

WASTE-TO-ENERGY FACILITY

Appendices of Emissions Testing Report November 2022 Survey Fourth Quarter 2022

Table of Contents

Appendix

- A Quality Assurance / Quality Control Results
- B Laboratory Results
- C Computer Generated Results
- D Field Data Sheets
- E Calibration Sheets and Technician Certificates

APPENDIX - A

QUALITY ASSURANCE / QUALITY CONTROL RESULTS

Quality assurance / quality control (QA/QC) is divided into four categories: administration, preparation, testing, and analysis. The following sections detail results found for the above four categories.

Administration:

- All field, process, and analytical data was reviewed to ensure data integrity and accuracy.
- Duplicate proof of draft and final report, including data entry, conducted.

Preparation:

- All glassware cleaned
- Blank samples of reagents collected.

Testing:

- Stack diameter and absence of cyclonic flow confirmed
- Calibrated magnehelic used for all velocity measurements
- All trains past pre- and post- leak checks.
- Isokinetics all within $100\% \pm 10\%$.

Analysis:

- Trace Metals and Mercury analysis conducted at Element Labs, Surrey, B.C.
- Fluoride (HF) analysis conducted at ALS Environmental in Burnaby, B.C.
- Nitrous Oxide (N₂O) analysis conducted with portable analyzer by A. Lanfranco and Associates.
- Particulate analysis conducted at A. Lanfranco and Associates Inc., Surrey, BC.
- Chain of Custody protocols followed for all samples.
- Acceptable blank values for all sample types. All samples blank corrected.

Sample Type	Blank Value				
Fourth Quarter 2022	Unit 1	Unit 2	Unit 3		
Filter	0.0 mg	0.0 mg	-0.1 mg		
Front Half Washings	0.1 mg	0.8 mg	0.6 mg		
Mercury Front	<0.02 ug	<0.02 ug	<0.02 ug		
Mercury Back	<0.21 ug	<0.17 ug	<0.17 ug		
Trace Metals Front *	<42.0 ug	<53.5 ug	<63.1 ug		
Trace Metals Back*	<30.4 ug	<20.8 ug	<37.1 ug		
Hexavalent Chromium	<0.70 ug	<0.70 ug	<0.70 ug		
Fluoride	<5.0 ug	<5.0 ug	<5.0 ug		

Sum of all reported elements except Hg*

APPENDIX - B LABORATORY RESULTS

Appendix B - Particulate Analysis

Filter Collection	on:
-------------------	-----

Filter Collection: Test #	Initial (grams)	Final (grams)	Net Diference (grams)	Blank Adjusted (grams)
	(3 2 2)	(9 = =)	(3)	(9 33 3)
Unit 1 Blank	0.4455	0.4455	0.0000	
Unit 1 Run 1	0.4470	0.4465	-0.0005	ND
Unit 1 Run 2	0.4414	0.4402	-0.0012	ND
Unit 1 Run 3	0.4418	0.4415	-0.0003	ND
Unit 2 Blank	0.4405	0.4405	0.0000	
Unit 2 Run 1	0.4482	0.4476	-0.0006	ND
Unit 2 Run 2	0.4475	0.4466	-0.0009	ND
Unit 2 Run 3	0.4412	0.4406	-0.0006	ND
Unit 3 Blank	0.4493	0.4492	-0.0001	
Unit 3 Run 1	0.4475	0.4483	0.0008	0.0009
Unit 3 Run 2	0.4531	0.4604	0.0073	0.0074
Unit 3 Run 3	0.4423	0.4483	0.0060	0.0061
Front Half Washings:				
Test #	Initial	Final	Net	Blank
	Initial	Final	Net Diference	Blank Adjusted
	Initial (grams)	Final (grams)		
Test #	(grams)	(grams)	Diference (grams)	Adjusted
			Diference	Adjusted
Test # Unit 1 Blank	(grams) 83.5145	(grams) 83.5146	Diference (grams) 0.0001	Adjusted (grams)
Test # Unit 1 Blank Unit 1 Run 1	(grams) 83.5145 86.6908	(grams) 83.5146 86.6911	Diference (grams) 0.0001 0.0003	Adjusted (grams)
Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3	(grams) 83.5145 86.6908 86.2500 86.2617	(grams) 83.5146 86.6911 86.2499 86.2621	0.0001 0.0003 -0.0001 0.0004	Adjusted (grams) 0.0002 ND
Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2	(grams) 83.5145 86.6908 86.2500	(grams) 83.5146 86.6911 86.2499	0.0001 0.0003 -0.0001	Adjusted (grams) 0.0002 ND
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank	(grams) 83.5145 86.6908 86.2500 86.2617 84.8732	(grams) 83.5146 86.6911 86.2499 86.2621 84.8740	0.0001 0.0003 -0.0001 0.0004	Adjusted (grams) 0.0002 ND 0.0003
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1	(grams) 83.5145 86.6908 86.2500 86.2617 84.8732 85.7028	(grams) 83.5146 86.6911 86.2499 86.2621 84.8740 85.7029	0.0001 0.0003 -0.0001 0.0004 0.0008 0.0001	Adjusted (grams) 0.0002 ND 0.0003
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1 Unit 2 Run 1	(grams) 83.5145 86.6908 86.2500 86.2617 84.8732 85.7028 85.5523	(grams) 83.5146 86.6911 86.2499 86.2621 84.8740 85.7029 85.5524	0.0001 0.0004 0.0008 0.0001 0.0001	Adjusted (grams) 0.0002 ND 0.0003
Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1 Unit 2 Run 2 Unit 2 Run 2 Unit 2 Run 3	(grams) 83.5145 86.6908 86.2500 86.2617 84.8732 85.7028 85.5523 85.4558	(grams) 83.5146 86.6911 86.2499 86.2621 84.8740 85.7029 85.5524 85.4556	0.0001 0.0003 -0.0004 0.0008 0.0001 0.0001 -0.0002	Adjusted (grams) 0.0002 ND 0.0003
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1 Unit 2 Run 2 Unit 2 Run 3 Unit 3 Blank	(grams) 83.5145 86.6908 86.2500 86.2617 84.8732 85.7028 85.5523 85.4558 84.1462	(grams) 83.5146 86.6911 86.2499 86.2621 84.8740 85.7029 85.5524 85.4556 84.1468	0.0001 0.0003 -0.0004 0.0008 0.0001 0.0001 -0.0002	Adjusted (grams) 0.0002 ND 0.0003 ND ND ND
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1 Unit 2 Run 2 Unit 2 Run 3 Unit 3 Blank Unit 3 Blank Unit 3 Run 1	(grams) 83.5145 86.6908 86.2500 86.2617 84.8732 85.7028 85.5523 85.4558 84.1462 85.7765	(grams) 83.5146 86.6911 86.2499 86.2621 84.8740 85.7029 85.5524 85.4556 84.1468 85.7782	0.0001 0.0004 0.0008 0.0001 0.0001 0.0001 0.0002 0.0006 0.0017	Adjusted (grams) 0.0002 ND 0.0003 ND ND ND ND ND ND ND
Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1 Unit 2 Run 2 Unit 2 Run 3 Unit 3 Blank Unit 3 Run 1 Unit 3 Run 1 Unit 3 Run 2 Unit 3 Run 2	(grams) 83.5145 86.6908 86.2500 86.2617 84.8732 85.7028 85.5523 85.4558 84.1462 85.7765 85.7239 81.7898	(grams) 83.5146 86.6911 86.2499 86.2621 84.8740 85.7029 85.5524 85.4556 84.1468 85.7782 85.7262 81.7936	0.0001 0.0003 -0.0004 0.0008 0.0001 0.0001 -0.0002 0.0006 0.0017 0.0023 0.0038	Adjusted (grams) 0.0002
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1 Unit 2 Run 2 Unit 2 Run 3 Unit 3 Blank Unit 3 Run 1 Unit 3 Run 1 Unit 3 Run 1	(grams) 83.5145 86.6908 86.2500 86.2617 84.8732 85.7028 85.5523 85.4558 84.1462 85.7765 85.7239	(grams) 83.5146 86.6911 86.2499 86.2621 84.8740 85.7029 85.5524 85.4556 84.1468 85.7782 85.7262 81.7936	0.0001 0.0003 -0.0004 0.0008 0.0001 0.0001 -0.0002 0.0006 0.0017 0.0023	Adjusted (grams) 0.0002

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617486

Control Number:

Date Received: Nov 25, 2022
Date Reported: Dec 16, 2022

Pagent Number: 2821006

Report Number: 2821906

Contact	Company		Address
Mark Lanfranco	A. Lanfran	co & Associates	#101, 9488 - 189 Street
			Surrey, BC V4N 4W7
			Phone: (604) 881-2582 Fax: (604) 881-2581
			Email: mark.lanfranco@alanfranco.com
Delivery		Format	<u>Deliverables</u>
Email - Multiple Delive	erables By Lot	PDF	COC / COA
Email - Multiple Delive	erables By Lot	PDF	COC / Test Report

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Filter Reagent Blanks

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617486

Control Number:

Date Received: Nov 25, 2022
Date Reported: Dec 16, 2022
Report Number: 2821006

Report Number: 2821906

 Reference Number
 1617486-1
 1617486-2
 1617486-3

 Sample Date
 Nov 14, 2022
 Nov 14, 2022
 Nov 14, 2022

 Sample Time
 NA
 NA
 NA

 Sample Location
 NA
 NA
 NA

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3 Container 1 (filter) Container 1 (filter) Container 1 (filter)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	ction 1A					
Aluminum		μg	6	7	6	5
Antimony		μg	3	4	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	0.5	0.25
Chromium		μg	0.39	1.2	0.44	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	3.0	2	1	0.25
Lead		μg	3.5	<2	2	1.5
Manganese		μg	0.7	<0.3	0.3	0.25
Nickel		μg	2	2	1	0.5
Phosphorus		μg	38	37	32	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	<2	4.3	<2	2
Thallium		μg	2.7	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	2	2.8	2	0.5
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	<0.02	< 0.02	

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617486

Control Number:

Date Received: Nov 25, 2022
Date Reported: Dec 16, 2022
Report Number: 2821906

Method of Analysis

Method Name Method Reference Date Analysis Location Started Mercury in Air (VAN) - 1B **EMC** * Metals Emissions from Stationary Dec 14, 2022 Element Vancouver Sources, 29 Metals in Stack Samples - Front half **EMC** Metals Emissions from Stationary Nov 28, 2022 Element Vancouver (VAN) Sources, 29

* Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617475

Control Number:

Date Received: Nov 25, 2022
Date Reported: Dec 16, 2022

Report Number: 2821896

Contact	Company		Address			
Mark Lanfranco	Lanfranco A. Lanfranco & Associates #101, 9488 - 189 Street			488 - 189 Street		
			Surrey, BC V4N 4W7			
			Phone:	(604) 881-2582	Fax:	(604) 881-2581
			Email:	Email: mark.lanfranco@alanfranco.com		
Delivery	<u>Delivery</u> <u>Format</u>			<u>Deliverables</u>		
Email - Multiple Deliverable	s By Lot	PDF		COC / COA		
Email - Multiple Deliverables By Lot PDF			COC / Test Report			

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617475

NA

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022

2821896 Report Number:

Reference Number 1617475-1 1617475-2 1617475-3 Sample Date Nov 14, 2022 Nov 14, 2022 Nov 14, 2022 Sample Time NA NA **Sample Location**

