 0.24 0.24 0.20 0.20 0.20	13:16 - 14:16 2.05 0.60 0.50 0.50 0.50 0.50 1.05 1.37 0.40 0.40 0.33 0.33 0.33
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄) C5 as n-Pentane (mg/m³ as CH₄) C6 as n-Hexane (mg/m³ as CH₄)	Unit 1 Run 1 09:15 - 10:15 12:00 0.46 0.46 0.39 0.39 0.39 0.75 8.01 0.31 0.31 0.26 0.26 0.26 0.26	1.70 0.50 0.50 0.43 0.43 0.43 0.43 0.85 1.13 0.33 0.33 0.28 0.28 0.28	1.55 0.46 0.45 0.45 0.45 0.45 0.45 0.90 1.03 0.31 0.30 0.30 0.30 0.30	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41 0.80 1.20 0.37 0.37 0.27 0.27 0.27 0.27	1.55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39 0.39 0.39 0.80 1.03 0.31 0.31 0.26 0.26 0.26 0.26	12:10 - 13:10 2.70 0.47 0.40 0.40 0.40 0.40 0.80 1.80 0.31 0.31 0.26 0.26 0.26 0.26	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44 0.85 2.27 0.33 0.33 0.29 0.29 0.29 0.29	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31 0.60 0.80 0.24 0.24 0.24 0.20 0.20 0.20 0.20	13:16 - 14:16 2.05 0.60 0.50 0.50 0.50 0.50 1.05 1.37 0.40 0.40 0.33 0.33 0.33 0.33
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) Ethene (mg/m³ as CH ₄) C3 as Propane (mg/m³ as CH ₄) C4 as n-Butane (mg/m³ as CH ₄) C5 as n-Pentane (mg/m³ as CH ₄)	Unit 1 Run 1 09:15 - 10:15 12:00 0.46 0.46 0.39 0.39 0.39 0.39 0.75 8.01 0.31 0.31 0.26 0.26 0.26	1.70 0.50 0.50 0.43 0.43 0.43 0.43 0.85 1.13 0.33 0.33 0.28 0.28	1.55 0.46 0.45 0.45 0.45 0.45 0.45 0.45 0.90 1.03 0.31 0.30 0.30 0.30	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41 0.80 1.20 0.37 0.37 0.27 0.27 0.27	1.55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39 0.39 0.80 1.03 0.31 0.31 0.26 0.26 0.26	12:10 - 13:10 2.70 0.47 0.40 0.40 0.40 0.40 0.80 1.80 0.31 0.31 0.26 0.26 0.26	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44 0.85 2.27 0.33 0.33 0.29 0.29 0.29	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31 0.60 0.80 0.24 0.24 0.24 0.20 0.20 0.20	13:16 - 14:16 2.05 0.60 0.50 0.50 0.50 0.50 1.05 1.37 0.40 0.40 0.33 0.33 0.33
Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄) C5 as n-Pentane (mg/m³ as CH₄) C6 as n-Hexane (mg/m³ as CH₄)	Unit 1 Run 1 09:15 - 10:15 12:00 0.46 0.46 0.39 0.39 0.39 0.75 8.01 0.31 0.31 0.26 0.26 0.26 0.26	1.70 0.50 0.50 0.43 0.43 0.43 0.43 0.85 1.13 0.33 0.33 0.28 0.28 0.28	1.55 0.46 0.45 0.45 0.45 0.45 0.45 0.90 1.03 0.31 0.30 0.30 0.30 0.30	Unit 2 Run 1 09:39 - 10:39 1.80 0.55 0.55 0.41 0.41 0.41 0.80 1.20 0.37 0.37 0.27 0.27 0.27 0.27	1.55 - 11:55 1.55 0.47 0.47 0.39 0.39 0.39 0.39 0.39 0.80 1.03 0.31 0.31 0.26 0.26 0.26 0.26	12:10 - 13:10 2.70 0.47 0.40 0.40 0.40 0.40 0.80 1.80 0.31 0.31 0.26 0.26 0.26 0.26	Unit 3 Run 1 10:11 - 11:11 3.40 0.50 0.50 0.44 0.44 0.44 0.85 2.27 0.33 0.33 0.29 0.29 0.29 0.29	11:51 - 12:51 1.20 0.37 0.37 0.31 0.31 0.31 0.60 0.80 0.24 0.24 0.24 0.20 0.20 0.20 0.20	13:16 - 14:16 2.05 0.60 0.50 0.50 0.50 0.50 1.05 1.37 0.40 0.40 0.33 0.33 0.33 0.33

All data is corrected to standard conditions (S) of 20 °C, 101.325 kPa (dry) unless otherwise noted.

APPENDIX - E FIELD DATA SHEETS

METRO VA	METRO VANCOUVER WTE	- BURNABY	B.C.	NOZZLE 6	6-282	DIAMETER, IN.	ER, IN.	2815	IMPINGER,	INITIAL (ml)	FINAL ,	TOTAL GAIN
SOURCE Unit	#								Imp. #1	0	159	63
AETER	Metals	Partic Run#	#	PORT LENGTH	H				Imp. #2	100	176	36
DATE 12 Dec	2024			STATIC PRE	Ë,	- 1	8 9		lmp. #3	001	100	6
OPERATOR: LF				STACK DIAMETER		10.90			lmp. #4	Q	7	2
CONTROL UNIT	AE ALI	× 0.98	12	STACK HEIGHT	3	30			lmp. #5	00	103	3
		Д № 1. В.	20)				lmp. #6	001	102	7
BAROMETRIC PRESSURE, IN. Hg	SURE, IN. Hg 29	1 78		INITIAL LEAK TEST	< TEST	0.000	015		lmp. #7			
ASSUMED MOISTURE, BW	E, Bw 15-1.			FINAL LEAK TEST	TEST	D.001 &	215		lmp. #8			
										١	1050	
Clock Time	Dry Gas Meter ft	Pitot AP	Orifice AH			Temperature °F			Pump Vac.	Fyı	Fyrites	
Point 20	732,135	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	
1	5	6 29	1.06	00	303	250	250	52	2			
2 10	737.67	0.26	60 C	09	308			1000000		4.01	66	
	340 GG	0.32	1.16	9	309	250	250	48	3			
4 20	743 75	034	124	62	310							
	346 78	0.33	1.20	63	310	250	250	48	3			
9 30	S6 64t	0 35	1.28	19	311					10.5	96	
	753.70	0.50	1.82	69	311	250	250	49	Э			
8 40	757.69	0 56	2.05	ee	310							
	36135	0 52	161	99	310	250	250	S	3.5			
10 50	765 35	0.50	184	6	310					0.11	16	
	68.78	0.46	169	9	309	250	250	h	3			
77	337 23	0.44	1.66	40	208							
	250	000		0	200	0	000	1	0			
2 10	-1	200	1 22	or o	300	200	200			101	0 6	
	10000	224	1,66	- (2)	100	2	000	017	0	9	0	
4 20	184.8C	5.40	1 29	0	000	200	000	0	7			
2	2	0 40	1 48	200	306	250	250	77	M			
9 30	ht 16t	240	156	89	305					10.2	1.0/	
	795 SB	0.51	-89	68	306	250	250	54	Ŋ			
8 40	799 53	0.54	2.00	69	306							
	803.33	0.50	82	69	8	250	250	94	2			
10 50	807.05	0 48	8£ /	<u>ئ</u>	306					10.4	66	
11	810 63	. 1	64	90	306	250	250	97	M			
	814 251	5 dd	19	40	505							
End 1322												
												-

Ž	ETRO VA	METRO VANCOUVER WTE - BURNABY	- BURNAB	B.C.	NOZZLE (PROBE	G-282 ≯C	DIAMETER, IN.	CP O. H	2815	IMPINGER, VOLUMES	INITIAL (mL)	FINAL (mL)	TOTAL GAIN (mL)
SOURCE	井さら		П					П		lmp. #1	0	169	169
PARAME	R / RUN	Metals/	Partic Run	Run #2	PORT LENGTH	TH				lmp. #2	00/	177	t-t
DATE (Dec	2024			STATIC PRE	STATIC PRESSURE, IN. H20	-	+		lmp. #3	901	103	N
OPERATOR:	OR: LF				STACK DIAMETER		709	ص		Imp. #4	0	0	0
CONTRO	CONTROL UNIT CAE	E AL	0		STACK НЕІGHT		30			lmp. #5	001	001	0
			AH@ 1.820	C						lmp.#6	00/	101	
BAROME	TRIC PRES	IN. Hg	29 66		INITIAL LEAK TEST	L I	0000.0	5/0		lmp. #7	9	-	
ASSUME	ASSUMED MOISTURE, Bw	5			FINAL LEAK TEST		0.000	S S		lmp. #8	-	8	
												Testo-	7
	Clock Time	Dry Gas Meter ft	Pitot AP	Orifice AH			Temperature °F	,,		Pump Vac.	Fyr	Fyrites	
Point	8:21	815.000	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	
1		818.34	1110	+44	S	303	250	250	S.8	ls.			
2	10	821.86	046	E	60	309					46	98	
3		825.45	0.48	1.70	(S	3/2	250	250	S	v			
4	20	828.96	95.0	1.63	6	312							
2		832.40	9.44	156	7	3/3	250	250	N N	Ø			
9	30	835.89	0.45	9	53	<u>_</u>					0,0)	46	
		839 50	0.48	1.72	55	310	250	255	64	6			
×	40	842.92	0.43	154	25	30						5	
0 6	C L	846 32	0.42	18	56	200	250	250	64	6		- 1	
07	20	844 85	0.45	195	4	309		(7.5	16.2	
III		853.09	288	13+	88	309	750	620	49	b			
71	00	856.20	55.0	1.7 ÷	00	307							
,		000000	0000	00.	0	200	1		1	1			
2	10	07.070	0100	106	000	300	7.25	0	0	n	6 01	76	
3		37 578	30	000	200	200	25.5	200	7.0	1	2		
4	20	86 - 25	0 25	60	0	3/0)					
2		870.20	5 3	112	CO	30	250	250	6/3	1			
9	30	00.8+8	0.28	1.01	00	311					66	2.01	
7		06 958	0.54	1.96	0	3/5	250	250	000	o			
∞	40	880.64	9/ 1	1.82	0	310							
6		884.45	0.52	1.89	S	30	250	250	5	O			
10	20	888.0	8 h C	74.	E.	310					0.5	96	
11		841.70	4	89	62	309	250	250	V	9			
12	00	895.205	0.43	157	62	309							
2	1024			é									