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	tion 1A					
Aluminum		μg	<5	<5	<5	5
Antimony		μg	5	<2	3	2.5
Arsenic		μg	<1	2	<1	1
Cadmium		μg	0.7	0.4	0.3	0.25
Chromium		μg	0.41	0.73	1.2	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	1	2	0.9	0.25
Lead		μg	<2	5.5	2	1.5
Manganese		μg	0.3	0.3	<0.3	0.25
Nickel		μg	2	2	1	0.5
Phosphorus		μg	<2	<2	3	2.5
Selenium		μg	2	<2	18	1.5
Tellurium		μg	<2	<2	3.3	2
Thallium		μg	7.2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	2	3.3	2	0.5
Back Half Metals Frac	tion 2A					
Aluminum		μg	<5	<5	<5	5
Antimony		μg	<3	<3	<3	2.5
Arsenic		μg	<1	<1	2	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	<0.2	<0.2	<0.2	0.2
Cobalt		μg	<0.3	0.5	<0.3	0.25
Copper		μg	<0.3	2	2	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	<0.3	<0.3	0.9	0.25
Nickel		μg	1	<0.5	1.0	0.5
Phosphorus		μg	20	20	20	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	5.7	<2	<2	2
Thallium		μg	<2	3.1	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	3.3	2.9	3	0.5
Volume	Sample	mL	215	210	210	
Volume	aliquot volume	mL	165	160	160	
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617475

Control Number:

Date Received: Nov 25, 2022
Date Reported: Dec 16, 2022
Decent Number: 2824806

Report Number: 2821896

 Reference Number
 1617475-1
 1617475-2
 1617475-3

 Sample Date
 Nov 14, 2022
 Nov 14, 2022
 Nov 14, 2022

 Sample Time
 NA
 NA
 NA

Sample Location

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - Co	ontinued					
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	215	210	210	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	43	40	
Mercury	Fraction 2B	μg/sample	< 0.09	< 0.09	<0.08	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	99	99	97	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.008	< 0.008	<0.008	
Mercury	As Tested	μg/L	< 0.05	< 0.05	0.12	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	µg/sample	<0.04	< 0.04	0.098	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	< 0.02	<0.02	<0.02	

Approved by:

Abhishek Suryawanshi

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617475

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022 Report Number: 2821896

Method of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Dec 14, 2022	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Nov 28, 2022	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Nov 28, 2022	Element Vancouver
		* Reference Method Modified		

Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617510

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022

Report Number: 2821938

Contact	Company		Address			
Mark Lanfranco	Lanfranco A. Lanfranco & Associates #101, 9488 - 189 Street			488 - 189 Street		
			Surrey, BC V4N 4W7			
			Phone:	(604) 881-2582	Fax:	(604) 881-2581
			Email:	Email: mark.lanfranco@alanfranco.com		
Delivery	<u>Delivery</u> <u>Format</u>			<u>Deliverables</u>		
Email - Multiple Deliverable	s By Lot	PDF		COC / COA		
Email - Multiple Deliverables By Lot PDF			COC / Test Report			

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Project ID: Metro Vancouver WTE

Field Blanks

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022

Lot ID: 1617510

2821938 Report Number:

Reference Number Sample Date Sample Time **Sample Location**

Sample Description

Matrix

1617510-1 Nov 15, 2022 NA

Field Blank Unit 1

1617510-2 Nov 18, 2022

1617510-3 Nov 16, 2022

NA

NA

Field Blank Unit 3 Field Blank Unit 2 (MET D Blk + 4 (MET E Blk + 4

(MET A Blk + 4 Bottles) Bottles) Stack Samples

Bottles) Stack Samples Stack Samples

			Ctack Campies	Otack Campies	Ctdok Campios	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals F	raction 1A					
Aluminum		μg	<5	7	<5	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	0.3	0.4	0.4	0.25
Chromium		μg	0.49	0.33	0.42	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	<0.3	0.8	<0.3	0.25
Lead		μg	<2	<2	5.5	1.5
Manganese		μg	<0.3	<0.3	0.7	0.25
Nickel		μg	1	<0.5	1	0.5
Phosphorus		μg	37	41	38	2.5
Selenium		μg	<2	<2	6.4	1.5
Tellurium		μg	<2	<2	3.5	2
Thallium		μg	<2	2	3.2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	3.2	2	4.0	0.5
Back Half Metals F	raction 2A					
Aluminum		μg	6	<5	8	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<0.9	<0.9	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	<0.2	<0.2	<0.2	0.2
Cobalt		μg	<0.2	0.3	<0.2	0.25
Copper		μg	<0.2	3.3	0.7	0.25
Lead		μg	<1	<1	<1	1.5
Manganese		μg	<0.2	<0.2	<0.2	0.25
Nickel		μg	1	<0.5	2	0.5
Phosphorus		μg	20	6	20	2.5
Selenium		μg	<1	8.7	<1	1.5
Tellurium		μg	<2	<2	2.9	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	3.4	2.5	3.5	0.5
Volume	Sample	mL	350	320	335	
Volume	aliquot volume	mL	300	270	285	
Mercury by CVAA	·					
Mercury	As Tested	μg/L	< 0.05	<0.05	<0.05	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Field Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617510

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022

Report Number: 2821938

Reference Number 1617510-1 1617510-2 1617510-3 Sample Date Nov 18, 2022 Nov 16, 2022 Nov 15, 2022 Sample Time NA NA NA

Sample Location

Sample Description Field Blank Unit 1

Field Blank Unit 2 (MET D Blk + 4 (MET A Blk + 4 Bottles) Bottles)

Field Blank Unit 3 (MET E Blk + 4 Bottles)

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Units Results Results Analyte Results Limit Mercury by CVAA - Continued **Dilution Factor** As Tested 1 1 1 Volume Sample mL 250 250 250 aliquot volume Volume 25 25 25 mL 40 40 Volume Final mL 40 Mercury Fraction 1B µg/sample < 0.02 < 0.02 < 0.02 Mercury As Tested μg/L < 0.05 < 0.05 < 0.05 0.05 **Dilution Factor** As Tested 1 Volume Sample mL 350 320 335 Volume aliquot volume mL 5.0 5.0 5.0 Volume Final mL 40 40 40 Mercury Fraction 2B µg/sample < 0.1 < 0.1 < 0.1 0.05 As Tested < 0.05 < 0.05 < 0.05 Mercury µg/L **Dilution Factor** As Tested 1 1 1 100 127 Volume Sample mL 123 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 µg/sample Mercury Fraction 3A < 0.008 < 0.01 < 0.010 < 0.05 < 0.05 0.05 Mercury As Tested μg/L < 0.05 **Dilution Factor** As Tested 1 1 1 Volume Sample mL 1000 500 500 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Fraction 3B < 0.08 < 0.04 < 0.04 Mercury µg/sample As Tested < 0.05 < 0.05 < 0.05 0.05 Mercury µg/L **Dilution Factor** As Tested 1 1 1 Sample 200 200 200 Volume mL 25 Volume aliquot volume mL 25 25 Volume Final mL 40 40 40 Fraction 3C < 0.02 < 0.02 < 0.02 Mercury µg/sample

Approved by:

Abhishek Suryawanshi

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617510

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022 Report Number: 2821938

Method of Analysis

Reference	Method	Date Analysis Started	Location
EMC	* Metals Emissions from Stationary Sources, 29	Dec 14, 2022	Element Vancouver
EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
EMC	 Metals Emissions from Stationary Sources, 29 	Nov 28, 2022	Element Vancouver
EMC	 Metals Emissions from Stationary Sources, 29 	Nov 28, 2022	Element Vancouver
	EMC EMC EMC EMC EMC	EMC * Metals Emissions from Stationary Sources, 29 EMC * Metals Emissions from Stationary	EMC * Metals Emissions from Stationary Sources, 29 EMC * Metals Emissions from Stationary Dec 14, 2022 Sources, 29 EMC * Metals Emissions from Stationary Dec 14, 2022 Sources, 29 EMC * Metals Emissions from Stationary Dec 14, 2022 Sources, 29 EMC * Metals Emissions from Stationary Nov 28, 2022 Sources, 29 EMC * Metals Emissions from Stationary Nov 28, 2022

Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

Surrey, BC, Cana V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617496

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022 Report Number: 2821909

Contact	Company	Address			
Mark Lanfranco	A. Lanfran	co & Associates	#101, 9488 - 189 Street		
			Surrey, BC V4N 4W7		
			Phone: (604) 881-2582 Fax: (604) 881-2581		
			Email: mark.lanfranco@alanfranco.com		
Delivery		<u>Format</u>	<u>Deliverables</u>		
Email - Multiple Delivera	bles By Lot	PDF	COC / COA		
Email - Multiple Delivera	bles By Lot	PDF	COC / Test Report		

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Matrix

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617496

Control Number:

Date Received: Nov 25, 2022
Date Reported: Dec 16, 2022

Report Number: 2821909

Reference Number Sample Date Sample Time Sample Location 1617496-1 Nov 14, 2022 NA 1617496-2 Nov 15, 2022 1617496-3 Nov 15, 2022

NA NA

R-1 + 4 Bottles)
Stack Samples

Sample Description Unit 1 Run 1 (MET A Unit 1 Run 2 (MET A Unit 1 Run 3 (MET A

R-2 + 4 Bottles)
Stack Samples

R-3 + 4 Bottles)
Stack Samples

				<u>_</u>		Nominal Detection
Analyte		Units	Results	Results	Results	Limit
Front Half Metals Frac	ction 1A					
Aluminum		μg	5	26	77	5
Antimony		μg	3	<2	<2	2.5
Arsenic		μg	<1	5.0	<1	1
Cadmium		μg	0.4	<0.3	0.3	0.25
Chromium		μg	2.53	1.1	1.5	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	2	3.5	3.1	0.25
Lead		μg	2	9.0	<2	1.5
Manganese		μg	1	2	2	0.25
Nickel		μg	4.5	3.3	3.0	0.5
Phosphorus		μg	34	35	29	2.5
Selenium		μg	5.0	<2	<2	1.5
Tellurium		μg	4.6	<2	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	3.7	5.0	4.5	0.5
Back Half Metals Frac	ction 2A					
Aluminum		μg	43	84	20	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<0.9	1	<0.8	1
Cadmium		μg	<0.2	0.5	<0.2	0.25
Chromium		μg	1.1	2.84	3.42	0.2
Cobalt		μg	<0.2	1	<0.2	0.25
Copper		μg	2	6.9	0.3	0.25
Lead		μg	<1	17	2	1.5
Manganese		μg	2	3.3	0.8	0.25
Nickel		μg	2	2	2.5	0.5
Phosphorus		μg	22	30	10	2.5
Selenium		μg	<1	<1	<1	1.5
Tellurium		μg	3.0	<2	<2	2
Thallium		μg	2	4.2	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.8	1
Zinc		μg	16	40.9	11	0.5
Volume	Sample	mL	810	785	870	
Volume	aliquot volume	mL	760	735	820	
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05	<0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617496

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022

2821909 Report Number:

1617496-2 Reference Number 1617496-1 1617496-3 Sample Date Nov 14, 2022 Nov 15, 2022 Nov 15, 2022 Sample Time NA NA NA

Sample Location

Sample Description Unit 1 Run 1 (MET A Unit 1 Run 2 (MET A Unit 1 Run 3 (MET A R-3 + 4 Bottles)

R-1 + 4 Bottles) R-2 + 4 Bottles)