	1 N N N N N N N N N N N N N N N N N N N	MELIKO VANCCOVEK WIT		m m					2				
					PROBE	+A-	ර්	D 84	2	VOLUMES	(mL)	(m/;)	(mF)
SOURCE	Unit			100000						Imp. #1	0	744	244
ARAME	TER / RUN I	Metals/	Partic Run#3	#3	PORT LENGTH	TH				lmp. #2	90	15/	Ŋ
DATE	13 Dec	2			STATIC PRE	STATIC PRESSURE, IN. H2O	H20	*		lmp. #3	601	112	1.2
OPERATOR:	OR: 6F				STACK DIAMETER	METER	6.Gt	0		lmp. #4	0	C	0
ONTRC	CONTROL UNIT CA	CAE ALI	Y 0 9812	12	STACK HEIGHT	3HT	30			lmp. #5	60	102	7
			01.820 NH® 1.820	20						1mp. #6	601	100	۵
AROME	TRIC PRES	IN. Hg 29	€4.		INITIAL LEAK TEST	K TEST	D.00.0	G		Lmb. #7	Sec.		
SSUME	ASSUMED MOISTURE, BW	121			FINAL LEAK TEST	TEST	0.000	3		lmp. #8			
												-165+0-1	1~(
	Clock Time	Dry Gas Meter ft	Pitot AP	Orifice AH			Temperature °F			Pump Vac.	Fyr	Fyrites	
Point	1046	896.200	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂	O ₂ Vol. %	
1		899 69	0.3	1.56	09	301	357	250	44	ŋ			
2	10	903.33	0 34	1.71	00	300					36	1.0.1	
m	C	00		1.50	ê Q	304	250	250	t.h	3			
4	70	10	0.29	Shi	00	309			- 1				
2 6	30	973.50		65	0	309	250	250	48	ო	CB	0	
+	3	+ 12	F	200	3	300	1	1	11		1	٠U	
- 00	40	926. 90 925. 90	500	2.60	30	300	750	250	700	7			
6			77.0	7 80	N	302	26.0	200	617	V			
10	20	935.10	0 53	00	070	303	0	000		1	66	102	
11		939 50	64.0	2.48	62	301	250	250	0	V.			
12	09	943 78	960	233	63	300							
+			000	200				1					
7 0	0,	24+ 45	0.03	+ 60	23	205	250	250	618	7			
7 (OT	+	0.47	2.1	50	202			(95	12.7	
v 4	20	95569	0 0 0 0 0 0	2.00	543	0 C	250	250	617	T			
2		964.25	250	230	63		2<0	250	0	77			
9	30	968 43	0 45	2.25	63	311					9.0	101	
- 0	S.	32	0.47	2 35	63	30	250	250	200	7			
× 0	40	66 956	0 43	236	50	0/0							
3 0	C L	781.15	7	200	69	300	280	220	8/7	7	11	0 0	
111	2	000	0 7	4:07	2	からない	90	100	977	;	13	0 /	
12			200	100	202	7	200	2000	Ø	4			
77	311	797.650	0 35	++	0	200							
0	470												
						_	_						

Client ANVWTIE V LMU-A0.9950 Source Unltt Cp Cp Parameter NH3 Pbar 29.66 Static Date DEc, 13, 24 Operator DL/CL Static Stack Dia Down Up Up	Leak Check Run 1 Run 2 Run 3 Initial 0.000 0.000 0.000 Final 0.000 0.000	Test Time DGM Volume DGM Outlet Stack (mL) R1 R2 R3 ↑: 15 6 34.5 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6	1 9:45 632.9000 50 10:15 633.1192 51	2 10:20 63 3.7550 53	633.6518	
Client WUVT E V LM V - D , 0207 Source Un +	Leak Check Run 1 Run 2 Run 3 Initial 0.0001 0.0001 0.0001 Final 0.0001 0.0001	Test Time DGM Volume OGM Stack (mL) R1 R2 R3 9:15 107,2618 48	1 9:45 207.553& 55 10:15 207.815x 55	2 10:53 208.4392 S4	208.4450 208.6630 209.0414	1

Client	MVW	TE		
--------	-----	----	--	--

Source Unit 1	_		Date D7	c,13,21	1
	Run 1	Run 2	Run 3	Run 4	Run 5
Pbar (in. Hg)	2.4.66				
Canister Number	A201564	-			
Controller Number	0A00920				
Gauge Number	41				
Initial: Start Time	9:15				
Flask Vac. (in. Hg)	-2 3				712
Final: End Time	10.15				
Flask Vac. (in. Hg)	-9				
Source Unit 1	P 1	P 2	Date D7	-	— D 5
Di C III	Run 1	Run 2	Run 3	Run 4	Run 5
Pbar (in. Hg)	29.60				
Canister Number	A\$01349				
Controller Number	0A2261		-		
Gauge Number Initial: Start Time	15153				
	10:53		_		
Flask Vac. (in. Hg)	14. (2)				
Final: End Time Flask Vac. (in. Hg)	W:53				
Source Unit 1		Run 2	Date Dr.	Run 4	Run 5
Pbar (in. Hg)	29.86	Ruii 2	Kun 5	Kull 4	Run 5
Canister Number	A501417				
Controller Number	DA00367				
Gauge Number	UACCOST				
Initial: Start Time	12:10				
Flask Vac. (in. Hg)	28				
Final: End Time	17:10				
FIASK VAC UIII FIQU	C				
Flask Vac. (in. Hg) Source		Rup 2	Date	Run 4	Run 5
Source	Run 1	Run 2	Date	Run 4	Run 5
Source Pbar (in. Hg)		Run 2		Run 4	Run 5
Source Pbar (in. Hg) Canister Number		Run 2		Run 4	Run 5
Source Pbar (in. Hg) Canister Number Controller Number		Run 2		Run 4	Run 5
Source Pbar (in. Hg) Canister Number Controller Number Gauge Number		Run 2		Run 4	Run 5
Source Pbar (in. Hg) Canister Number Controller Number		Run 2		Run 4	Run 5

16.11 5.01 AH

CLIENT: MV P.	A		7	NOZZLE G	No.	DIAMETER, IN.	ER, IN.	320	IMPINGER,	INITIAL (mL)	FINAL	TOTAL GAIN
SOURCE:	十井ス	0,0							lmp. #1	0	744	244
AETER / F	No MILTH	りずはか	7	PORT LENGTH	E	9			lmp. #2	18	203	(5)
DATE NO.	14/24			STATIC PRE	STATIC PRESSURE, IN. H2O	H20 7 19	8		lmp. #3	100	3	13
OPERATOR:	了たて	Omn	_	STACK DIAMETER	METER .	6.30			lmp. #4	0	6	u
CONTROL UNIT	なり	-		STACK HEIGHT	봈	20,			lmp. #5	(00)	501	,
		DH@	6				T.		lmp. #6	8	9	0
BAROME I RIC PRESSURE, IN. Hg	SURE, IN. Hg	B		INITIAL LEAK TEST	K TEST O	182	2		Upstream Diameters	ameters		
ASSUMED MOISTURE, BW	RE, Bw 1676			FINAL LEAK TEST	TEST	8	0		Downstream Diameters	Diameters		
Clock Time	Dry Gas Meter ft	Pitot AP	Orifice AH			Temperature °F			Pump Vac.	Fyr	Fyrites	
Foint 10,38	034.800	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Box	Impinger Exit	IN. Hg	CO ₂	O ₂ Vol. %	
-4	3861年	86	9	4	283	38	38	8	W	-		
- 6	200 7	3	28	K	12 C	1		\$		200	0	
C	278 4	22	R	St.	Sh	838	22	70	1			
1	られられ	1	B	Ti di	N.	250	3	18	7			
~3	956.92	3	83	St.	288	5		3		95	0	
z ie	15/95	520	2.9	8	de la	880	380	53	4			
25	22013	8	0/0	200	8			0				
5 4	27. 7.	8	22	J.	28	330	320	20	Q	0	,	
33	000000	23	30	et et	200	Ke	K	2	1	2	0	
4	ななんなか	B	7	1	000		200	,)			
A				1				1	2			
7	04.0m	25	361	th	280	88	88	2	7			
8	22.00	8	かり	200	XXX	4			1	0	00	
17	50000	8	SUN CO	o iii	38.20	28	88	8	Q			
5	1001	148	2.40	8	18	The	330	20	5			
ع	101 63	#	33	8	1857			\$, \			
.12	2000	8	Ŝ	8	8	88	8	2	Ω	(
200	1000 H	K	200	28	***	S. S	30	720	7	Š	0	
- 6	27 170	38	1.00	38	200	3	8	2				
	(927.35	8	0	29	380	320	8	18	7			
9 12 13	10,50 33	180	0	60	ANT.)	5)			

A. Lanfranco and Associates Inc.

CLIENT		111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111	556		DECORE I	11-1		41/00	1	COLIMES	(uu/	(lw)	(m)
	1				PROBE 1	まして	3	241	25	VOLUMES	(mr)	(MIL.)	ľ
SOURCE	, E	2		2	Cial Facor	Ī				Imp.#1	Bare	353	235
_		No repair	M L	とという	PORI LENGIH	<u> </u>	1			Imp. #2	200	161	16
DATE	2	77 /0			STATIC PRE	STATIC PRESSURE, IN. H2O	14.	8		lmp. #3	0	111	1
OPERATOR:	TOR:	FT# 67+	181-1	u	STACK DIAMETER	METER	2.0	2 0		Imp. #4	Mo	0	O
CONTR	CONTROL UNIT	F18	86. Y	86	STACK HEIGHT	SHT	ig.			lmp. #5	200	(03	3
			ØH@ /	34						lmp. #6	300	000	0
BAROM	BAROMETRIC PRESSURE, IN. Hg	SURE, IN. Hg	23 58		INITIAL LEAK TEST	K TEST 6	1 000	1000	2,3	Upstream Diameters	iameters		
ASSUM	ASSUMED MOISTURE, BW	E, Bw	(4		FINAL LEAK TEST	TEST	280	100	3,2	Downstream Diameters	1 Diameters		
	Clock Time	Dry Gas Meter ft	Pitot AP	Orifice AH			Temperature °F			Pump Vac.	Fyi	Fyrites	
Point	4:07	030.599	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Box	Impinger Exit	IN. Hg	CO ₂	O ₂ Vol. %	
F	6	33.978	040	1,54	24	785	250	250	15	f	2	10.3	
2	10	37.377	140	1.56	24	283	,	-					
10	15	40.326	.3(1.17	24	298							
4	00	43.166	.29	1.00	24	300							
S	57	46.100	180	6.17	24	299	`						
9	of Charles	49.244	,35	1,33	55	737	-	1					
7	35	53 42	29	25 2	20	867	>	7					
800	40	51.860	10%	100	2	242		, 1		1	9		
200	200	60.000	10.00	300	200	197	120	126	2	n	9	0,0	
, L	200	77.570	200	30.00	200	067							
7	00	76.700	09.	2.32	29	062							
-	65	80.00	19:	25.2	00	29%							
2	20	010.58	55	1/2	19	298	ľ	1	i	١			
7	63	4	00:	7.30	62	300	250	727	3 (N,	1	7.0	
2	000	1	24	107	0.0	303							
S	22	96.855	75'	2.01	60	962							
9	30	100 . 444	22	11.	65	20,4	1/4	`					
1	95	103.375	.79	1.14	65	788	1, \	1					
30	100	106.048	,24	560	65	282		>					
8	501	108.666	22'	91	65	282	, 1	,	8				
0	1071	111 1503	12.	200	59	290	782	787	21	2	11	9.0	
=	116	113.759	5.2.2	06'	66	262							
7	120	061 911	.20	789	66	240					i.t		
S S	11:11					2000		1					
							1.						

TOTAL GAIN (mL)	77																																		
	441	13/	0	(0)	101			Fyrites	O ₂ Vol. %	4.4						E .		96						8.8						1	3)			
INITIAL (mL)	500	30	000	00	00 100	meters	Diameters	Fyı	CO ₂	11								//						H							//				
IMPINGER, VOLUMES	Imp. #1	Imp. #3	1-3	lmp. #5	lmp. #6	Upstream Diameters	Downstream Diameters	Pump Vac.	IN. Hg	4.5								4.5						4.0							7				
1818	10								Impinger Exit	15								48						66							26				
R. IN.		N. S.	100	1	1	(Clips)	00		Вох	248		1	-				>	252	6				2	252	-			1		>	252				
DIAMETER, IN.		20 -14	3	18		10000	30001	Temperature °F	Probe	252	60				-)	797						252	4		1	-		>	752				
C 281	2	STATIC PRESSURE. IN. H2O	ETER	HT		KTEST 💇	TEST On	F	Stack	301	303	700	188	3	188	301	200	862	662	200	299	1000	36	798	2002	38	662	194	301	304	305	25.8			
NOZZLE PROBE 7	UTONO 1 TOO	STATIC PRE	STACK DIAMETER	STACK HEIGHT		INITIAL LEAK TEST	FINAL LEAK TEST		Dry Gas Outlet	60	69	Sh	62	62	63	65	65,	65	62	90	100	100	200			99		B	67	29	99	89			
-0								Orifice AH	IN. H ₂ O	1.54	79.	13	200	20	93	19.	1001	1.09	160	10	196	1	,0	47	101	1.28	2.72.00	- Bar	2.18	2 70	252	75			
Rewood		San And		9899	DH@ / RKG	25		Pitot AP	IN. H ₂ O	do	24.	57	777	77	77	1-2	72.	. 82	52	02:	49	1	25	2.5	92.	,33	2	75	11:00	02.	65	\$45			T
	2,	V 2	177	>	Δ	.62	111	feter ft	00,0	606	294	22	Ser Ser	34	776	36	85	45	48	000	220	2	30	77	55	38	59	260	210	52	75	9/10	1		
5	子	1	35			URE, IN. Hg	., Bw	Dry Gas Meter ft	116.500	6 611	(23 5	176.9	130.5	7 7	39 7	0.	1.1	147.5	0	153.0	166 00	4	027 191	164 47	2. 49	170.3	174.8	179 1	184.4	88.8	163.1	100		4	
Z V	SOURCE CANALITY OF IN NO.	102/ ADIN IN	1	1.		BAROMETRIC PRESSURE, IN. Hg	ASSUMED MOISTURE, BW	Clock Time	1(:27	2	0	15	35	CA	1/2	00	15	.05	55	24	M 16	200	11/2	00 4	1682		\$6 95	7	45 105	0110	\$11.6	120	15:30		
CLIENT	SOURCE	DATE	OPERATOR:	CONTROL UNIT		BAROME	ASSUME		Point	E	71	0	3 V	╁	+	92		io		1	-	- ,	2 W	7	6		7	90	8	0	=	7	300		

LMU-B 1.0355 B5 Client MWT LMV-01.0207 Source Unit 2 Source Unit 2 Parameter HE Date NOV 20 24 Leak Check Stack Dia Initial

> 		П		R3											
Static	Run 3	0.000	ΔP IN. H ₂ O	R1 R2											
Cp Pbar 29,60 Operator / Co	Run 2	0.0001	Stack (ml.)										Run 3		
			Temperature (°F)		60 542	-12 56	2 57	27	6 23	65 hc		1884 63	Run 2		
Unita NOV, 20,24	Run 1	0,0001	DGM Volume (cu ft) / (m³)	۲,	315,4840	7 315,7442	315.7492	315.9990	3162426	4646918		316	Run 1		
Source Un Parameter MH Date NOV	Leak Check	Final	Run Time No. (hhmm)	9.4	10:09	10:39	10:25	2 10.25	11:55	13310	m	01,0		02	ç
Static	Run 3	0.0001	ΔP IN. H ₂ O	R1 R2 R3											
Cp 29.66. Pbar 29.60. Operator 31.	Run 2	1000	Stack (m).					1		1			Run 3		
	6	0.0	Temp (notlet C	53.5	57	851	09	5.8	23		69	Run 2		
Un 1 + 2 HE Nov, 20, 24	9.000	0.0001	DGM Volume (cu ft) / (m³)	0541502	203,7490	204,0318	204.02474 58	204.4230	201.6590	204,6620		13:00 205.25 40 62	n 1		
re Un Vimeter HE	Check		Time (hhmm)		60:01	10:39	10:55	10.25	11:55	12:10		3.00	Run 1		

2

Run No.

Final

က

 CO_2

O₂

82

TOTAL GAIN (mL)	87													2													41						
(mL) 70	281	Mer I	101	0		367	O ₂ Vol.%	105						0/					-			101					- 1	9.7	•				
INITIAL (mL)	001	ON	100	iameters	n Diameters	Ruritae	CO ₂	9/	-					0/								92						0					
IMPINGER VOLUMES Imp. #1	Imp. #2 Imp. #3	lmp. #4	Imp. #5	Upstream Diameters	Downstream Diameters	Pump Vac	IN. Hg	8						6								V						5.5					
33				11511	2011		Impinger	64						15								47						96					
DIAMETER, IN. 3	8	£.	C.C.	3/10	016		Box	752			1	\		252				$\frac{1}{2}$,			250			-	>	1	252	1		}		
DIAME	H20 - 10	19	2	2000		Tomnorature of	Probe	250	-			-	>	252	-			>	>			252			,		>	752	-	}	>		
127	PORT LENGTH STATIC PRESSURE, IN. H2O	AETER	3H	K TEST	TEST		Stack	50	215	37	311	2/2	190	37	312	3/3	313	77	7	200	210		310	310	310	50	30	긔	309	308			
NOZZLE PROBE	PORT LENGTH STATIC PRESS	STACK DIAMETER	STACK HEIGHT	INITIAL LEAK TEST	FINAL LEAK TEST		Dry Gas Outlet	1/2	56	200	26	or v	57	200	65	09	09	2	67	200	100	63	59	59	63	79	173	65	2	65			
	E		26	50		Orifice AH	IN. H ₂ O	179	2.01	6	(.68	1.76	10:1	7/"	1 10	1.03	1,03	760	100		96"	1.04	6/1/	1.00	1:52	89 1	980	1.72	1.68	1.50			
Sewar 12	RUN #		Y 22 0 1	2 Pr PC		Ditot AD	IN. H ₂ O	640	55	120	95.	27	2 th	500	20	87.	87	520	79	1/1	200	. 28	250	22	16	345	50	376	45	01,			
6	100 24	50			116	Dry Gas Meter ft	532,049	535.688	1	N	٧	550,400	SI I	ν,	289.795	11 9	021 82	570.794	21/2/		KR 188	-	584,965	D.	01.070	534.616	N		T	200 85			
7	PARAMETER / RUN NO DATE		OL UNIT	BAROMETRIC PRESSURE, IN. Ha	ASSUMED MOISTURE, BW	Clock Time	1					15 K			45	50 5		60	45	200	15					00)				20 6	22°H	+	
	PARAME	OPERATOR:	CONTROL UNIT		ASSUME		Point	-	Н		- I		21	۵	7 6	0	П	2	7	1	Т	7	10	9	_	B	\exists	9		\exists			

A. Lanfranco and Associates Inc.

AUWCA NOZZLE P-
PORT LENGTH STATIC PRESSURE. IN. H20
AH® ACK HEIGHT
29.86 INITIAL LEAK TEST
FINAL LEAK TEST
Pitot ΔP Orifice ΔH
IN. H ₂ O IN. H ₂ O
10.1 82
1,19
16 32
Lb. LZ
30 1,08
12/ 1/20
2.17
72
40 145
1
1.96
20 100
2
,
35 1.28
33 1.17
30 1.00
600
20 20 20
5

GAIN	ĵ,				T	T	T															7			6	1000													
TOTAL GAIN	(mľ.)	215	69	2	3-	C																			A	1													
FINAL	(mL)	23	100	X	2	200	00			Fyrites	O ₂ Vol. %	6.6							¢	7.7							10						10.4						
INITIAL	(mL)	200	33	3	CAN	KANFOK ILIN	7	Diameters		Fyr	CO ₂ Vol. %	0)								0)		181					0,						0						
MPINGER,	VOLUMES	lmp. #1	Imp. #2	Imp. #3	lmn #5	lmb #6	Upstream Diameters	Downstream Diameters		Pump Vac.	IN. Hg	30								N							7						4.5	4					
286	23						116	4			Impinger Exit	49								60							49						64						
	og,		9	30	2		101	015			Box	252				7	7		>	220		-					252				///		1252						
DIAMETER, IN.	ე		0		M	8	July (000		Temperature °F	Probe	757			n -	-		>	Na l	250							250	-	_	`			258					1	
			- I	STACK DIAMETER			TEST	EST	•	Te	Stack	115	312	313	2)9	37	2/2	25	0		314	514	3(3			217	_	\neg	5(3)	215	3/3	3(1	311	3/2	3811			1	
NOZZLE	PROBE	i i	PORT LENGTH	STACK DIAMETER	STACK HEIGHT		INITIAL LEAK TEST	FINAL LEAK TEST			Dry Gas Outlet	54	75	25/	S			8		7			28	59	0	53		000		. 09	17	19	,	19	15				
ž	<u>a</u>	i	V 2	ט מ	0 0	1	<u> </u>	H		Orifice AH	IN. H ₂ O	15	79	86	75 4	77	57	7	71	99 5	N	73 6	18	7	32 5	36	25	0	21	00	1000	777	22	74 6	7 14				_
=	S)		V H		6/6	1000	00					2	//	/	5 // 6	-	1	-	4	0	60	0	1	3	,	/	,	7	, /,	//	7	0	7	//	/			+	_
-	333	C	8	1	1	AH@	78 6			Pitot AP	IN. H ₂ O	40	63	150	128	47	43	.53	32	12.	, 26	000	QU°	,38	,36	6.3	The "	° 3C	533	645	,65	970	090	447	. 38				
(X	<u>ر</u> ۱		29913	7	1		19	910		eter ft²	2001	285	60	0	<i>Y</i> 0	2	Ø	0	N	2	9	20	09	0820	10	72	5	75	175	58	550	01	99	55	80				
14	> 2	n i	5	2	7		RE, IN. Ha	Bw		Dry Gas Meter ft	001,780	5 169	POP. 404	98.60	102 a 18	']	709 - 148	712.129	715.06	717 76	120,41	722.74	725.00	2 871	731.4	734.5	737.6	740.4	743,6	747 .1	751.3	755.6	759.6	2.896	766.48				
1/1/	2	UNIT	/RUN	2)		BAROMETRIC PRESSURE, IN. Ha	ASSUMED MOISTURE, BW		Clock Time	11:51	V	9	2)	'		4							,											77	CCS			
C. IENT		SOURCE	RAMETER	DAIE OPERATOR:	CONTROL LINIT	N N N N N N N N N N N N N N N N N N N	ROMETRIC	SUMED M		Cloc	Point 11.	- 30		3 15	02 4	5 25	25	8,	8 40	7 45	0 50	1 55	09 7	62		_	1 80	5 85	06 9	1 96	3 100	707		1/5	2 130	9	-	+	_
	3	တ္တြ	<u> </u>	DATE OPED	2 5	3	BA	AS	Ц	_	PC	L				100		^							1.55	h i	7		-	<u> </u>		9	5			I	Ц		=