Stack Samples Stack Samples

Mercury by CVAA - Continued Wercury by CVAA - Continued Volume Sample mL 250 250 250 250 Volume Final mL 40 40 40 40 Mercury Fraction 1B μg/sample <0.02 <0.02 <0.02 <0.02 Mercury As Tested μg/L 0.05 <0.05 <0.05 <0.05 Dilution Factor As Tested mL 810 785 870 Volume final mL 40 40 40 40 40 40 40 40 40 40 40 40 40			Matrix	Stack Samples	Stack Samples	Stack Samples	
Mercury by CVAA - Continued Sample mL 250 250 250 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 1B µg/sample <0.02 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <	Analyte		Units	Results	Results	Results	Nominal Detection Limit
Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 1B µg/sample <0.02	Mercury by CVAA - C	ontinued					
Volume Final mL 40 40 40 Mercury Fraction 1B μg/sample <0.02	Volume	Sample	mL	250	250	250	
Mercury Fraction 1B μg/sample <0.02 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <td>Volume</td> <td>aliquot volume</td> <td>mL</td> <td>25</td> <td>25</td> <td>25</td> <td></td>	Volume	aliquot volume	mL	25	25	25	
Mercury As Tested μg/L <0.05 <0.05 <0.05 0.05 Dilution Factor As Tested 1 1 1 1 Volume Sample mL 810 785 870 Volume aliquot volume mL 5.0 5.0 5.0 Volume Final mL 40 40 40 Mercury Fraction 2B μg/sample <0.3	Volume	Final	mL	40	40	40	
Dilution Factor As Tested 1 1 1 Volume Sample mL 810 785 870 Volume aliquot volume mL 5.0 5.0 5.0 Volume Final mL 40 40 40 Mercury Fraction 2B µg/sample <0.3	Mercury	Fraction 1B	μg/sample	<0.02	< 0.02	< 0.02	
Volume Sample mL 810 785 870 Volume aliquot volume mL 5.0 5.0 5.0 Volume Final mL 40 40 40 Mercury Fraction 2B µg/sample <0.3	Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Volume aliquot volume mL 5.0 5.0 5.0 Volume Final mL 40 40 40 Mercury Fraction 2B µg/sample <0.3	Dilution Factor	As Tested		1	1	1	
Volume Final mL 40 40 40 Mercury Fraction 2B µg/sample <0.3	Volume	Sample	mL	810	785	870	
Mercury Fraction 2B μg/sample <0.3 <0.3 <0.05 <0.05 0.0	Volume	aliquot volume	mL	5.0	5.0	5.0	
Mercury As Tested μg/L <0.05 <0.05 <0.05 0.05 Dilution Factor As Tested 1 1 1 1 Volume Sample mL 157 168 152 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3A μg/sample <0.01	Volume	Final	mL	40	40	40	
Dilution Factor As Tested 1 1 1 Volume Sample mL 157 168 152 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3A μg/sample <0.01	Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Volume Sample mL 157 168 152 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3A μg/sample <0.01	Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3A μg/sample <0.01	Dilution Factor	As Tested		1	1	1	
Volume Final mL 40 40 40 Mercury Fraction 3A μg/sample <0.01	Volume	Sample	mL	157	168	152	
Mercury Fraction 3A μg/sample <0.01 <0.01 <0.01 Mercury As Tested μg/L <0.05	Volume	aliquot volume	mL	25	25	25	
Mercury As Tested μg/L <0.05 <0.05 <0.05 0.05 Dilution Factor As Tested 1 1 1 1 Volume Sample mL 500 500 500 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3B μg/L 0.04 <0.04	Volume	Final	mL	40	40	40	
Dilution Factor As Tested 1 1 1 Volume Sample mL 500 500 500 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3B µg/sample <0.04	Mercury	Fraction 3A	μg/sample	<0.01	<0.01	<0.01	
Dilution Factor As Tested 1 1 1 Volume Sample mL 500 500 500 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3B µg/sample <0.04	Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3B µg/sample <0.04	Dilution Factor	As Tested		1	1	1	
Volume Final mL 40 40 40 40 Mercury Fraction 3B μg/sample <0.04	Volume	Sample	mL	500	500	500	
Mercury Fraction 3B μg/sample <0.04 <0.04 <0.04 Mercury As Tested μg/L 0.05 <0.05	Volume	aliquot volume	mL	25	25	25	
Mercury As Tested μg/L 0.05 <0.05 0.06 0.05 Dilution Factor As Tested 1 1 1 1 Volume Sample mL 200 200 200 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40	Volume	Final	mL	40	40	40	
Dilution Factor As Tested 1 1 1 Volume Sample mL 200 200 200 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40	Mercury	Fraction 3B	μg/sample	<0.04	<0.04	<0.04	
Volume Sample mL 200 200 200 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40	Mercury	As Tested	μg/L	0.05	< 0.05	0.06	0.05
Volumealiquot volumemL252525VolumeFinalmL404040	Dilution Factor	As Tested		1	1	1	
Volume Final mL 40 40 40	Volume	Sample	mL	200	200	200	
	Volume	aliquot volume	mL	25	25	25	
Mercury Fraction 3C µg/sample 0.02 <0.02 0.02	Volume	Final	mL	40	40	40	
, running the second se	Mercury	Fraction 3C	μg/sample	0.02	<0.02	0.02	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Matrix

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617496

Stack Samples

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022

2821909 Report Number:

1617496-5 Reference Number 1617496-4 1617496-6 Sample Date Nov 18, 2022 Nov 18, 2022 Nov 18, 2022 Sample Time NA NA NA **Sample Location**

Sample Description Unit 2 Run 1 (MET D Unit 2 Run 2 (MET D Unit 2 Run 3 (MET D R-2 + 4 Bottles) R-3 + 4 Bottles) R-1 + 4 Bottles)

Stack Samples

Stack Samples

		IVIALITA	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	action 1A					
Aluminum		μg	10	20	20	5
Antimony		μg	<2	<2	6	2.5
Arsenic		μg	1	<1	<1	1
Cadmium		μg	<0.3	0.4	<0.3	0.25
Chromium		μg	1.9	0.61	0.65	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	0.5	3.0	6.7	0.25
Lead		μg	<2	<2	4.2	1.5
Manganese		μg	1	1	1	0.25
Nickel		μg	4.4	4.1	2.6	0.5
Phosphorus		μg	37	33	42	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	3.3	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	7.3	5.1	5.8	0.5
Back Half Metals Fra	ction 2A					
Aluminum		μg	22	20	10	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<0.9	<0.9	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	0.36	0.50	0.98	0.2
Cobalt		μg	0.3	<0.2	<0.2	0.25
Copper		μg	5.3	2.6	3.0	0.25
Lead		μg	<1	<1	<1	1.5
Manganese		μg	2	0.5	0.5	0.25
Nickel		μg	2	2	1.0	0.5
Phosphorus		μg	10	4	10	2.5
Selenium		μg	<1	<1	<1	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	13	6.3	5.2	0.5
Volume	Sample	mL	770	700	740	
Volume	aliquot volume	mL	720	650	690	
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05	<0.05	<0.05	0.05
Dilution Factor	As Tested		1	1	1	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617496

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022

Report Number: 2821909

1617496-5 Reference Number 1617496-4 1617496-6 Sample Date Nov 18, 2022 Nov 18, 2022 Nov 18, 2022 Sample Time NA NA NA

Sample Location

Sample Description Unit 2 Run 1 (MET D Unit 2 Run 2 (MET D Unit 2 Run 3 (MET D

R-1 + 4 Bottles)

R-2 + 4 Bottles)

R-3 + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	<0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	770	700	740	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	148	155	164	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.01	<0.01	<0.01	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	< 0.04	<0.04	<0.04	
Mercury	As Tested	μg/L	0.08	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.02	<0.02	< 0.02	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617496

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022

2821909 Report Number:

1617496-8 Reference Number 1617496-7 1617496-9 Sample Date Nov 15, 2022 Nov 16, 2022 Nov 16, 2022 Sample Time NA NA NA **Sample Location**

Matrix

Sample Description Unit 3 Run 1 (MET E Unit 3 Run 2 (MET E Unit 3 Run 3 (MET E R-1 + 4 Bottles) R-2 + 4 Bottles) R-3 + 4 Bottles)

Stack Samples Stack Samples Stack Samples

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	ction 1A					
Aluminum		μg	27	46	43	5
Antimony		μg	4	3	10	2.5
Arsenic		μg	<1	2.9	<1	1
Cadmium		μg	2	2	2	0.25
Chromium		μg	2.1	4.26	2.1	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	9.6	13	12	0.25
Lead		μg	16	22	21	1.5
Manganese		μg	2	3.6	3.7	0.25
Nickel		μg	3.8	3.9	2	0.5
Phosphorus		μg	43	44	47	2.5
Selenium		μg	3.5	<2	<2	1.5
Tellurium		μg	<2	<2	4.8	2
Thallium		μg	2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	129	248	132	0.5
Back Half Metals Frac	ction 2A					
Aluminum		μg	24	34	25	5
Antimony		μg	<2	<2	3	2.5
Arsenic		μg	<0.9	2.9	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	1.5	0.84	0.49	0.2
Cobalt		μg	0.2	<0.2	0.5	0.25
Copper		μg	4.2	3.7	2	0.25
Lead		μg	2.9	<1	1	1.5
Manganese		μg	2	2.5	2	0.25
Nickel		μg	2	1	2	0.5
Phosphorus		μg	23	20	24	2.5
Selenium		μg	<1	<1	<1	1.5
Tellurium		μg	<2	4.0	<2	2
Thallium		μg	<1	<1	5.3	1.5
Vanadium		μg	<0.9	<0.8	<0.9	1
Zinc		μg	6.2	6.3	17	0.5
Volume	Sample	mL	840	875	750	
Volume	aliquot volume	mL	790	825	700	
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	0.06	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617496

Control Number:

Date Received: Nov 25, 2022 Date Reported: Dec 16, 2022

Report Number: 2821909

Reference Number 1617496-7 1617496-8 1617496-9 Sample Date Nov 15, 2022 Nov 16, 2022 Nov 16, 2022 Sample Time NA NA NA **Sample Location**

Sample Description Unit 3 Run 1 (MET E Unit 3 Run 2 (MET E Unit 3 Run 3 (MET E

R-3 + 4 Bottles) R-1 + 4 Bottles) R-2 + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	0.03	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	840	875	750	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.4	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	174	174	170	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.01	<0.01	<0.01	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	1000	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	< 0.04	<0.08	< 0.04	
Mercury	As Tested	μg/L	0.16	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.051	<0.02	<0.02	

Approved by:

Abhishek Suryawanshi

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE
Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1617496

Control Number:

Date Received: Nov 25, 2022
Date Reported: Dec 16, 2022
Report Number: 2821909

Method of Analysis

Method of Allalysis				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Dec 14, 2022	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Dec 14, 2022	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Nov 28, 2022	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Nov 28, 2022	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

A. Lanfranco & Associates Inc.

ATTN: Mark Lanfranco

Surrey BC V4N 4W7

Unit # 101 9488 - 189 St.

Date Received: 22-NOV-22

Report Date: 17-DEC-22 17:08 (MT)

Version: FINAL

Client Phone: 604-881-2582

Certificate of Analysis

Lab Work Order #: L2742267
Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

B Mack

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2742267 CONTD....

PAGE 2 of 3 17-DEC-22 17:08 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

			<u> </u>	1	1		
		Sample ID	L2742267-1	L2742267-2	L2742267-3	L2742267-4	
		Description Sampled Date	17-NOV-22	17-NOV-22	18-NOV-22	18-NOV-22	
		Sampled Time					
		Client ID	MV WTE UNIT 1 - CR+6 BLANK	MV WTE UNIT 1 - CR+6 RUN 1	MV WTE UNIT 1 - CR+6 RUN 2	MV WTE UNIT 1 - CR+6 RUN 3	
Grouping	Analyte						
STACK							
Speciated Metals	Chromium, Hexavalent (ug)		<0.70	<0.84	<0.90	<0.85	

L2742267 CONTD....

PAGE 3 of 3

17-DEC-22 17:08 (MT)

Version: FINAL

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**			
CR-CR6-IC-WT	Stack	Chromium, Hexavalent (Cr6+)	EPA 7199 / Method 306			

This analysis is carried out using procedures adapted from "Determination of Chromium Emissions from Decorative and Hard Chromium Electroplating and Chromium Anodizing Operations - Isokinetic Method" Method 306, published by the United States Environmental Protection Agency (EPA). An emission sample is extracted isokinetically from the source using an unheated Method 5 sampling train. The emissions are collected in alkaline solution. Analysis is performed at the lab using ion chromatography with a UV/VIS detector.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody / Analytical Request Form— Canada Toll Free: 1 800 668 9878 www.aisglobal.com

Labywork Order 22 Sample Identification (Educe only) Sample Identification (This description will appear on the report) MV WTE Unit 1 - Cr+6 Blank 17-Nov-22 MV WTE Unit 1 - Cr+6 Run 1 MV WTE Unit 1 - Cr+6 Run 2 MV WTE Unit 1 - Cr+6 Run 3 18-Nov-22 MV WTE Unit 1 - Cr+6 Run 3 18-Nov-22 Telephone: +1 604 283 4186	(ALS)	Envir	L274226	67-COFC	1	www.	alsglobal.com		٠.			•				Page -	<u> </u>	if
Company A Lanfranco and Associates	Report To				jor	t Format / Distribu	tion		Serv	rice F	Reque	sted (Rush for	routine	analysis :	subject to	availab	ility)
Address: Unit 101 9488 189 St	Company:	A. Lanfranco and A	ssociates				· .	:										
Surrey BC V4N 4W7	Contact:	Mark Lanfranco			100 PDF													
Phone: 604-881-2582	Address:	Unit 101 9488 189	St		Email	1: mark.lanfranco	@alanfranco.co	m							n TAT			
Invoice To Same as Report?		Surrey BC V4N 4V	17		Email :							ekend	Emergen	cy - Cont	act ALS to	Confirm TA	IT.	-
Hardcopy of Invoice with Report? Yes	Phone:	604-881-2582	Fax:	604-881-2581	Email	3:							Ana	lysis R	equest		•	
Contact: LSD: Address: Contact: LSD: Address: Contact: Contac	Invoice To	Same as Report?	✓ Yes	☐ No	Client	/ Project Informat	ion		Ple	ase i	ndicat	e belo	w Filter	ed, Pre	served o	r both (F	, P, F/	P)
Contact: CSD: Contact: CSD: Contact: CSD: Contact: CSD: COntact: CSD: C	Hardcopy of	Invoice with Report?	✓ Yes	☐ No	Job#:	MV WTE UNIT	1			·								
Address: Phone: Fax: Quote #: List)Work Order #7 Sample Sample Contact: Erin Bolster Contact: Sampler: A Lanfranco and (Internal Property) Contact: Contact:	Company:				PO/A	FE:	-				1	:	- I		}		1	
Phone: Fax: Quote #: Contact: Erin Bolster Sampler: A Lanfranco and (ab use) pint) Sample Identification Date (dx-mmm-yr) Time (ntr.mm) Sample Type Sample	Contact:				LSD:			· .]]			1.		:]	- 1	
MV WTE Unit 1 - Cr+6 Blank MV WTE Unit 1 - Cr+6 Run 1 MV WTE Unit 1 - Cr+6 Run 2 MV WTE Unit 1 - Cr+6 Run 3 MV WTE Unit 1 - Cr+6 Run 3 MV WTE Unit 1 - Cr+6 Run 3 18-Nov-22 X Environmental Division Vancouver Work Order Reference VA22C8283 1 Talephone: +1 604 263 4186	Address:	·					<u> </u>		ŀ							1 1		1 5
MV WTE Unit 1 - Cr+6 Blank MV WTE Unit 1 - Cr+6 Run 1 MV WTE Unit 1 - Cr+6 Run 2 MV WTE Unit 1 - Cr+6 Run 3 MV WTE Unit 1 - Cr+6 Run 3 MV WTE Unit 1 - Cr+6 Run 3 18-Nov-22 X Environmental Division Vancouver Work Order Reference VA22C8283 1 Talephone: +1 604 263 4186	Phone:		Fax:		Quote	#:										-		草
MV WTE Unit 1 - Cr+6 Blank MV WTE Unit 1 - Cr+6 Run 1 MV WTE Unit 1 - Cr+6 Run 2 MV WTE Unit 1 - Cr+6 Run 3 MV WTE Unit 1 - Cr+6 Run 3 MV WTE Unit 1 - Cr+6 Run 3 18-Nov-22 X Environmental Division Vancouver Work Order Reference VA22C8283 1 Talephone: +1 604 263 4186	The second second	The same of the sa	<u>. 8</u> 283		NEW CONTRACTOR OF THE PERSON O	ct: Erin Bolster	Sampler:	A. Lanfranco and										r of Cor
MV WTE Unit 1 - Cr+6 Run 2 MV WTE Unit 1 - Cr+6 Run 2 MV WTE Unit 1 - Cr+6 Run 3 MV WTE Unit 1 - Cr+6 Run 3 MV WTE Unit 1 - Cr+6 Run 3 Telephore: +1 804 263 4186		=	•	·	report)			Sample Type	S F S									Numbe
MV WTE Unit 1 - Cr+6 Run 2 18-Nov-22 X WVWTE Unit 1 - Cr+6 Run 3 18-Nov-22 X Vancouver Work Order Reference VA2C8283 1 Telephane: +1 604 263 418e		MV WTE Unit 1 - C	r+6 Blank		· -	17-Nov-22			X	1							-T	1.
MV WTE Unit 1 - Cr+6 Run 2 MV WTE Unit 1 - Cr+6 Run 3 18-Nov-22 X Work Order Reterence VA22C8283 1 Telephone: +1 604 263 4186		MV WTE Unit 1 - C	r+6 Run 1			17-Nov-22			X				Env Van	ronm	ental [Division		1
MV WTE Unit 1 - Cr+6 Run 3 18-Nov-22 X VA22C8283 1 Telephone: +1 604 263 4186		MV WTE Unit 1 - C	r+6 Run 2		-	18-Nov-22			Х				W	ork Or	der Refe	rence	- [1
	7	MV WTE Unit 1 - C	r+6 Run 3		· · · · · · · · · · · · · · · · · · ·	18-Nov-22	<u> </u>		Х				1	/A2	208	3283	}	1
		9										_		iai m a s	PAV.1 SV	A 1001111	Γ	
	X 5-1 (5)											-			. 1911		- 1	\top
			 								:	- .:	i			3	-:T	
						· · · · · · · · · · · ·						- 		III III C		7		
				·						ÿ.		- :	Telepho	one: +1	604 263 41	98		
												· 1	1.	·т ·	1. I-	1 · · r	. T	
	\$ (7 g) (\$ \$		· .		• •									1.				
			•	••	•									1				
Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details		Special Inst	ructions / Regu	lations with w	ater or land use (C	CME-Freshwater	Aguatic Life/BC	CSR - Commerci	al/AE	Tier	1 - N	tural	etc) / 1	Hazard	ous Det	ails		
	Account #: 1	18619 Please rep	ort ug/sample a								···							···
Account #: 18619 - Please report ug/sample and volumes (ml) Cr+6 analysis according to EPA Stack Sampling Method 0061		• • •												4_ 6 _	•	•		
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.		Alaa meeddad -													nme= -	nalvese.	-	٠
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab.	Children of								_								(V)	
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses.					Received by:	Date:			_					MEIGA				
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENTIRECEPTION ((labjusejonly))	i anacca n	y•																

GENF 20.00 Front

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : VA22C8279

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF

C-O-C number · ____

Sampler : A. Lanfranco

Site : ----

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 2

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 22-Nov-2022 09:00

Date Analysis Commenced : 26-Nov-2022

Issue Date : 28-Nov-2022 10:31

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Courtney Cox	Analsyt	Inorganics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Inorganics, Burnaby, British Columbia

Page : 2 of 2

Work Order : VA22C8279

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
μg/sample	micrograms per sample
mL	millilitres

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Impinger			CI	ient sample ID	Unit 1 HF Blank	Unit 2 HF Blank	Unit 3 HF Blank	
(Matrix: Air)								
			Client samp	ling date / time	15-Nov-2022	18-Nov-2022	16-Nov-2022	
Analyte	CAS Number	Method	LOR	Unit	VA22C8279-001	VA22C8279-002	VA22C8279-003	
					Result	Result	Result	
Field Tests								
volume, impinger		EP248	0.1	mL	270	275	255	
Anions and Nutrients								
fluoride	16984-48-8	E248.F	5.0	μg/sample	<5.0	<5.0	<5.0	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **VA22C8279** Page : 1 of 5

Client : A. Lanfranco & Associates Inc. Laboratory : Vancouver - Environmental

Contact : Mark Lanfranco Account Manager : Brent Mack

Address : Unit # 101 9488 - 189 St Address : 8081 Lougheed Highway

Surrey BC Canada V4N 4W7

Burnaby, British Columbia Canada V5A 1W9

Telephone :604 881 2582 Telephone :778-370-3279

 Project
 : Metro Vancouver WTE
 Date Samples Received
 : 22-Nov-2022 09:00

 PO
 : HF
 Issue Date
 : 28-Nov-2022 10:31

PO : HF C-O-C number · ----

Sampler : A. Lanfranco

Site :----

Quote number : Standing Offer

No. of samples received :3
No. of samples analysed :3

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

dullers . Quality Control Sample

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ■ No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page : 3 of 5 Work Order : VA22C8279

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Air Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Maurix. All						valuation: • =	riolaling time excee	suarioc , .	- vvicinii	Holding III
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 3 HF Blank	E248.F	16-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	10 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 1 HF Blank	E248.F	15-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	11 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 2 HF Blank	E248.F	18-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	8 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : VA22C8279

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Air		Evaluati	on: × = QC frequ	ency outside sp	ecification; ✓ = (QC frequency wit	hin specification
Quality Control Sample Type						Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Fluoride by IC (Impinger, mg/sample)	E248.F	758824	1	12	8.3	5.0	✓
Laboratory Control Samples (LCS)							
Fluoride by IC (Impinger, mg/sample)	E248.F	758824	1	12	8.3	5.0	✓
Method Blanks (MB)							
Fluoride by IC (Impinger, mg/sample)	E248.F	758824	1	12	8.3	5.0	✓
Matrix Spikes (MS)							
Fluoride by IC (Impinger, mg/sample)	E248.F	758824	1	12	8.3	5.0	

Page : 5 of 5 Work Order : VA22C8279

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Fluoride by IC (Impinger, mg/sample)	E248.F Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation of Anions for IC (Impinger)	EP248 Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order :VA22C8279

Client ; A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone

Project : Metro Vancouver WTE

PO : HF C-O-C number : ----

Sampler : A. Lanfranco 604 881 2582

Site : ---

Quote number : Standing Offer

No. of samples received : 3

No. of samples analysed : 3

Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 22-Nov-2022 09:00

Date Analysis Commenced : 26-Nov-2022

Issue Date : 28-Nov-2022 10:31

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Courtney Cox	Analsyt	Vancouver Inorganics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Inorganics, Burnaby, British Columbia

Page : 2 of 3 Work Order : VA22C8279

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Air							Labora	tory Duplicate (DU	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 758824)										
VA22C8279-001	Unit 1 HF Blank	fluoride	16984-48-8	E248.F	0.0050	mg/sample	<5.0 μg/sample	<0.0050	0	Diff <2x LOR	
		volume, impinger		EP248	0.1	mL	270	270		Diff <2x LOR	