LMU-B 1.9355 Static Operator Pbar MINTE Parameter Source Client Date LMU-D 1.0207 Static 29.86 Operator Pbar

0.0001 Run 3 9 1000.0 Run 2 Down 0.0001 Run 1 Leak Check Stack Dia Initial Final

000

0.0000.0 0.000 Run 2

201.4 × 6

Initial D. 000

Leak Check

Stack Dia

20001

Final

Run 1

Stack 313

DGM Outlet 612

DGM Volume (cu ft) / (m³)

Time (hhmm)

Run No.

0:05 2014276

Temp (°F)

Run 3

ď

Down

MIW+E

Parameter

Date

Source Client

1:05 202,1076 52

以光

201,7730

10:35

47

11:51 202,1172

0	R3												
ΔΡ IN. H ₂ O	R2												
∇	2												
Imp. Vol.	(mL)											0.0	
Temperature (°F)	Stack	313									F	Kum S	
Tempera	Outlet	44		96	44	94	22	20	S	5.6		Kun 2	
DGM Volume	(III) / (n	313.5852		805096	34.0720	314.0778	4.3750	314.6290	H CSLL	0661318		2	
DGM	3	513		717	-	314	3/4	314.	3.4	3/5		Kun I	
Time	(IIIIIIIIIII)	10:05		280	30:11	15.11	2 21	1.51	13.			2	
Run	į			•			7			17		ó	CO ₂
	R3												
ΔP IN. H ₂ O	R2												
Δ	R1												
Imp. Vol.	(mL)	561	0			175					,	C IIII	
		201				*					1 18	21	

25

13:11 262,7260

3

12.51 202.7180 52

262.4760 49

12.21

2

Run 3

Run 2

Run 1

N

 O_2

CO₂

24

14:11 203.4072

Client	M	V	W	1	E
CHEIR		-	. 4		-

05

Source Unit 3			Date NOV	19,24	
	Run 1	Run 2	Run 3	Run 4	Run 5
Pbar (in. Hg)	129.85	29.85	129.85		
Canister Number	AC 01860	A500356	A500880		
Controller Number	0A00367	0A02261	0A00920		
Gauge Number	0.100307	010440	Unourse		
Initial: Start Time	10:11	11;51	13:16		
Flask Vac. (in. Hg)	-15	29	-24		
Final: End Time	uin	12751	19:16		
Flask Vac. (in. Hg)	-3	5	7		
Those vac. (m. 11g)		1-3	-		
Source Uni+2			Date 20	- Nov-24	
	Run 1	Run 2	Run 3	Run 4	Run 5
Pbar (in. Hg)	12960	29.60	77.60		
Canister Number	A50 1381	ACOZ114			
Controller Number	0A00367	0A0 ZZ61	0A00970		
Gauge Number		No.			
Initial: Start Time	9:39	10:55	12:10		
Flask Vac. (in. Hg)	-28	-27.5) e	
Final: End Time	-6	11 35	13:10	-9	
Flask Vac. (in. Hg)	10:39	- 1)	-2		
Source			Date		_
9	Run 1	Run 2	Run 3	Run 4	Run 5
Pbar (in. Hg)					
Canister Number					
Controller Number					
Gauge Number				N. V.	
Initial: Start Time					
Flask Vac. (in. Hg)					
Final: End Time					
Flask Vac. (in. Hg)				T	7
Source			Date		_
	Run 1	Run 2	Run 3	Run 4	Run 5
Pbar (in. Hg)					
Canister Number					
Controller Number					
Gauge Number					
Initial: Start Time					
Flask Vac. (in. Hg)					
Final: End Time					
Flask Vac. (in. Hg)					

APPENDIX – F CALIBRATION SHEETS and TECHNICIAN CERTIFICATES

A.Lanfranco & Associates inc.

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: CAE AL1 Serial #: 0028-070611-1

27-Jun-24 Barometric Pressure: 29.85 (in. Hg)

Theoretical Critical Vacuum: 14.08 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)/3*(deg R)/0.5/((in.Hg)*(min)).

			DRY GA	S METER READIN	IGS	-				-CF	RITICAL ORIF	CE READING	SS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Te Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Aml Initial (deg F)	bient Temperat Final (deg F)	ure Average (deg F)
3.75	16.00	152.452	169.870	17.418	64.0	64.0	65.0	65.0	73	0.8185	17.0	63.0	69.0	66.0
1.95	33.00	169.870	195.805	25.935	66.0	66.0	70.0	69.0	63	0.5956	20.5	67.0	69.0	68.0
1.15	18.00	195.805	206.821	11.016	69.0	69.0	70.0	70.0	55	0.4606	22.0	70.0	71.0	70.5
0.67	21.00	206.821	216.604	9.783	70.0	70.0	72.0	72.0	48	0.3560	23.5	70.0	73.0	71.5
0.32	16.00	216.604	221.712	5.108	71.0	71.0	72.0	72.0	40	0.2408	24.5	72.0	73.0	72.5
DRY GA	S METER			ORIFICE			DRY GAS	S METER				ORIFICE		
VOLUME	VOLUME		VOLUME	VOLUME	VOLUME		CALIBRATIO	ON FACTOR		CAL	IBRATION FA	CTOR		
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)		CALIBRATIO Value (number)	ON FACTOR Y Variation (number)		CAL Value (in H2O)	IBRATION FA dH@ Value (mm H2O)	CTOR Variation (in H2O)		Ko (value
ORRECTED Vm(std)	CORRECTED Vm(std)		CORRECTED Vcr(std)	CORRECTED Vcr(std)	NOMINAL Vcr		Value	Y Variation		Value	dH@ Value	Variation		(value
ORRECTED Vm(std) (cu ft)	CORRECTED Vm(std) (liters)		CORRECTED Vcr(std) (cu ft)	CORRECTED Vcr(std) (liters)	NOMINAL Vcr (cu ft)		Value (number)	Y Variation (number)		Value (in H2O)	dH@ Value (mm H2O)	Variation (in H2O)		Ko (value 0.711 0.709
ORRECTED Vm(std) (cu ft) 17.648	CORRECTED Vm(std) (liters) 499.8		CORRECTED Vcr(std) (cu ft) 17.045	CORRECTED Vcr(std) (liters) 482.7	NOMINAL Vcr (cu ft) 17.027		Value (number) 0.966	Y Variation (number) -0.015		Value (in H2O) 1.867	dH@ Value (mm H2O) 47.41	Variation (in H2O) 0.047		(value 0.711
ORRECTED Vm(std) (cu ft) 17.648 26.001	CORRECTED Vm(std) (liters) 499.8 736.3		CORRECTED Vcr(std) (cu ft) 17.045 25.533	CORRECTED Vcr(std) (liters) 482.7 723.1	NOMINAL Vcr (cu ft) 17.027 25.603		Value (number) 0.966 0.982	Y Variation (number) -0.015 0.001		Value (in H2O) 1.867 1.830	dH@ Value (mm H2O) 47.41 46.47	Variation (in H2O) 0.047 0.010		(value 0.711 0.709
ORRECTED Vm(std) (cu ft) 17.648 26.001 10.986	CORRECTED Vm(std) (liters) 499.8 736.3 311.1		CORRECTED Vcr(std) (cu ft) 17.045 25.533 10.745	CORRECTED Vcr(std) (liters) 482.7 723.1 304.3	NOMINAL Vcr (cu ft) 17.027 25.603 10.825		Value (number) 0.966 0.982 0.978	Y Variation (number) -0.015 0.001 -0.003		Value (in H2O) 1.867 1.830 1.806	dH@ Value (mm H2O) 47.41 46.47 45.87	Variation (in H2O) 0.047 0.010 -0.014		0.71 0.70 0.71

				TEMPERATU	RE CALIBRA	TION				
alibration Stand	ard>	Omega Model	CL23A S/N:T-2	18768						
Reference				Ten	perature Devic	e Reading				
Set-Point	Sta	ick	Hot	Box	Pro	be	Imp	Out	A	ux
(deg F)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)
32	32	0.00%	35	0.61%	35	0.61%	32	0.00%	32	0.00%
100	100	0.00%	102	0.36%	103	0.54%	100	0.00%	100	0.00%
300	300	0.00%	301	0.13%	304	0.53%	299	-0.13%	300	0.00%
500	499	-0.10%	501	0.10%	504	0.42%	499	-0.10%	499	-0.10%
1000	998	-0.14%	1001	0.07%	1004	0.27%	999	-0.07%	999	-0.07%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02.
For Orfice Calibration Factor dH8, the orfice differential pressure in inches of H20 that equates to 0.75 direct air 48 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +0.2.
For Temperature Devices, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by:	Liam Forrer	ignature:	Date:	June 27, 2024

A.Lanfranco & Associates inc.

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: FE 18 05-Jul-24

Serial #: 0028-020118-1 Barometric Pressure: 30.05 (in. Hg) Theoretical Critical Vacuum: 14.17 (in. Hg)

111111111

IMPORTANT IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above. The Critical Orifice Coefficient, K', must be entered in English units, (ft)\^3*(deg R)\^0.5/((in.Hg)*(min)).