Page: 3 of 3

Work Order: VA22C8279

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Air

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 75882	4)				
fluoride	16984-48-8 E248.F	0.005	mg/sample	<0.0050	
volume, impinger	EP248	0.1	mL	500	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Air						Laboratory Control Sample (LCS) Report						
						nike Recovery (%) Recovery Limits (%)		Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Anions and Nutrients (QCLot: 758824)												
fluoride	16984-48-8	E248.F	0.005	mg/sample	0.5 mg/sample	98.6	90.0	110				

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Air							Matrix Spil	ke (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutrie	ents (QCLot: 758824)									
VA22C8279-002	Unit 2 HF Blank	fluoride	16984-48-8	E248.F	0.514 mg/sa mple	0.5 mg/sample	103	75.0	125	
		volume, impinger		EP248		mL		0	0	

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

www.alsglobal.com

Page 1 of ____

COC#

Report To		I Panart E	ormat / Distribu	41		Condi	00 B		4 (0 -1		4:				Lillia A
Company:	A. Lanfranco and Associates	✓ Standar		ittoir		_		equeste Standard 1						5 avana	Dill(y)
Contact:	Mark Lanfranco	V PDF	Excel	Digital	☐ Fax			2-4 Busines						n Confir	n TAT
Address:	Unit 101 9488 189 St							cy (1-2 Bus							
/ loui ess.	Surrey BC V4N 4W7	Email 1: Email 2:	mark.lantranco	@alanfranco.co	<u>m</u>			y or Week							HI IAI .
Phone:	604-881-2582 Fax: 604-881-258							y or week				quest	20/11/11/11	-	
Invoice To	Same as Report? Yes No	Email of	roject Informat	<u> </u>		Plea	se ir	ndicate b				<u> </u>	r both (FPF	7P)
	invoice with Report?	Job #:	Metro Vancouv			1		laicate 5		T T	1	Ci VCG O	T	T	"/
Company:	The state of the s	PO / AFE		VCI 171 I										+	
Contact:		LSD:								ļ.	-		ŀ		
Address:	·			:		1							-]		ည
Phone:	Fax:	Quote #:									.		1		a a
	Vork Order#	ATRICA Association & Institution Committee		1			. 1								, ju
	use only)	ALS Contact:	Brent Mack	Sampler:	A. Lanfranco and								-		Number of Containers
Sample	Sample Identification		Date	Time	Sample Type		: 1								umbe
# **	(This description will appear on	the report)	(dd-mmm-yy)	(hh:mm)			Ŀ								— i. —
	Unit 1 HF Blank		15-Nov-22		Water		X		. L	l J	J.	1	I.	\sqcup	. 1
		· · ·							Envi	ronm	ental	l Divis	ion	` <u> </u>	
	Unit 2 HF Blank		18-Nov-22		Water		Х	 .		couve		, D. V.O	1011	·	1
	· · · · · · · · · · · · · · · · · · ·								W	ork Ord	der Re	eferenc	e		
	Unit 3 HF Blank		16-Nov-22		Water	 	Х		V	A2	<u> 2</u> 20	282	79	\vdash	. 1
	Olit O III Bialik		10-1104-22		YVAIGI		^	· ·	_				= 1.111		 - -
	·	·	ļ		<u> </u>		-	_						<u> </u>	
		·	· <u> </u>												
								. 4			i N	1183			
						l						(Cirre			
								-	Teleph	one:+1	1 604 25	3 41 9 8			
										I. I	7				
												- -	1		-
	Special Instructions / Regulations with	water or land use (CCN	/E-Freshwater	Aquatic Life/BC	CSR - Commerci	al/AB	Tier	1 - Natu	ral. etc) / Haz	zardo	us Deta	ails	لمسلم	
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Please report					. · · · · · · · · · · · · · · · · · · ·	,									
<i>:</i> :	Failure to By the use of this form the Also provided on another Excel tab are the	. •	ınd agrees with	the Terms and	Conditions as pr	ovide	d on	a separ				mon an	nalvses	5.	
	SHIPMENT: RELEASE (client use)	SHIP													1000
Released by:			Date;	Time:	Temperature:	Verifi			Date			Time:	normalise and an extensive service	Obse	rvations: 'No ?
		·	22/11/22	9 am	16 °C				·						s add SIF

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : VA22C8306

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF C-O-C number · ----

Sampler : A. Lanfranco

Site : ----

Quote number : Standing Offer

No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 22-Nov-2022 09:00

Date Analysis Commenced : 26-Nov-2022

Issue Date : 28-Nov-2022 10:31

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Courtney Cox	Analsyt	Inorganics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Inorganics, Burnaby, British Columbia

Page : 2 of 3

Work Order : VA22C8306

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

µg/sample micrograms per sample	Unit	Description
Till Tillinite's	μg/sample mL	micrograms per sample millilitres

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.

Page : 3 of 3

Work Order : VA22C8306

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Analytical Results

Sub-Matrix: Impinger			CI	ient sample ID	Unit 1 HF Run 1	Unit 1 HF Run 2	Unit 1 HF Run 3	Unit 2 HF Run 1	Unit 2 HF Run 2
(Matrix: Air)									
			Client samp	ling date / time	15-Nov-2022	15-Nov-2022	15-Nov-2022	18-Nov-2022	18-Nov-2022
Analyte	CAS Number	Method	LOR	Unit	VA22C8306-001	VA22C8306-002	VA22C8306-003	VA22C8306-004	VA22C8306-005
					Result	Result	Result	Result	Result
Field Tests									
volume, impinger		EP248	0.1	mL	300	400	360	245	310
Anions and Nutrients									
fluoride	16984-48-8	E248.F	5.0	μg/sample	<15.0 DLDS	6.2	<5.0	<12.2 DLDS	<5.0

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

Sub-Matrix: Impinger			CI	ient sample ID	Unit 2 HF Run 3	Unit 3 HF Run 1	Unit 3 HF Run 2	Unit 3 HF Run 3	
(Matrix: Air)									
			Client samp	ling date / time	18-Nov-2022	16-Nov-2022	16-Nov-2022	16-Nov-2022	
Analyte	CAS Number	Method	LOR	Unit	VA22C8306-006	VA22C8306-007	VA22C8306-008	VA22C8306-009	
					Result	Result	Result	Result	
Field Tests									
volume, impinger		EP248	0.1	mL	230	380	345	415	
Anions and Nutrients									
fluoride	16984-48-8	E248.F	5.0	μg/sample	<5.0	<5.0	<5.0	<20.8 DLDS	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order :VA22C8306 Page : 1 of 6

Client : A. Lanfranco & Associates Inc. Laboratory : Vancouver - Environmental

Contact : Mark Lanfranco **Account Manager** : Brent Mack

Address Address : Unit # 101 9488 - 189 St : 8081 Lougheed Highway

Surrey BC Canada V4N 4W7 Burnaby, British Columbia Canada V5A 1W9

Telephone :604 881 2582 Telephone : 778-370-3279

Project : Metro Vancouver WTE **Date Samples Received** : 22-Nov-2022 09:00 : 28-Nov-2022 10:31

PO : HF Issue Date

C-O-C number ٠____ Sampler : A. Lanfranco

Quote number : Standing Offer

No. of samples received :9 No. of samples analysed :9

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Site

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers: Quality Control Samples

No Method Blank value outliers occur.

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ■ No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page : 3 of 6 Work Order : VA22C8306

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Air Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 3 HF Run 1	E248.F	16-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	10 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 3 HF Run 2	E248.F	16-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	10 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 3 HF Run 3	E248.F	16-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	10 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 1 HF Run 1	E248.F	15-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	11 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 1 HF Run 2	E248.F	15-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	11 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 1 HF Run 3	E248.F	15-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	11 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 2 HF Run 1	E248.F	18-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	8 days	✓

Page : 4 of 6 Work Order : VA22C8306

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Matrix: Air Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	Holding Times		Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 2 HF Run 2	E248.F	18-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	8 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 2 HF Run 3	E248.F	18-Nov-2022	26-Nov-2022				26-Nov-2022	28 days	8 days	1

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 5 of 6 Work Order : VA22C8306

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Air	Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification.											
Quality Control Sample Type					Frequency (%)							
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation					
Laboratory Duplicates (DUP)												
Fluoride by IC (Impinger, mg/sample)	E248.F	758824	1	12	8.3	5.0	✓					
Laboratory Control Samples (LCS)												
Fluoride by IC (Impinger, mg/sample)	E248.F	758824	1	12	8.3	5.0	✓					
Method Blanks (MB)												
Fluoride by IC (Impinger, mg/sample)	E248.F	758824	1	12	8.3	5.0	✓					
Matrix Spikes (MS)												
Fluoride by IC (Impinger, mg/sample)	E248.F	758824	1	12	8.3	5.0	1					

Page : 6 of 6 Work Order : VA22C8306

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Fluoride by IC (Impinger, mg/sample)	E248.F Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation of Anions for IC (Impinger)	EP248 Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order :VA22C8306

Client ; A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone

Project : Metro Vancouver WTE

PO : HF C-O-C number : ----

Sampler : A. Lanfranco 604 881 2582

Site :---

Quote number : Standing Offer

No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 22-Nov-2022 09:00

Date Analysis Commenced : 26-Nov-2022

Issue Date : 28-Nov-2022 10:31

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Courtney Cox	Analsyt	Vancouver Inorganics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Inorganics, Burnaby, British Columbia

Page : 2 of 3 Work Order : VA22C8306

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Air					Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Anions and Nutrients (QC Lot: 758824)													
VA22C8279-001	Anonymous	fluoride	16984-48-8	E248.F	0.0050	mg/sample	<5.0 μg/sample	<0.0050	0	Diff <2x LOR			
		volume, impinger		EP248	0.1	mL	270	270		Diff <2x LOR			

Page : 3 of 3 Work Order : VA22C8306

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Air

Analyte	CAS Number	AS Number Method		LOR Unit		Qualifier
Anions and Nutrients (QCLot: 7588	24)					
fluoride	16984-48-8	E248.F	0.005	mg/sample	<0.0050	
volume, impinger		EP248	0.1	mL	500	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Air	b-Matrix: Air							Laboratory Control Sample (LCS) Report							
	Spike	Recovery (%)	Recovery												
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low High		Qualifier						
Anions and Nutrients (QCLot: 758824)															
fluoride	16984-48-8	E248.F	0.005	mg/sample	0.5 mg/sample	98.6	90.0	110							

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Air	Sub-Matrix: Air						Matrix Spike (MS) Report									
					Spi	ike	Recovery (%)	Recovery								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier						
Anions and Nutrients (QCLot: 758824)																
VA22C8279-002	Anonymous	fluoride	16984-48-8	E248.F	0.514 mg/sa mple	0.5 mg/sample	103	75.0	125							
		volume, impinger		EP248		mL		0	0							

Chain of Custody / Analytical Request Form

Canada Toll Free: 1 800 668 9878

www.alsglobal.com

ALS Environmental

coc	#
-----	---

Page <u>1</u> of <u>1</u>

Report To				Report	Report Format / Distribution					Service Requested (Rush for routine analysis subject to availability)									
Company:	A. Lanfranco and A	ssociates		✓ Stan	dard Dther			Regular (Standard Turnaround Times - Business Days) (Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT											
Contact:	Mark Lanfranco	_		✓ PDF	Excel	☐ Digital	☐ Fax	○ Pri	ority (2-	4 Busir	ness Days)	- 50%	Surcha	rge - C	ontact Al	LS to C	onfirm	TAT	
Address:	Unit 101 9488 189	St		Email 1	1: mark.lanfranco(@alanfranco.co	<u>om</u>	O En	ergency	(1-2 E	Bus. Days)	- 1009	% Surch	arge - (ontact /	ALS to (Confirm	n TAT	
	Surrey BC V4N 4W	17		Email 2				()Sa	me Day	or Wee	ekend Eme	rgency	/ - Conta	act ALS	to Confi	rm TAT	•		
Phone:	604-881-2582	Fax:	604-881-2581	Email 3	3:							Analy	ysis R	eques	st				
Invoice To	Same as Report?	✓ Yes	☐ No	Client	/ Project Information		·	Plea	ase ind	icate	below F	iltere	d, Pre	serve	or bo	th (F,	P, F/	P)	
Hardcopy of I	nvoice with Report?	✓ Yes	☐ No	Job #:	Metro Vancouve	er WTE													
Company:				PO / A	FE: HF														
Contact:				LSD:	. •	<u> </u>						1.				٠.			
Address:			·							-		1				- 1.			Jer.
Phone:	<u> </u>	. Fax:	<u> </u>	Quote	Quote #:							1.	1.	:		.	1	1.0	ntai
	rk Order # ALS se only) Contact: Brent Ma				ct: Brent Mack	Sampler:	A. Lanfranco and												Number of Containers
Sample #	(Thi	Sample I is description wi	dentification	report)	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	ı.											Numb
	Unit 1 HF Run 1				15-Nov-22		Water	х		i	i	Ji:				1			
	Unit 1 HF Run 2				Water X					Environmental Division Vancouver									1
	Unit 1 HF Run 3						Water	Х			Worl	k Ord	er Ref	ference					1 :
100						1	<u> </u>				V	42	2C	83	06		一		
<u> </u>	Unit 2 HF Run 1	······································			18-Nov-22		Water	Х				a ut	W.J. I	WA 8	-	+			1
14	Unit 2 HF Run 2						Water	Х				黻	LU)						1
	Unit 2 HF Run 3						Water	Х				ΝÝ		W		1			1
														1,74					
	Unit 3 HF Run 1				16-Nov-22		Water	Х			Telephone	e: +1	604 25 3	4188		I			1
	Unit 3 HF Run 2						Water	Х		1	:1	1	1	1	i . r				1
	Unit 3 HF Run 3						Water	Х											1
				-															
	Special Instr	ructions / Regu	lations with w	ater or land use (C	CME-Freshwater A	quatic Life/BC	CSR - Commerci	al/AB	Tier 1	- Na	tural, et	c) / H	azard	ous D	etails				
Please report	ug/sample																		
	Also provided or		f this form the	user acknowledge	s of this form may as and agrees with ses, phone numbe	the Terms and	d Conditions as pr	ovide	d on a	sep	arate Ex			nmon	analy	ses.			
Walter State	SHIPMENT RELE				IPMENT RECEPT		·······				PMENT						/) <u>*</u>	745	
Released by:		Date (dd-mmm-yy)		Received by:	Date: 92/11/22	Time:	Temperature:	en consumer.	ied by:	S. ANDR. TO See Bee	Da	20000000000000000000000000000000000000	- 100 TANK	Tim	V-9	Y	Obser /es / I f Yes	No?	

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

LABORATORY REPORT

December 5, 2022

Mark Lanfranco A. Lanfranco and Associates Inc. Unit 101 - 9488 189 St. Surrey, BC V4N 4W7

RE: Metro Vancouver W.T.E

Dear Mark:

Enclosed are the results of the samples submitted to our laboratory on November 22, 2022. For your reference, these analyses have been assigned our service request number P2205312.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

ALS | Environmental

By Sue Anderson at 2:50 pm, Dec 05, 2022

Sue Anderson Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

Client: A. Lanfranco and Associates Inc. Service Request No: P2205312

Project: Metro Vancouver W.T.E

CASE NARRATIVE

The samples were received intact under chain of custody on November 22, 2022 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

C3 through C6, C6+ Hydrocarbons, Methane, Ethene and Ethane Analysis

The samples were analyzed per modified EPA Method TO-3 for C3 through >C6 hydrocarbons, methane, ethene and ethane using a gas chromatograph equipped with a flame ionization detector (FID). This procedure is described in laboratory SOP VOA-TO3C1C6. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AIHA-LAP, LLC accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 <u>T</u> +1 805 526 7161

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	http://dec.alaska.gov/eh/lab.aspx	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental-laboratories/index.html	E871020
Louisiana DEQ (NELAP)	http://www.deq.louisiana.gov/page/la-lab-accreditation	05071
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtml	2018027
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	1776326
New Jersey DEP (NELAP)	http://www.nj.gov/dep/enforcement/oqa.html	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	4068-008
Pennsylvania DEP	http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env_lab_accreditation.html	T104704413- 19-10
Utah DOH (NELAP)	http://health.utah.gov/lab/lab_cert_env	CA016272019 -10
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client: A. Lanfranco and Associates Inc.

Project ID: Metro Vancouver W.T.E Service Request: P2205312

Date Received: Time Received: Client Sample ID	11/22/2022 10:15	Matrix	Date Collected	Time Collected	Container ID	Pi1 (psig)	Pfl (psig)	TO-3 Modified - C1C6+ Can	TO-3 Modified - MEEPP Can	
Unit 1 Run 1	P2205312-001	Air	11/15/2022	11:35	SC01053	-3.10	3.91	X	X	
Unit 1 Run 2	P2205312-002	Air	11/15/2022	13:00	SC02256	-1.73	3.94	X	X	
Unit 1 Run 3	P2205312-003	Air	11/15/2022	14:18	SC02013	-2.10	3.94	X	X	
Unit 2 Run 1	P2205312-004	Air	11/18/2022	11:28	SC01013	-2.60	3.91	X	X	
Unit 2 Run 2	P2205312-005	Air	11/18/2022	12:35	SC01610	-2.89	3.95	X	X	
Unit 2 Run 3	P2205312-006	Air	11/18/2022	13:42	SC02255	-2.21	3.96	X	X	
Unit 3 Run 1	P2205312-007	Air	11/16/2022	11:12	SC02191	-2.50	3.86	X	X	
Unit 3 Run 2	P2205312-008	Air	11/16/2022	12:23	SC00098	-0.30	3.97	X	X	
Unit 3 Run 3	P2205312-009	Air	11/16/2022	13:34	SC02248	-3.48	3.92	X	X	

age 1 of 1

Air - Chain of Custody Record & Analytical Service Request

2655 Park Center Drive, Suite A

1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-Standard Sample Volume Requested Turnaround Time in Business Days (Surcharges) please circle 9 9 9 9 님 님 딩 9 9 End Pressure "Hg/psig Canister -6.5 φ • ģ, 6 φ φ 1 ထု φ Start Pressure "Hg Daryl Sampaon "Canister -33 -32" -30 -28 -32 -28 -28 -29" -32 Flow Antroller ID (Bar code #-Metro Vancouver W.T.E. OA01825 OA01693 OA01820 OA00491 OA01266 OA02193 OA01007 OA00213 OA00084 P.O. # / Billing Information Bill to Account Sampler (Print & Sign) Daryl Sampson Canister ID (Bar code # -AC, SC, etc.) Project Number Project Name SC02248 SC00098 SC01053 SC02256 SC02013 SC01610 SCO1013 SC02191 SC02255 11-18-22 1028-1128 1-16-22 1123-1223 1-18-22 1135-1235 1-16-22 1012-1112 Time Collected 1-15-22 1035-1135 1200-1300 1318-1418 11-16-22 1234-1334 1-18-22 | 1242-1342 Simi Valley, California 93065 1-15-22 1-15-22 Date Collected Phone (805) 526-7161 Fax (805) 526-7270 Laboratory ID Number Company Name & Address (Reporting Information) mark.lanfranco@alanfranco.com Ø A.Lanfranco & Associates Inc. Fax Email Address for Result Reporting 604-881-2582 Unit 3 Run 2 Unit 3 Run 3 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Run 2 Unit 3 Run 1 Unit 1 Run 1 Project Manager Mark Lanfranco Jnit 2 Run 3 Unit 2 Run 1 Client Sample ID

Comments
e.g. Actual
Preservative or
specific instructions

Analysis Method

ALS Contact

TO-3 (List on File)

Project Requirements (MRLs, QAPP)		iler / Blank nperature °C	
	Time:	1 Pat 12 Time: A Temperature	
Chain of Custody Seal: (Circle) INTACT BROKEN ABSENT	Date: Tin	22 22 Tin	
Chain of Cu INTACT	1	11	,
/ No Units:	re)	re)	1
EDD required Yes / No Type:	Received by: (Signature)	Received by: (8fgnature)	1
arge	Time:	Time:	
Levels - please select Tier III (Results + QC & Calibration Summaries) Tier IV (Data Validation Package) 10% Surcharge	Date: Til	Date: Til	
Report Tier Levels - please select d) Tier III (Results + QC & Cal Tier IV (Data Validation F			
t Tier Levels Tier III (R Tier IV			
Report Tier I - Results (Default if not specified) Tier II (Results + QC Summaries)	Relinquished by: (Signature)	Relinquished by: (Signature)	

ALS Environmental Sample Acceptance Check Form

		and Associates Inc.	Samp	е Ассеріансе		Work order:	P2205312			
-	Metro Vancou									
Sample(s) received on:	11/22/22			Date opened:	11/22/22	by:	ADAV	ID	
Note: This	form is used for all	samples received by ALS.	The use of this f	orm for custody se	eals is strictly me	eant to indicate presen	ce/absence and no	t as an in	dication	of
compliance	or nonconformity.	Thermal preservation and	pH will only be e	valuated either at	the request of the	e client and/or as requ	ired by the method	l/SOP.		
•	•	•			•	•	•	<u>Yes</u>	<u>No</u>	N/A
1	Were sample	containers properly n	narked with cl	ient sample ID	?			X		
2	Did sample co	ontainers arrive in go	od condition?					X		
3	Were chain-o	f-custody papers used	l and filled out	?				X		
4		ontainer labels and/or			ers?			X		
5	-	olume received adequ						X		
6	-	vithin specified holdin	•					X		
7	-	mperature (thermal p	_	of cooler at rece	eint adhered t	0?				X
,	F F				· ·			_		_
8	Were custody	seals on outside of co	ooler/Box/Con	tainer?					X	
Ü	Were custous	Location of seal(s)?					Sealing Lid?			×
	Were signatur	e and date included?					Scaling Lia.			X
	Were seals int									X
0				1:4	41 1/COD	C1:4: E:- 4 :	f4:9			\boxtimes
9		ers have appropriate pr		•		Chem specified i	mormation?			
		nt indication that the s	-		eservea?					X Q
	·	ials checked for prese						*	2	*
		t/method/SOP require	-		mple pH and	if necessary alter	it?			X
10	Tubes:	Are the tubes capp	ped and intact?	?						X
11	Badges:	Are the badges pr	operly capped	and intact?						X
		Are dual bed badş	ges separated a	and individuall	y capped and	intact?				X
Lah	Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Recein	ipt / Preservation		
Lab	Sample 1D	Description	pH *	рН	рН	(Presence/Absence)	_	Commen		
P2205312	2-001-01	6.0 L Source Can		•	•	/				
P2205312		6.0 L Source Can								
P2205312		6.0 L Source Can								
P2205312		6.0 L Source Can								
P2205312	2-005.01	6.0 L Source Can								
P2205312		6.0 L Source Can								
P2205312		6.0 L Source Can								
P2205312		6.0 L Source Can								
P2205312	2-009.01	6.0 L Source Can								
Explair	any discrenanc	ies: (include lab sample	ID numbers):							
-F	,	, --								

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 1

Client Project ID: P2205312

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312-001

Test Code:EPA TO-3 ModifiedDate Collected: 11/15/22Instrument ID:HP5890 II/GC8/FIDDate Received: 11/22/22Analyst:Drew PicardDate Analyzed: 11/23/22