(in H2O) (min) (cu ft) (cu ft) (deg F) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) 3.50 17.00 495.355 514.226 18.871 79.0 79.0 79.0 79.0 73 0.8185 14.0 80.0 80.0 80.0 2.00 15.00 516.055 528.580 12.525 80.0 80.0 80.0 80.0 63 0.5956 17.0 80.0 80.0 80.0 1.20 17.00 528.580 538.799 10.219 81.0 81.0 82.0 82.0 55 0.4606 18.5 80.0 80.0 80.0 0.70 15.00 538.799 545.714 6.915 81.0 81.0 82.0 82.0 82.0 48 0.3560 19.5 81.0 81.0 81.0			DRY GA	S METER READ	INGS					-CR	ITICAL ORIF	ICE READING	SS-	
2.00 15.00 516.055 528.580 12.525 80.0 80.0 80.0 80.0 63 0.5956 17.0 80.0 80.0 1.20 17.00 528.580 538.799 10.219 81.0 81.0 82.0 82.0 55 0.4606 18.5 80.0 80.0 80.0 0.70 15.00 538.799 545.714 6.915 81.0 81.0 82.0 82.0 48 0.3560 19.5 81.0 81.0 81.0		Initial	Final	Total	Inlet	Outlet	Inlet	Outlet	Serial#	Coefficient	Vacuum	Initial	Final	ature Average (deg F)
1.20 17.00 528.580 538.799 10.219 81.0 81.0 82.0 82.0 55 0.4606 18.5 80.0 80.0 80.0 0.70 15.00 538.799 545.714 6.915 81.0 81.0 82.0 82.0 48 0.3560 19.5 81.0 81.0 81.0	17.00	495.355	514.226	18.871	79.0	79.0	79.0	79.0	73	0.8185	14.0	80.0	80.0	80.0
0.70 15.00 538.799 545.714 6.915 81.0 81.0 82.0 82.0 48 0.3560 19.5 81.0 81.0 81.0	15.00	516.055	528.580	12.525	80.0	80.0	80.0	80.0	63	0.5956	17.0	80.0	80.0	80.0
	17.00	528.580	538.799	10.219	81.0	81.0	82.0	82.0	55	0.4606	18.5	80.0	80.0	80.0
0.35 15.00 545.714 550.356 4.642 82.0 82.0 82.0 82.0 40 0.2408 21.0 81.0 82.0 81.5	15.00	538.799	545.714	6.915	81.0	81.0	82.0	82.0	48	0.3560	19.5	81.0	81.0	81.0
	15.00	545.714	550.356	4.642	82.0	82.0	82.0	82.0	40	0.2408	21.0	81.0	82.0	81.5
		(min) 17.00 15.00 17.00 15.00	Time Initial (cu ft) 17.00 495.355 15.00 516.055 17.00 528.580 15.00 538.799	Volume Volume Time (min) Initial (cu ft) Final (cu ft) 17.00 495.355 514.226 15.00 516.055 528.580 17.00 528.580 538.799 15.00 538.799 545.714	Volume Volume Volume Time (min) Initial (cu ft) Final (cu ft) Total (cu ft) 17.00 495.355 514.226 18.871 15.00 516.055 528.580 12.525 17.00 528.580 538.799 10.219 15.00 538.799 545.714 6.915	Volume Volume Volume Initial Time (min) Initial Final	Time (min) Initial (cu ft) Final (cu ft) Total (cu ft) Inlet (deg F) Outlet (deg F) 17.00 495.355 514.226 18.871 79.0 79.0 15.00 516.055 528.580 12.525 80.0 80.0 17.00 528.580 538.799 10.219 81.0 81.0 15.00 538.799 545.714 6.915 81.0 81.0	Volume Time (min) Volume Initial Final (cu ft) Volume (cu ft) Volume (cu ft) Final Inlet (deg F) Final Inlet (deg F)	Volume (min) Volume (cu ft) Volume (cu ft) Volume (cu ft) Initial Temps. (deg F) Final Temps. Inlet Final Temps. (deg F) Final Temps. (deg F) Inlet Outlet (deg F) Outlet (deg F)	Volume Volume Initial Volume Final Volume Total (min) Volume Initial Final (cu ft) Volume Initial Temps. Inlet Final Temps. Orifice Serial# (deg F) (deg F) (deg F) Orifice Serial# (number) 17.00 495.355 514.226 18.871 79.0 79.0 79.0 79.0 73 15.00 516.055 528.580 12.525 80.0 80.0 80.0 80.0 63 17.00 528.580 538.799 10.219 81.0 81.0 82.0 82.0 52.0 55 15.00 538.799 545.714 6.915 81.0 81.0 82.0 82.0 48	Volume Volume Initial Volume Final Volume Total (ou ft) Initial Temps. Inlet Final Temps. Inlet Orifice Serial# Coefficient (ou ft) K' Orifice Coefficient (ou ft) 17.00 495.355 514.226 18.871 79.0 79.0 79.0 79.0 73 0.8185 15.00 516.055 528.580 12.525 80.0 80.0 80.0 80.0 63 0.5956 17.00 528.580 538.799 10.219 81.0 81.0 82.0 82.0 48.0 0.3560 15.00 538.799 545.714 6.915 81.0 81.0 82.0 82.0 48 0.3560	Volume (min) Volume (cu ft) Volume (cu ft) Volume (cu ft) Volume (deg F) Final Temps. (deg F) Orifice (deg F) K' Orifice Serial# (number) Actual Vacuum (in Hg) 17.00 495.355 514.226 18.871 79.0 79.0 79.0 79.0 73 0.8185 14.0 15.00 516.055 528.580 12.525 80.0 80.0 80.0 80.0 63 0.5956 17.0 17.00 528.580 538.799 10.219 81.0 81.0 82.0 82.0 82.0 48 0.3560 19.5 15.00 538.799 545.714 6.915 81.0 81.0 82.0 82.0 48 0.3560 19.5	Volume Volume Initial Final (min) Volume (cu ft) Volume Initial Final (cu ft) Volume Initial Final (cu ft) Initial Inlet (deg F) Final Temps. (deg F) Orifice (deg F) K' Orifice (cu ft) Actual (min) (deg F) Am (deg F) 17.00 495.355 514.226 18.871 79.0 79.0 79.0 79.0 73 0.8185 14.0 80.0 15.00 516.055 528.580 12.525 80.0 80.0 80.0 80.0 63 0.5956 17.0 80.0 17.00 528.580 538.799 10.219 81.0 81.0 82.0 82.0 55 0.4606 18.5 80.0 15.00 538.799 545.714 6.915 81.0 81.0 82.0 82.0 48 0.3560 19.5 81.0	Volume Volume Volume Volume Volume Initial Temps. Final Temps. Orifice Serial# K' Orifice Coefficient (number) Actual Vacuum (in Hg) Ambient Tempera Initial Final (deg F) 17.00 495.355 514.226 18.871 79.0 79.0 79.0 79.0 73 0.8185 14.0 80.0 80.0 15.00 516.055 528.580 12.525 80.0 80.0 80.0 80.0 63 0.5956 17.0 80.0 80.0 17.00 528.580 538.799 10.219 81.0 81.0 82.0 82.0 55 0.4606 18.5 80.0 80.0 15.00 538.799 545.714 6.915 81.0 81.0 82.0 82.0 48 0.3560 19.5 81.0 81.0

		******	******	****** RESI	JLTS *****	**********	******	****		
DRY GAS	S METER		ORIFICE		DRY GA	S METER			ORIFICE	
VOLUME CORRECTED	VOLUME CORRECTED	VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		ON FACTOR Y		LIBRATION FA dH@		
Vm(std)	Vm(std)	Vcr(std)	Vcr(std)	Vcr	Value	Variation	Value	Value	Variation	Ko
(cu ft)	(liters)	(cu ft)	(liters)	(cu ft)	(number)	(number)	(in H2O)	(mm H2O)	(in H2O)	(value)
18.718	530.1	17.993	509.6	18.330	0.961	-0.029	1.729	43.91	-0.125	0.749
12.355	349.9	11.553	327.2	11.769	0.935	-0.055	1.862	47.30	0.008	0.744
10.033	284.1	10.126	286.8	10.315	1.009	0.019	1.863	47.33	0.009	0.690
6.781	192.0	6.899	195.4	7.041	1.017	0.028	1.823	46.30	-0.031	0.692
4.544	128.7	4.664	132.1	4.765	1.027	0.037	1.992	50.60	0.138	0.656
				Average Y>	0.9899	Average dH@>	1.854	47.1	Average Ko>	0.706

				TEMPERATU	RE CALIBRA	TION				
Calibration Stand	ard>	Omega Model	CL23A S/N:T-21		nperature Devic	e Reading				
Set-Point	Sta	ick	Hot	Box	Pro		Imp	Out	A	ux
(deg F)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff
32	32	0.00%	31	-0.20%	35	0.61%	31	-0.20%	32	0.00%
100	99	-0.18%	99	-0.18%	100	0.00%	99	-0.18%	99	-0.18%
300	299	-0.13%	299	-0.13%	301	0.13%	299	-0.13%	299	-0.13%
500	498	-0.21%	499	-0.10%	500	0.00%	499	-0.10%	499	-0.10%
1000	998	-0.14%	1000	0.00%	1008	0.55%	1000	0.00%	998	-0.14%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Signature: Calibrated by: Ben Lester Date: July 5, 2024

A.Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: ST CAE2 Date: 02-Jul-24

 Serial #:
 0028-072911-1
 Barometric Pressure:
 29.92
 (in. Hg)

 Theoretical Critical Vacuum:
 14.11
 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)/3*(deg R)/0.5/((in.Hg)*(min)).

			DRY GA	S METER READI	NGS	-				-CF	RITICAL ORIF	ICE READING	SS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial To Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Ami Initial (deg F)	bient Temperat Final (deg F)	ure Averag (deg F
3.85	17.00	318.200	336.620	18.420	67.0	67.0	68.0	68.0	73	0.8185	16.0	70.0	75.0	72.5
2.00	15.00	336.620	348.420	11.800	68.0	68.0	68.0	68.0	63	0.5956	18.5	76.0	78.0	77.0
1.20	15.00	348.420	357.575	9.155	70.0	70.0	70.0	70.0	55	0.4606	20.0	83.0	72.0	77.5
0.70	15.00	361.855	368.815	6.960	70.0	70.0	70.0	70.0	48	0.3560	21.0	67.0	67.0	67.0
0.33	15.00	368.815	373.670	4.855	70.0	70.0	71.0	71.0	40	0.2408	22.0	66.0	64.0	65.0
DRY GA	S METER			ORIFICE			DRY GAS					ORIFICE		
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR		CAL	IBRATION FA	CTOR		
Vm(std) (cu ft)	Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		Ko (value
18.604	526.9		18.041	510.9	18.202		0.970	-0.009		1.925	48.89	0.040		0.696
11.853	335.7		11.535	326.7	11.736		0.973	-0.006		1.902	48.32	0.018		0.699
	258.9		8.916	252.5	9.080		0.975	-0.004		1.903	48.34	0.019		0.699
9.144	196.6		6.960	197.1	6.949		1.002	0.023		1.822	46.28	-0.062		0.695
9.144 6.943			4.717	133.6	4.692		0.976	-0.004		1.869	47.46	-0.016		0.705
	136.9		4.717	133.0	4.002									

				TEMPERATU	RE CALIBRA	TION				
Calibration Stand	lard>	Omega Model	CL23A S/N:T-21		nperature Devic	e Reading				
Set-Point	Sta	ck	Hot	Box	Pro	be	Imp	Out	A	ux
(deg F)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)
32	33	0.20%	33	0.20%	31	-0.20%	33	0.20%	33	0.20%
100	101	0.18%	101	0.18%	100	0.00%	101	0.18%	101	0.18%
300	301	0.13%	302	0.26%	300	0.00%	301	0.13%	301	0.13%
500	500	0.00%	500	0.00%	500	0.00%	501	0.10%	501	0.10%
1000	1000	0.00%	1000	0.00%	1000	0.00%	1000	0.00%	1000	0.00%

Calibrated by: Ben Lester Signature: Date: July 2, 2024

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

LMU A Model #: Date: 24-Jun-24

Barometric Pressure: Serial #: Kimmon 186 29.98 (in. Hg)

> Theoretical Critical Vacuum: 14.14 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)/3*(deg R)/0.5/((in.Hg)*(min)).

!!!!!!!!!!

	DRY GAS METER READINGS								-CRITICAL ORIFICE READINGS-					
dH (in H2O) 0.00 0.00 0.00	Time (min) 21.00 15.00 16.00	Volume Initial (m³) 613.095 613.373 613.571	Volume Final (m³) 613.373 613.571 613.782	Volume Total (cu ft) 9.810 6.992 7.458	Initial To Inlet (deg F) 67.0 68.0 69.0	emps. Outlet (deg F) 67.0 68.0 69.0	Final Inlet (deg F) 69.0 70.0 73.0	Temps. Outlet (deg F) 69.0 70.0 73.0	Orifice Serial# (number) 48 48 48	K' Orifice Coefficient (see above) 0.3560 0.3560	Actual Vacuum (in Hg) 20.0 20.0 20.0	Am Initial (deg F) 65.0 71.0 70.0	bient Tempera Final (deg F) 70.0 70.0 72.0	Average (deg F) 67.5 70.5 71.0
DRY GA	S METER			*****************************		******** RES		****************	*****	****		ORIFICE		
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)		CALIBRATION Value (number)	ON FACTOR Y Variation (number)		CAL Value (in H2O)	LIBRATION FA dH@ Value (mm H2O)	Variation (in H2O)		
9.826 6.990 7.428	278.3 198.0 210.4		9.759 6.951 7.411	276.4 196.8 209.9	9.734 6.972 7.441		0.993 0.994 0.998	-0.002 -0.001 0.003		0.000 0.000 0.000	0.00 0.00 0.00	0.000 0.000 0.000		
7.420	210.4		7.411	203.3	1.441		0.330	0.000		0.000	0.00	0.000		
					Aver	age Y>	0.9950	Avera	ge dH@>	0.0000	0.00			

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

Calibrated by: Liam Forrer

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2. For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable

Signature: Justin Ching June 24, 2024

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-B Date: 21-Jun-24

Serial #: Wizit 6276 Barometric Pressure: 29.85 (in. Hg)

Theoretical Critical Vacuum: 14.08 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

!!!!!!!!!

	DRY GAS METER READINGS									-CI	RITICAL ORIF	ICE READING	SS-	
dLl	Time	Volume Initial	Volume	Volume Total	Initial T	emps.	Final Inlet	Temps. Outlet	Orifice Serial#	K' Orifice Coefficient	Actual Vacuum	Aml Initial	bient Tempera Final	
dH (in H2O)	(min)	(m ³)	Final (m³)	(cu ft)	Inlet (deg F)	(deg F)	(deg F)	(deg F)	(number)	(see above)	(in Hg)	(deg F)	(deg F)	Average (deg F)
0.00	19.00	308.8520	309.0950	8.581	77.0	77.0	85.0	85.0	48	0.3560	20.0	86.0	86.0	86.0
0.00	19.00	309.0950	309.3400	8.652	84.0	84.0	88.0	88.0	48	0.3560	20.0	86.0	85.0	85.5
0.00	19.00	309.3400	309.5850	8.652	87.0	87.0	87.0	87.0	48	0.3560	20.0	85.0	90.0	87.5
DRY GA	S METER			**************************************		****** RES	:ULTS ******		******	******		ORIFICE		
2	·											·····		
VOLUME	VOLUME		VOLUME	VOLUME			CALIDDATIO	NIFACTOR				CTOD		
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y		CAL	LIBRATION FA dH@	CTOR		
CORRECTED Vm(std)	CORRECTED Vm(std)		CORRECTED Vcr(std)	CORRECTED Vcr(std)	NOMINAL Vcr		Value	Y Variation		Value	dH@ Value	Variation		
CORRECTED Vm(std) (cu ft)	CORRECTED Vm(std) (liters)		CORRECTED Vcr(std) (cu ft)	CORRECTED Vcr(std) (liters)	NOMINAL Vcr (cu ft)		Value (number)	Y Variation (number)		Value (in H2O)	dH@ Value (mm H2O)	Variation (in H2O)		
CORRECTED Vm(std) (cu ft) 8.352	CORRECTED Vm(std) (liters) 236.5		CORRECTED Vcr(std) (cu ft) 8.641	CORRECTED Vcr(std) (liters) 244.7	NOMINAL Vcr (cu ft) 8.960		Value (number) 1.035	Y Variation (number) -0.001		Value (in H2O) 0.000	dH@ Value (mm H2O) 0.00	Variation (in H2O) 0.000		
CORRECTED Vm(std) (cu ft) 8.352 8.344	CORRECTED Vm(std) (liters)		CORRECTED Vcr(std) (cu ft)	CORRECTED Vcr(std) (liters)	NOMINAL Vcr (cu ft)		Value (number)	Y Variation (number)		Value (in H2O)	dH@ Value (mm H2O)	Variation (in H2O)		
CORRECTED Vm(std) (cu ft) 8.352	CORRECTED Vm(std) (liters) 236.5 236.3		CORRECTED Vcr(std) (cu ft) 8.641 8.645	CORRECTED Vcr(std) (liters) 244.7 244.8	NOMINAL Vcr (cu ft) 8.960 8.956		Value (number) 1.035 1.036	Y Variation (number) -0.001 0.001		Value (in H2O) 0.000 0.000	dH@ Value (mm H2O) 0.00 0.00	Variation (in H2O) 0.000 0.000		

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer

Signature: Date: June 21, 2024

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

CRITICAL ORIENCE DEADINGS

Model #: LMU-D Date: 24-Jun-24

Serial #: **Wizit 4618** Barometric Pressure: 29.98 (in. Hg)

> Theoretical Critical Vacuum: 14.14 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above. **IMPORTANT**

DRY CAS METER READINGS

The Critical Orifice Coefficient, K', must be entered in English units, (ft)/3*(deg R)/0.5/((in.Hg)*(min)).

!!!!!!!!!!

DRY GAS METER READINGS								-CRITICAL ORIFICE READINGS-					
Time (min) 18.00	Volume Initial (m³)	Volume Final (m³) 180.649	Volume Total (cu ft) 8.158	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	Orifice Serial# (number) 48	K' Orifice Coefficient (see above) 0.3560	Actual Vacuum (in Hg) 20.0	Initial (deg F)	Final (deg F)	ature Average (deg F) 72.0
16.00	180.649	180.856	7.310	71.0	71.0	74.0	74.0	48	0.3560	20.0	72.0	75.0	73.5 73.5
10.00	100.000	101.000	0.001	12.0	12.0	12.0	12.0	70	0.0000	20.0	70.0	74.0	70.0
		******	******	******	******** RES	ULTS *****	******	******	******	****			
S METER			ORIFICE			DRY GA	S METER				ORIFICE		
VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y		CAL	IBRATION FA.	CTOR		
Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		
229.9		8.329	235.9	8.379		1.026	0.005		0.000	0.00	0.000		
205.6		7.393	209.4	7.458		1.018	-0.002		0.000	0.00	0.000		
192.9		6.931	196.3	6.992		1.018	-0.003		0.000	0.00	0.000		
-	(min) 18.00 16.00 15.00 SMETER VOLUME CORRECTED Vm(std) (liters) 229.9 205.6	Time (min) (m³) 18.00 180.418 16.00 180.649 15.00 180.856 SMETER VOLUME CORRECTED Vm(std) (liters) 229.9 205.6	Time (min) (m³) (m³) (m³) 18.00 180.418 180.649 16.00 180.649 180.856 15.00 180.856 181.050 **********************************	Time (min) (m³) (m³) (cu ft) 18.00 180.418 180.649 8.158 16.00 180.649 180.856 7.310 15.00 180.856 181.050 6.851 ***********************************	Time (min) Initial (m³) Final (m³) Total (cu ft) Inlet (deg F) 18.00 180.418 180.649 8.158 71.0 16.00 180.649 180.856 7.310 71.0 15.00 180.856 181.050 6.851 72.0 ***********************************	Time Initial Final Total Inlet Outlet (min) (m³) (m³) (cu ft) (deg F) (deg F) 18.00 180.418 180.649 8.158 71.0 71.0 16.00 180.649 180.856 7.310 71.0 71.0 15.00 180.856 181.050 6.851 72.0 72.0 ***********************************	Time (min) Initial (m³) Final (m³) Total (cu ft) Inlet (deg F) Outlet (deg F) Inlet (deg F) 18.00 180.418 180.649 8.158 71.0 71.0 72.0 16.00 180.649 180.856 7.310 71.0 71.0 74.0 15.00 180.856 181.050 6.851 72.0 72.0 72.0 ***********************************	Time (min) Initial (m³) Final (m³) Total (cu ft) Inlet (deg F) Outlet (deg F) (deg F)	Time Initial Final Total Inlet Outlet Inlet Outlet (min) (m³) (m³) (m³) (cu ft) (deg F) (deg F) (deg F) (deg F) (deg F) (number) 18.00 180.418 180.649 8.158 71.0 71.0 72.0 72.0 48 16.00 180.649 180.856 7.310 71.0 71.0 74.0 74.0 48 15.00 180.856 181.050 6.851 72.0 72.0 72.0 48 ***********************************	Time Initial Final Total Inlet Outlet Inlet Outlet (min) (m³) (m³) (cu ft) (deg F) (deg F) (deg F) (deg F) (deg F) (deg F) (number) (see above) 18.00 180.418 180.649 8.158 71.0 71.0 72.0 72.0 48 0.3560 16.00 180.649 180.856 7.310 71.0 71.0 74.0 74.0 48 0.3560 15.00 180.856 181.050 6.851 72.0 72.0 72.0 48 0.3560 ***********************************	Time Initial Final Total Inlet Outlet Inlet Outlet (min) (m³) (m³) (cu ft) (deg F) (deg F) (deg F) (deg F) (deg F) (number) (see above) (in Hg) 18.00 180.418 180.649 8.158 71.0 71.0 72.0 72.0 48 0.3560 20.0 16.00 180.649 180.856 7.310 71.0 71.0 74.0 74.0 48 0.3560 20.0 15.00 180.856 181.050 6.851 72.0 72.0 72.0 72.0 48 0.3560 20.0 **********************************	Time Initial (min) (m²) (m²) (cu ft) (deg F) (deg F) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (de	Time Initial Final (min) (m³) (m³) (cu tt) (deg F) (deg F) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (deg F) (deg F) (deg F) (deg F) (deg F) (number) (see above) (in Hg) (deg F) (number) (see above) (in Hg) (deg F) (de