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01053

Initial Pressure (psig): -3.10 Final Pressure (psig): 3.91

Compound	Result	MRL	Data
•	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.80	
C ₄ as n-Butane	ND	0.80	
C ₅ as n-Pentane	1.4	0.80	
C ₆ as n-Hexane	1.7	0.80	
C ₆ + as n-Hexane	3.4	1.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 2

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-002

Test Code:EPA TO-3 ModifiedDate Collected: 11/15/22Instrument ID:HP5890 II/GC8/FIDDate Received: 11/22/22Analyst:Drew PicardDate Analyzed: 11/23/22

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02256

Initial Pressure (psig): -1.73 Final Pressure (psig): 3.94

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.72	
C ₄ as n-Butane	ND	0.72	
C ₅ as n-Pentane	ND	0.72	
C ₆ as n-Hexane	ND	0.72	
C ₆ + as n-Hexane	ND	1.4	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 3

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-003

Test Code:EPA TO-3 ModifiedDate Collected: 11/15/22Instrument ID:HP5890 II/GC8/FIDDate Received: 11/22/22Analyst:Drew PicardDate Analyzed: 11/23/22

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02013

Initial Pressure (psig): -2.10 Final Pressure (psig): 3.94

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.74	
C ₄ as n-Butane	ND	0.74	
C ₅ as n-Pentane	1.3	0.74	
C ₆ as n-Hexane	0.92	0.74	
C ₆ + as n-Hexane	ND	1.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1 ALS Project ID: P2205312
Client Project ID: Metro Vancouver W.T.E ALS Sample ID: P2205312-004

Test Code:EPA TO-3 ModifiedDate Collected: 11/18/22Instrument ID:HP5890 II/GC8/FIDDate Received: 11/22/22Analyst:Drew PicardDate Analyzed: 11/23/22

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01013

Initial Pressure (psig): -2.60 Final Pressure (psig): 3.91

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.77	
C ₄ as n-Butane	ND	0.77	
C ₅ as n-Pentane	ND	0.77	
C ₆ as n-Hexane	ND	0.77	
C ₆ + as n-Hexane	ND	1.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-005

Test Code: EPA TO-3 Modified Date Collected: 11/18/22 Instrument ID: HP5890 II/GC8/FID Date Received: 11/22/22 Analyst: Drew Picard Date Analyzed: 11/23/22

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC01610

Initial Pressure (psig): -2.89 Final Pressure (psig): 3.95

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.79	
C ₄ as n-Butane	ND	0.79	
C ₅ as n-Pentane	ND	0.79	
C ₆ as n-Hexane	ND	0.79	
C ₆ + as n-Hexane	ND	1.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-006

Test Code: EPA TO-3 Modified Date Collected: 11/18/22
Instrument ID: HP5890 II/GC8/FID Date Received: 11/22/22
Analyst: Drew Picard Date Analyzed: 11/28/22

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02255

Initial Pressure (psig): -2.21 Final Pressure (psig): 3.96

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.75	
C ₄ as n-Butane	ND	0.75	
C ₅ as n-Pentane	ND	0.75	
C ₆ as n-Hexane	ND	0.75	
C ₆ + as n-Hexane	ND	1.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2205312
Client Project ID: Metro Vancouver W.T.E ALS Sample ID: P2205312-007

Test Code: EPA TO-3 Modified Date Collected: 11/16/22
Instrument ID: HP5890 II/GC8/FID Date Received: 11/22/22
Analyst: Drew Picard Date Analyzed: 11/28/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02191

Initial Pressure (psig): -2.50 Final Pressure (psig): 3.86

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.76	
C ₄ as n-Butane	ND	0.76	
C ₅ as n-Pentane	ND	0.76	
C ₆ as n-Hexane	ND	0.76	
C ₆ + as n-Hexane	ND	1.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-008

Test Code: EPA TO-3 Modified Date Collected: 11/16/22
Instrument ID: HP5890 II/GC8/FID Date Received: 11/22/22
Analyst: Drew Picard Date Analyzed: 11/28/22

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC00098

Initial Pressure (psig): -0.30 Final Pressure (psig): 3.97

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.65	
C ₄ as n-Butane	ND	0.65	
C ₅ as n-Pentane	1.8	0.65	
C ₆ as n-Hexane	ND	0.65	
C ₆ + as n-Hexane	ND	1.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-009

Test Code: EPA TO-3 Modified Date Collected: 11/16/22
Instrument ID: HP5890 II/GC8/FID Date Received: 11/22/22
Analyst: Drew Picard Date Analyzed: 11/28/22

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Test Notes:

Container ID: SC02248

Initial Pressure (psig): -3.48 Final Pressure (psig): 3.92

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.83	
C ₄ as n-Butane	ND	0.83	
C ₅ as n-Pentane	ND	0.83	
C ₆ as n-Hexane	ND	0.83	
C ₆ + as n-Hexane	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Method Blank
Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312
ALS Sample ID: P221123-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Drew Picard Date Analyzed: 11/23/22

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.0 ml(s)

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.50	
C ₄ as n-Butane	ND	0.50	
C ₅ as n-Pentane	ND	0.50	
C ₆ as n-Hexane	ND	0.50	
C ₆ + as n-Hexane	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Volume(s) Analyzed:

 $1.0 \, \text{ml(s)}$

Client: A. Lanfranco and Associates Inc.

6.0 L Summa Canister

Client Sample ID: Method Blank ALS Project ID: P2205312 Client Project ID: Metro Vancouver W.T.E ALS Sample ID: P221128-MB

Test Code: **EPA TO-3 Modified** Date Collected: NA Instrument ID: HP5890 II/GC8/FID Date Received: NA Analyst: Drew Picard Date Analyzed: 11/28/22 Sampling Media:

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
C ₃ as Propane	ND	0.50	
C ₄ as n-Butane	ND	0.50	
C ₅ as n-Pentane	ND	0.50	
C ₆ as n-Hexane	ND	0.50	
C ₆ + as n-Hexane	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Duplicate Lab Control SampleALS Project ID: P2205312Client Project ID:Metro Vancouver W.T.EALS Sample ID: P221123-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Drew Picard Date Analyzed: 11/23/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

	Spike Amount	Re	sult			ALS			
Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
	ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
Propane	1,000	972	996	97	100	92-120	3	6	
n-Butane	1,000	978	1,000	98	100	91-121	2	6	
n-Pentane	1,000	965	988	97	99	89-118	2	6	
n-Hexane	1,000	1,040	1,060	104	106	92-125	2	6	

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Duplicate Lab Control SampleALS Project ID: P2205312Client Project ID:Metro Vancouver W.T.EALS Sample ID: P221128-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890 II/GC8/FID Date Received: NA
Analyst: Drew Picard Date Analyzed: 11/28/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

	Spike Amount	Re	sult			ALS			
Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
	ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
Propane	1,000	1,010	1,000	101	100	92-120	1	6	
n-Butane	1,000	1,020	1,010	102	101	91-121	1	6	
n-Pentane	1,000	1,000	987	100	99	89-118	1	6	
n-Hexane	1,000	1,070	1,040	107	104	92-125	3	6	

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 1

Client Project ID: P2205312

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312-001

Test Code: EPA TO-3 Modified Date Collected: 11/15/22
Instrument ID: HP5890A/GC10/FID Date Received: 11/22/22
Analyst: Alex Anderson-Heflin Date Analyzed: 11/30/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01053

Initial Pressure (psig): -3.10 Final Pressure (psig): 3.91

Container Dilution Factor: 1.60

CAS#	Compound	Result	Result MRL		MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	0.86	1.0	1.3	1.6	J
74-85-1	Ethene	ND	0.55	ND	0.48	
74-84-0	Ethane	ND	0.59	ND	0.48	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 2

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-002

Test Code: EPA TO-3 Modified Date Collected: 11/15/22
Instrument ID: HP5890A/GC10/FID Date Received: 11/22/22
Analyst: Alex Anderson-Heflin Date Analyzed: 11/30/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02256

Initial Pressure (psig): -1.73 Final Pressure (psig): 3.94

Container Dilution Factor: 1.44

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	0.85	0.94	1.3	1.4	J
74-85-1	Ethene	ND	0.50	ND	0.43	
74-84-0	Ethane	ND	0.53	ND	0.43	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 1 Run 3

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-003

Test Code: EPA TO-3 Modified Date Collected: 11/15/22
Instrument ID: HP5890A/GC10/FID Date Received: 11/22/22
Analyst: Alex Anderson-Heflin Date Analyzed: 11/30/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02013

Initial Pressure (psig): -2.10 Final Pressure (psig): 3.94

Container Dilution Factor: 1.48

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	0.97	ND	1.5	
74-85-1	Ethene	ND	0.51	ND	0.44	
74-84-0	Ethane	ND	0.55	ND	0.44	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 1

Client Project ID: P2205312

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312-004

Test Code: EPA TO-3 Modified Date Collected: 11/18/22
Instrument ID: HP5890A/GC10/FID Date Received: 11/22/22
Analyst: Alex Anderson-Heflin Date Analyzed: 11/30/22

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01013

Initial Pressure (psig): -2.60 Final Pressure (psig): 3.91

Container Dilution Factor: 1.54

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	1.2	1.0	1.8	1.5	_
74-85-1	Ethene	ND	0.53	ND	0.46	
74-84-0	Ethane	ND	0.57	ND	0.46	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 2

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-005

Test Code: EPA TO-3 Modified Date Collected: 11/18/22
Instrument ID: HP5890A/GC10/FID Date Received: 11/22/22
Analyst: Alex Anderson-Heflin Date Analyzed: 11/30/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC01610

Initial Pressure (psig): -2.89 Final Pressure (psig): 3.95

Container Dilution Factor: 1.58

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.3	1.0	3.4	1.6	_
74-85-1	Ethene	ND	0.54	ND	0.47	
74-84-0	Ethane	ND	0.58	ND	0.47	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 2 Run 3

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-006

Test Code: EPA TO-3 Modified Date Collected: 11/18/22
Instrument ID: HP5890A/GC10/FID Date Received: 11/22/22
Analyst: Alex Anderson-Heflin Date Analyzed: 11/30/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02255

Initial Pressure (psig): -2.21 Final Pressure (psig): 3.96

Container Dilution Factor: 1.49

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	0.98	ND	1.5	_
74-85-1	Ethene	ND	0.51	ND	0.45	
74-84-0	Ethane	ND	0.55	ND	0.45	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 1 ALS Project ID: P2205312
Client Project ID: Metro Vancouver W.T.E ALS Sample ID: P2205312-007

Test Code: EPA TO-3 Modified Date Collected: 11/16/22
Instrument ID: HP5890A/GC10/FID Date Received: 11/22/22
Analyst: Alex Anderson-Heflin Date Analyzed: 11/30/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02191

Initial Pressure (psig): -2.50 Final Pressure (psig): 3.86

Container Dilution Factor: 1.52

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	1.0	ND	1.5	_
74-85-1	Ethene	ND	0.52	ND	0.46	
74-84-0	Ethane	ND	0.56	ND	0.46	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 2

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-008

Test Code: EPA TO-3 Modified Date Collected: 11/16/22
Instrument ID: HP5890A/GC10/FID Date Received: 11/22/22
Analyst: Alex Anderson-Heflin Date Analyzed: 11/30/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC00098

Initial Pressure (psig): -0.30 Final Pressure (psig): 3.97

Container Dilution Factor: 1.30

CAS#	Compound	Result	Result MRL		MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	2.3	0.85	3.5	1.3	_
74-85-1	Ethene	ND	0.45	ND	0.39	
74-84-0	Ethane	ND	0.48	ND	0.39	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID: Unit 3 Run 3

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P2205312-009

Test Code: EPA TO-3 Modified Date Collected: 11/16/22
Instrument ID: HP5890A/GC10/FID Date Received: 11/22/22
Analyst: Alex Anderson-Heflin Date Analyzed: 11/30/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.50 ml(s)

Test Notes:

Container ID: SC02248

Initial Pressure (psig): -3.48 Final Pressure (psig): 3.92

Container Dilution Factor: 1.66

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	1.2	1.1	1.9	1.7	
74-85-1	Ethene	ND	0.57	ND	0.50	
74-84-0	Ethane	ND	0.61	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: A. Lanfranco and Associates Inc.