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Signature: Calibrated by: Liam Forrer Date: June 24, 2024

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

GLASS NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Christian De La O Date: 25-Nov-24

Signature:

	_	$\overline{}$	//
-)_/	١ ١
- (\neg x	Mel

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
A	0.1270	0.1270	0.1255	0.0015	0.1265	0.0000873
G-165	0.1650	0.1660	0.1645	0.0015	0.1652	0.0001488
G-170	0.1700	0.1710	0.1695	0.0015	0.1702	0.0001579
G-178	0.1760	0.1770	0.1790	0.0030	0.1773	0.0001715
J	0.1890	0.1889	0.1891	0.0002	0.1890	0.0001948
E	0.1950	0.1930	0.1960	0.0030	0.1947	0.0002067
Q	0.2030	0.2040	0.2050	0.0020	0.2040	0.0002270
L	0.2100	0.2070	0.2090	0.0030	0.2087	0.0002375
P-2240	0.2160	0.2155	0.2170	0.0015	0.2162	0.0002549
P-224	0.2160	0.2170	0.2150	0.0020	0.2160	0.0002545
G-221	0.2160	0.2185	0.2190	0.0030	0.2178	0.0002588
G-225	0.2190	0.2175	0.2180	0.0015	0.2182	0.0002596
G-218	0.2180	0.2200	0.2210	0.0030	0.2197	0.0002632
G-2232	0.2210	0.2200	0.2215	0.0015	0.2208	0.0002660
P-223	0.2297	0.2296	0.2298	0.0002	0.2297	0.0002878
P-250	0.2500	0.2495	0.2505	0.0010	0.2500	0.0003409
C-250	0.2500	0.2500	0.2500	0.0000	0.2500	0.0003409
P-251	0.2545	0.2530	0.2540	0.0000	0.2538	0.0003409
P-254	0.2484	0.2330	0.2340	0.0013	0.2485	0.0003314
P-256	0.2540	0.2550	0.2560	0.0007	0.2550	0.0003508
P-280	0.2340	0.2330	0.2300	0.0020	0.2810	0.0003347
C-280	0.2810	0.2800	0.2800	0.0000	0.2800	0.0004307
G-282	0.2820	0.2800	0.2825	0.0000	0.2815	0.0004276
G-282 P-281						
	0.2820	0.2820	0.2815	0.0005	0.2818	0.0004332
G-304	0.3030	0.3040	0.3050	0.0020	0.3040	0.0005041
G-3121	0.3055	0.3063	0.3070	0.0015	0.3063	0.0005116
G-3085	0.3085	0.3080	0.3090	0.0010	0.3085	0.0005191
G-309	0.3045	0.3065	0.3065	0.0020	0.3058	0.0005101
G-3092	0.3100	0.3085	0.3090	0.0015	0.3092	0.0005213
P-311	0.3115	0.3120	0.3120	0.0005	0.3118	0.0005304
P-312	0.3120	0.3110	0.3105	0.0015	0.3112	0.0005281
P-343	0.3420	0.3430	0.3440	0.0020	0.3430	0.0006417
P-313	0.3140	0.3130	0.3130	0.0010	0.3133	0.0005355
P-314	0.3135	0.3135	0.3140	0.0005	0.3137	0.0005366
P-315	0.3145	0.3145	0.3145	0.0000	0.3145	0.0005395
V-06	0.3220	0.3215	0.3200	0.0020	0.3212	0.0005626
G-345	0.3470	0.3475	0.3475	0.0005	0.3473	0.0006580
P-346	0.3457	0.3456	0.3458	0.0002	0.3457	0.0006518
G-349	0.3490	0.3490	0.3490	0.0000	0.3490	0.0006643
P27	0.3490	0.3480	0.3500	0.0020	0.3490	0.0006643
G-367	0.3680	0.3660	0.3658	0.0022	0.3666	0.0007330
G-372	0.3669	0.3700	0.3668	0.0032	0.3679	0.0007382
P-374	0.3740	0.3720	0.3730	0.0020	0.3730	0.0007588
C-375	0.3730	0.3750	0.3745	0.0020	0.3742	0.0007636
P-375	0.3705	0.3710	0.3709	0.0005	0.3708	0.0007499
P-401	0.3980	0.3990	0.4000	0.0020	0.3990	0.0008683
P-405	0.4047	0.4055	0.4056	0.0009	0.4053	0.0008958
P-407	0.4065	0.4070	0.4072	0.0007	0.4069	0.0009030
G-433	0.4360	0.4360	0.4355	0.0005	0.4358	0.0010360
P-29	0.4681	0.4683	0.4685	0.0004	0.4683	0.0011961
G-437	0.4690	0.4690	0.4700	0.0010	0.4693	0.0012014
G-468	0.4700	0.4685	0.4720	0.0035	0.4702	0.0012057
P-7	0.4965	0.4945	0.4975	0.0030	0.4962	0.0013427
В	0.4981	0.4984	0.4989	0.0008	0.4985	0.0013552
		0.5410			0.5403	

Where:

(a) D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.

(b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.

(c) Average = average of D1, D2 and D3

Pitot Tube Calibration

Date: 02-Jul-24 Temp (R): 539 Pbar (in.Hg): 29.88 Dn (in.): 0.25

Pitot.	ID.	7Δ-1

ו ווטו וט.	/ A- I			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.240	0.330	32.7	0.8443	0.0007
0.360	0.495	40.1	0.8443	0.0007
0.440	0.610	44.3	0.8408	0.0028
0.560	0.770	50.0	0.8443	0.0007
0.640	0.880	53.4	0.8443	0.0007
		Average:	0.8436	0.0011

Pitot ID: ST 8A

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.220	0.300	31.3	0.8478	0.0020
0.335	0.455	38.7	0.8495	0.0003
0.420	0.570	43.3	0.8498	0.0001
0.530	0.720	48.6	0.8494	0.0004
0.630	0.850	53.0	0.8523	0.0026
-		Average:	0.8498	0.0010

Pitot ID: 7B

T HOLID.	70			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.230	0.320	32.0	0.8393	0.0045
0.370	0.510	40.6	0.8432	0.0006
0.450	0.620	44.8	0.8434	0.0004
0.540	0.740	49.1	0.8457	0.0019
0.630	0.860	53.0	0.8473	0.0035
		Average:	0.8438	0.0022

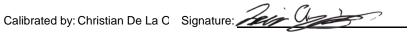
Pitot ID: ST 8B

	T HOLID.	0100			
Reference		S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
	0.230	0.310	32.0	0.8527	0.0013
	0.340	0.460	39.0	0.8511	0.0003
	0.440	0.600	44.3	0.8478	0.0036
	0.525	0.710	48.4	0.8513	0.0001
	0.640	0.860	53.4	0.8540	0.0026
			Average:	0.8514	0.0016

Pitot ID: 7 AL GVRD-1

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.220	0.300	16.3	0.8478	0.0006
0.340	0.460	19.9	0.8511	0.0028
0.430	0.590	25.3	0.8452	0.0032
0.560	0.760	35.8	0.8498	0.0015
0.660	0.900	48.4	0.8478	0.0006
		Average:	0.8483	0.0017

Pitot ID: ST 8C


T ROLID.	0.00			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.210	0.290	14.9	0.8425	0.0061
0.350	0.490	19.4	0.8367	0.0004
0.475	0.660	29.0	0.8399	0.0036
0.590	0.835	43.1	0.8322	0.0041
0.700	0.995	52.8	0.8304	0.0059
	_	Average:	0.8363	0.0040

Pitot ID: 7C

		T	T	
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.240	0.330	32.7	0.8443	0.0050
0.340	0.460	16.3	0.8511	0.0019
0.430	0.590	43.8	0.8452	0.0041
0.550	0.740	30.5	0.8535	0.0042
0.630	0.850	47.0	0.8523	0.0030
		Average:	0.8493	0.0036

Pitot ID:

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average:		

Date:

July 2, 2024

^{*} Average absolute deviation must not exceed 0.01.

	BAROMETER CALIBRATION FORM								
		Pbar E	nv Canada	Device (inc	hes of Hg)	Difference			
					Elevation				
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)			
LA	15-Jul-24	99.8	29.46	29.37	29.44	0.02			
DS	15-Jul-24	99.8	29.46	29.36	29.43	0.03			
CL	15-Jul-24	99.8	29.46	29.37	29.44	0.02			
JC	15-Jul-24	99.8	29.46	29.34	29.41	0.05			
LF	15-Jul-24	99.8	29.46	29.36	29.43	0.03			
SH	15-Jul-24	99.8	29.46	29.35	29.42	0.04			
CDO	15-Jul-24	99.8	29.46	29.34	29.41	0.05			
JG	15-Jul-24	99.8	29.46	29.32	29.39	0.07			
ML	15-Jul-24	99.8	29.46	29.34	29.41	0.05			
BL	15-Jul-24	99.8	29.46	29.36	29.43	0.03			

Calibrated by: Louis Agassiz Signature: Date: 15-Jul-24

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74_metric_e.html

Calibration Certificate

Date:04-Sep-24Insrtument Calibrated:Testo 1 (330-2LL)Calibrated by:Sean VerbySerial #:03101345Authorizing Signature:Customer:ALA

Ambient Conditions: Temperature: 20 °C Barometric Pressure: 102 kPa Relative Humidity: 76%

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

O_2		Initial Evalua	ation						
Gas	Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (vol %) % Calibration Error Pass/Fail			Notes	Certified Value (vol %)
Zero	0.2	0.20	Pass		0.2	0.20	Pass		0
O ₂ Ambient	11.3 20.9	0.30 0.05	Pass Pass		11.3 20.9	0.30 0.05	Pass Pass		11.00 20.95

Performance Specification: +/- 1% O₂ (absolute diff)

CO		Initial Evalua	ation						
Gas	Instrument Reading (ppm)	% Calibration Error Pass/Fail		Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero	0	0.0%	Pass		0	0.0%	Pass		0
1 Gas	243	4.2%	Pass		243	4.2%	Pass		254
2 Gas	496	1.7%	Pass		496	1.7%	Pass		504
3 Gas	918	3.7%	Pass		918	3.7%	Pass		953

Performance Specification: +/- 5% of Certified Gas Value

NO		Initial Evalua	ation						
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero 1 Gas	0 43	0.0% 4.1%	Pass Pass		0 43	0.0% 4.1%	Pass Pass		0 45
2 Gas 3 Gas	87 243	4.6% 2.6%	Pass Pass		87 243	4.6% 2.6%	Pass Pass		91 250
Joas	243	2.070	1 433		245	2.070	1 833		250

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure (PSI)	NO (ppm)	O ₂ (Vol. %)	CO (ppm)
				/	** /	,	** /
Zero Gas (N ₂)	075			1100	0	0	0
1 Gas	030	2023-12-19	2031-12-20	1500	44.84	0	253.6
2 Gas	5AE	2024-04-15	2032-04-15	1800	91.24	0	504.4
3 Gas	K2H	2024-05-22	2032-05-22	1900	249.6	0	952.9
O ₂ /CO ₂	742	2023-05-07	2031-06-07	650	0	11.00	0

Note: National Institute of Standards and Technology traceable certificates are available upon request.

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Calibrated by: Louis Agassiz
Date: 12-Jul-24

Signature:

TEMPERATURE DEVICE CALIBRATIONS

Reference Device	Reference Device			Temperature Settings (degrees F)													
Model CL23A Calibrator			3	32		100		200		300		500		800		1700	
Device	ALA#	Serial #	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	
Omega HH11A	3	300132	32	0.00%	99	-0.18%	201	0.15%	301	0.13%	500	0.00%	800	0.00%	1699	-0.05%	
Omega HH11A	4	200167	32	0.00%	99	-0.18%	200	0.00%	303	0.39%	499	-0.10%	799	-0.08%	1697	-0.14%	
Omega HH11A	6	600059	33	0.20%	100	0.00%	201	0.15%	300	0.00%	499.2	-0.08%	798	-0.16%	1696	-0.19%	
TPI 341K	7	2.0315E+10	31	-0.20%	99.6	-0.07%	199	-0.15%	301	0.13%	499.1	-0.09%	799.1	-0.07%	1695	-0.23%	
TPI 341K	8	2.0313E+10	32	0.00%	99.7	-0.05%	200.4	0.06%	301	0.13%	498.5	-0.16%	799.2	-0.06%	1696	-0.19%	
Cont Cmpny	10	102008464	31	-0.20%	99.2	-0.14%	199.5	-0.08%	299	-0.13%	499	-0.10%	799.1	-0.07%	1699	-0.05%	
Omega HH11	14	409426	32.5	0.10%	99.1	-0.16%	199	-0.15%	298	-0.26%	501	0.10%	799.1	-0.07%	1698	-0.09%	
TPI 341K	16	400120029	31	-0.20%	100	0.00%	199.2	-0.12%	299.3	-0.09%	501	0.10%	799.1	-0.07%	1700	0.00%	
TPI 341K	18	2.0329E+10	31	-0.20%	99.8	-0.04%	199.2	-0.12%	299.8	-0.03%	500	0.00%	799.5	-0.04%	1701	0.05%	
TPI 341K	20	2.0329E+10	31	-0.20%	99.2	-0.14%	199.1	-0.14%	299	-0.13%	499.2	-0.08%	799.2	-0.06%	1699	-0.05%	
TPI 341K	22	2.0329E+10	32	0.00%	99.6	-0.07%	199.2	-0.12%	298.4	-0.21%	499.1	-0.09%	798.5	-0.12%	1698	-0.09%	

Reference device is a NIST certified digital thermocouple calibrator

Variation expressed as a percentage of the absolute temperature must be within 1.5 %

MOUNT ROYAL COLLEGE

Faculty of Continuing Education and Extension

Carter Lanfranco

has successfully completed

Stack Sampling

May 2009

Date

Door

Faculty of Continuing Education and Extension

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Doclaration

	Deciaration
1_ Carter Lanfranco	, as a member of _Air and Waste Management Association
declare	
Select one of the following:	
Absence from conflict of interest	
Other than the standard fee I will receiv	ve for my professional services, I have no financial or
other interest in the outcome of this	project . I further declare that should a
conflict of interest arise in the future du	uring the course of this work, I will fully disclose the
circumstances in writing and without de Mr. Sajid Barlas	elay to, erring on the side of caution.

Real or perceived conflict of interest
Description and nature of conflict(s):
I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.
In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:
Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.
onflict of interest disclosure statement is collected under section 26(c) of the Freedom of nation and Protection of Privacy Act for the purposes of increasing government

This of . Info transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name: Conter

Witnessed by:

Mark Lanfranco Print name:

Date: Dec. 16, 2020

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional Carter Lankon
	Title Chief operations officer (au
2.	Are you a registered member of a professional association in B.C.?
	Name of Association:Registration #
3.	Brief description of professional services:
pro pu ca pe	ofessional ethics and accountability. By signing and submitting this statement you consent to its blication and its disclosure outside of Canada. This consent is valid from the date submitted and mnot be revoked. If you have any questions about the collection, use or disclosure of your resonal information please contact the Ministry of Environment and Climate Change Strategy adquarters Office at 1-800-663-7867.
	<u>Declaration</u>
	m a qualified professional with the knowledge, skills and experience to provide expert formation, advice and/or recommendations in relation to the specific work described above.
X	witnessed by: x Must faithful
	int Name: <u>Carter Lastrance</u> Pribt Name: // Jhalin Harrington
Da	ite signed: 1000

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Justin Ching

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 26, 2023

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

	<u>Decidiation</u>	
Justin Ching	, as a member of	Air and Waste Management Association
declare		
Select one of the following:		
Absence from conflict of interest		
Other than the standard fee I will recei	ive for my profession	al services, I have no financial or
other interest in the outcome of this	project	. I further declare that should a
conflict of interest arise in the future d	luring the course of t	his work, I will fully disclose the
circumstances in writing and without o	•	g on the side of caution.

\square Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conductine and standards of practice.	ng my work in accordance with my Code of Ethics
In addition, I will take the following stendard have disclosed, to ensure the public int	ps to mitigate the real or perceived conflict(s) I erest remains paramount:
	sure may be interpreted as a threat to my by the statutory decision maker accordingly.
Information and Protection of Privacy Act for transparency and ensuring professional ethic statement you consent to its publication and	es and accountability. By signing and submitting this its disclosure outside of Canada. This consent is revoked. If you have any questions about the information please contact the Ministry of
Signature: X Qustin Ching Print name: Justin Ching	Witnessed by: Mark Lanfranco Print name:
Date: June 28, 2023	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional	Justin Ching	
	Title	Environmental Technician	
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☑ No	
	Name of Association:	Registration #	
3. Brief description of professional services:			
Environmental Technician - specialising in air and atmospheric sciences			
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.			
<u>Declaration</u>			
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.			
Sig	nature:	Witnessed by:	
X	Justin Ching nt Name: Justin Ching	XDaryl Sampson	
Pri	nt Name: Justin Ching	XDaryl Sampson Print Name: Daryl Sampson	
Da	te signed: June 28, 2023		

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Liam Forrer

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 26, 2023

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

y work in accordance with my Code of Ethics
y work in accordance with my Code of Ethics
y work in accordance with my Code of Ethics
mitigate the real or perceived conflict(s) I tremains paramount:
may be interpreted as a threat to my e statutory decision maker accordingly.
Illected under section 26(c) of the Freedom of purposes of increasing government d accountability. By signing and submitting this lisclosure outside of Canada. This consent is oked. If you have any questions about the rmation please contact the Ministry of uarters Office at 1-800-663-7867.
Witnessed by:
X
Print name:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

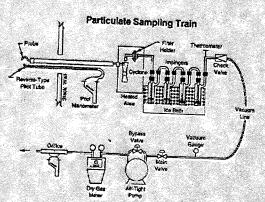
The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional	Liam Forrer			
	Title	Environmental Technician			
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☒ No			
	Name of Association:	Registration #			
3.	3. Brief description of professional services:				
	Environmental consulting, specializing in air and atmospheric sciences				
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.					
<u>Declaration</u>					
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.					
Sig	nature:	Witnessed by:			
<u>X</u>	Liam Forrer	x Daryl Sampson			
Pri	Liam Forrer nt Name: Liam Forrer	x Daryl Sampson Print Name: Daryl Sampson			
Da	te signed: July 12, 2023				

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.


Walter Smith & Associates, Inc.

is hereby granted to:

Louis Agassiz

to certify that they have completed to satisfaction

Source Sampling & CEMS Workshop

Granted: March 11, 2011

Walte & thath

Walter S, Smith, PE, DEE 3.5 CEU

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

\square Real or perceived conflict of interest				
Description and nature of conflict(s):	Description and nature of conflict(s):			
I will maintain my objectivity, conducting and standards of practice.	ng my work in accordance with my Code of Ethics			
	In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:			
Further, Locknowledge that this disclose	ure may be interpreted as a threat to may			
•	ure may be interpreted as a threat to my yethe statutory decision maker accordingly.			
Information and Protection of Privacy Act for transparency and ensuring professional ethics statement you consent to its publication and	s and accountability. By signing and submitting this its disclosure outside of Canada. This consent is revoked. If you have any questions about the information please contact the Ministry of			
Signature:	Witnessed by:			
X Print name: Louis Agassiz	Mark Lanfranco Print name:			
Date: Jan. 4, 2021				

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional Louis A	gassiz			
	Title Senior Env	ironmental Technicia	an/Project Manager		
2.	Are you a registered member of a professional	association in B.C.?	☐ Yes ☑ No		
	Name of Association:	Registration	#		
3.	3. Brief description of professional services: Environmental consulting, specializing in air and atmospheric sciences				
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.					
<u>Declaration</u>					
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.					
Sig	gnature:	Witnessed by:			
<u>X</u>	The Comment	xDaryl Sam	pson		
Pri	int Name: Louis Agassiz	Print Name: <u>Daryl Sa</u>	ampson		
Da	ate signed: November 23, 2020				

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Sean Verby

has successfully completed

Stack Sampling

The Faculty of Continuing Education

Mount Royal University

30 hours | May 1, 2024

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

\square Real or perceived conflict of interest		
Description and nature of conflict(s):		
I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.		
In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:		
Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.		
This conflict of interest disclosure statement is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting th statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.		
Signature: Witnessed by:		
X Mark Lanfranco		
Print name: Sean Verby Print name: Date: Sept, 4, 2024		

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1. Name of Qualified Professional	Sean Verby				
Title	Environmental Technician				
2. Are you a registered member of a	professional association in B.C.? ☐ Yes ☒ No				
Name of Association:	Registration #				
Brief description of professional services: Environmental consulting, specializing in air and atmospheric sciences					
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.					
<u>Declaration</u>					
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.					
Signature:	Witnessed by:				
x Solling	Daryl Sampson				
Print Name: Sean Verby	Print Name: Daryl Sampson				
Date signed: Sept, 4, 2024					

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Canadian Association for Laboratory Accreditation Inc.

Certificate of Accreditation

A. Lanfranco and Associates Inc. 101 - 9488 - 189th Street Surrey, British Columbia

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Accreditation No.: 1004232 Issued On: 4/11/2023 Accreditation Date: 2/5/2021 Expiry Date: 10/11/2025

President and CEO

This certificate is the property of the Canadian Association for Laboratory Accreditation Inc. and must be returned on request; reproduction must follow policy in place at date of issue. For the specific tests to which this accreditation applies, please refer to the laboratory's scope of accreditation at www.cala.ca.