6.0 L Summa Canister

Client Sample ID: Method Blank

Client Project ID: Metro Vancouver W.T.E

ALS Project ID: P2205312

ALS Sample ID: P221130-MB

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID Date Received: NA
Analyst: Alex Anderson-Heflin Date Analyzed: 11/30/22

Test Notes:

Sampling Media:

CAS#	Compound	Result	MRL	Result	MRL	Data
		mg/m³	mg/m^3	ppmV	ppmV	Qualifier
74-82-8	Methane	ND	0.66	ND	1.0	_
74-85-1	Ethene	ND	0.34	ND	0.30	
74-84-0	Ethane	ND	0.37	ND	0.30	

Volume(s) Analyzed:

0.50 ml(s)

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client: A. Lanfranco and Associates Inc.

Client Sample ID:Duplicate Lab Control SampleALS Project ID: P2205312Client Project ID:Metro Vancouver W.T.EALS Sample ID: P221130-DLCS

Test Code: EPA TO-3 Modified Date Collected: NA
Instrument ID: HP5890A/GC10/FID Date Received: NA
Analyst: Alex Anderson-Heflin Date Analyzed: 11/30/22
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA ml(s)

Test Notes:

		Spike Amount	Re	sult			ALS			
CAS#	Compound	LCS / DLCS	CS / DLCS LCS DLCS % Recovery		Acceptance	RPD	RPD	Data		
		ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
74-82-8	Methane	1.52	1.48	1.47	97	97	70-130	0	15	
74-85-1	Ethene	1.51	1.47	1.49	97	99	70-130	2	15	
74-84-0	Ethane	1.50	1.47	1.48	98	99	70-130	1	15	

APPENDIX - C COMPUTER GENERATED RESULTS

Client: Metro Vancouver Date: 14-Nov-22

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time:** 12:07 - 14:11

Concentrations:

Particulate 0.08 mg/dscm 0.00004 gr/dscf

0.05 mg/Acm 0.00002 gr/Acf

Emission Rates:

Particulate 0.006 Kg/hr 0.014 lb/hr

Flue Gas Characteristics:

Flow 1321 dscm/min 46655 dscf/min

22.02 dscm/sec 778 dscf/sec 2256 Acm/min 79680 Acf/min

Velocity 14.764 m/sec 48.44 f/sec

Temperature 143.3 oC 290.0 oF

Moisture 14.1 %

Gas Analysis 10.5 % O2

9.4 % CO2

29.916 Mol. Wt (g/gmole) Dry 28.240 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 3.0588 dscm 108.022 dscf

Sample Time 120.0 minutes Isokineticity 104.0 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 14-Nov-22

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

 Source:
 Unit 1
 Run Time:
 11:10 - 13:15

Control Unit (Y)	0.9962	Collection:		Gas Analys	sis (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.3053	Filter (grams) 0.00005		CO2	O2	Impinger 1	166.0
Pitot Factor	0.8511	Washings (grams) 0.00020	Traverse 1	9.25	10.35	Impinger 2	118.0
Baro. Press. (in. Hg)	30.36		Traverse 2	9.45	10.65	Impinger 3	56.0
Static Press. (in. H20)	-19.00	Total (grams) 0.00025				Impinger 4	10.0
Stack Height (ft)	30					Impinger 5	4.0
Stack Diameter (in.)	70.90					Impinger 6	2.0
Stack Area (sq.ft.)	27.417			9.35	10.50	Gel	19.8
Minutes Per Reading	5.0						
Minutes Per Point	5.0					Gain (grams)	375.8

					Dry Gas Temperature		Stack	Wall		
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Traverse 1	0.0	20.878								
1	5.0	24.920	0.42	2.12	61	61	5.5	300	1.5	103.9
2	10.0	29.100	0.45	2.27	61	61	5.5	302	4.7	104.0
3	15.0	33.240	0.44	2.22	61	61	5.5	300	8.4	104.0
4	20.0	37.350	0.43	2.19	62	62	5.5	295	12.5	103.9
5	25.0	41.320	0.40	2.04	62	62	6	293	17.7	103.9
6	30.0	45.140	0.37	1.90	62	62	6	291	25.2	103.8
7	35.0	49.980	0.59	3.03	63	63	7	290	45.6	104.1
8	40.0	54.910	0.61	3.15	64	64	7	289	53.2	104.1
9	45.0	59.730	0.58	3.00	65	65	8	289	58.3	104.1
10	50.0	64.480	0.56	2.91	66	66	8	287	62.5	104.1
11	55.0	69.270	0.57	2.96	66	66	8	287	66.1	104.0
12	60.0	74.080	0.57	2.97	67	67	8	286	69.4	104.2
Traverse 2	0.0	74.080								
1	5.0	78.460	0.47	2.46	67	67	6	282	1.5	104.1
2	10.0	82.690	0.44	2.30	67	67	6	282	4.7	103.8
3	15.0	87.020	0.46	2.41	67	67	7	283	8.4	104.1
4	20.0	91.290	0.45	2.34	67	67	7	286	12.5	103.9
5	25.0	95.620	0.46	2.40	68	68	8	286	17.7	104.1
6	30.0	99.850	0.44	2.29	68	68	8	288	25.2	104.1
7	35.0	104.360	0.50	2.60	69	69	8.5	290	45.6	104.1
8	40.0	109.040	0.54	2.80	69	69	8.5	292	53.2	104.1
9	45.0	113.640	0.52	2.70	69	69	8	290	58.3	104.1
10	50.0	118.280	0.53	2.76	69	69	8	290	62.5	104.1
11	55.0	122.510	0.44	2.29	69	69	8	290	66.1	104.0
12	60.0	126.640	0.42	2.28	69	69	8	291	69.4	104.0
Average:			0.486	2.516	65.8	65.8	7.1	290.0		104.0

Client: Metro Vancouver Date: 15-Nov-22

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 1 **Run Time:** 10:02 - 12:06

Concentrations:

Particulate 0.04 mg/dscm 0.00002 gr/dscf

0.02 mg/Acm 0.00001 gr/Acf

Emission Rates:

Particulate 0.003 Kg/hr 0.006 lb/hr

Flue Gas Characteristics:

Flow 1188 dscm/min 41965 dscf/min

 19.80 dscm/sec
 699 dscf/sec

 2026 Acm/min
 71535 Acf/min

Velocity 13.255 m/sec 43.49 f/sec

Temperature 146.7 oC 296.1 oF

Moisture 13.8 %

Gas Analysis 10.6 % O2

9.2 % CO2

29.900 Mol. Wt (g/gmole) Dry 28.260 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7889 dscm 98.490 dscf

Sample Time 120.0 minutes Isokineticity 103.4 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 15-Nov-22 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 1 Run Time: 10:02 - 12:06 Control Unit (Y) 0.9962 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.3083 Filter (grams) 0.00005 158.0 Nozzle Diameter (in.) 9.25 02 Impinger 1 Pitot Factor 0.8506 Washings (grams) 0.00005 Impinger 2 114.0 Baro. Press. (in. Hg) 30.48 Traverse 2 9.20 10.55 Impinger 3 34.0 Total (grams) 0.00010 Static Press. (in. H20) -18.00 Impinger 4 8.0 Stack Height (ft) 30 3.0 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 16.5 9.23 10 60 Gain (grams) 334 5 Minutes Per Reading 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Orifice ^H Isokin. Traverse / Time Inlet Outlet Vacuum Temp. Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 127.845 103.3 0.33 1.71 50 50 295 1.5 5.0 131.420 10.0 135.100 0.35 1.81 50 50 103.3 296 3 15.0 138.780 0.35 1.81 50 50 8 296 8.4 103.3 20.0 25.0 2.12 2.07 295 295 4 142,770 0.41 50 50 12.5 103.5 0.40 6 30.0 150.630 0.39 2.03 52 52 8 294 25.2 103.5 35.0 154.690 0.42 2.18 2.30 54 54 9.5 297 45.6 103.4 40.0 158.860 0.44 9.5 296 53.2 103.5 9 45.0 162.980 0.43 2.24 299 58.3 103.4 10 50.0 55.0 166.970 0.40 2.10 8.5 295 62.5 103.4 297 170.920 0.39 2.04 58 58 8.5 66.1 103.5 12 60.0 174.760 0.37 1.94 58 58 8.5 297 69.4 103.3 0.0 5.0 174.760 Traverse 2 178.730 0.39 2.06 61 295 1.5 103.3 1.95 1.85 296 296 10.0 182,680 0.37 61 61 9 4.7 105.6 9.5 15.0 0.35 101.1 186.360 61 8.4 3 20.0 190.010 0.33 1.74 9.5 297 103.3 5 25.0 193 830 0.36 1.90 62 62 10 296 17 7 103.3 6 30.0 197.600 0.35 1.85 62 62 10 296 25.2 103.4 35.0 45.6 103.4 201.920).46 10 65 297 40.0 206.220).45 2.39 65 10 103.6 45.0 210.610 0.47 65 9 2.50 65 9.5 297 58.3 103.5 10 50.0 214.670 0.40 2.13 103.6 55.0 218.670 0.39 2.07 65 65 296 66.1 103.4 60.0 222.632 2.03 295 12 0.38 66 66 8 69.4 103.5 58.3 Average: 0.391 2.052 58.3 8.8 296.1 103.4

Client: Metro Vancouver Date: 15-Nov-22

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 1 **Run Time:** 12:47 - 14:52

Concentrations:

Particulate 0.1 mg/dscm 0.0001 gr/dscf

0.1 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.009 Kg/hr 0.019 lb/hr

Flue Gas Characteristics:

Flow 1159 dscm/min 40920 dscf/min

 19.31 dscm/sec
 682 dscf/sec

 1996 Acm/min
 70483 Acf/min

Velocity 13.060 m/sec 42.85 f/sec

Temperature 143.1 oC 289.6 oF

Moisture 15.2 %

Gas Analysis 9.9 % O2

9.0 % CO2

29.828 Mol. Wt (g/gmole) Dry 28.032 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7578 dscm 97.392 dscf

Sample Time 120.0 minutes Isokineticity 104.9 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 15-Nov-22 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 1 **Run Time:** 12:47 - 14:52 Control Unit (Y) 0 9962 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) Filter (grams) 0.00005 250.0 0.3083 CO2 Impinger 1 02 Pitot Factor 0.8506 Washings (grams) 0.00030 Impinger 2 82.0 Baro. Press. (in. Hg) 30.48 Traverse 2 8.95 9.90 Impinger 3 16.0 Total (grams) 0.00035 Static Press. (in. H20) -19.00 Impinger 4 6.0 2.0 Stack Height (ft) 30 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 13.6 8 95 9 90 Gain (grams) 370 6 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Time Dry Gas Meter Pitot ^P Orifice ^H Traverse / Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse ' 0.0 226.297 104.9 0.38 2.03 63 290 1.5 5.0 230.250 63 10.0 234.150 0.37 1.98 63 290 104.9 63 3 15.0 237.940 0.35 1.86 63 63 290 8.4 104.8 20.0 25.0 0.33 0.36 63 64 292 295 12.5 17.7 4 241.610 1.75 104.6 6 30.0 249.410 0.38 2.03 64 7.5 295 25.2 105.2 35.0 253.670 0.44 2.36 64 7.5 7.5 290 45.6 105.0 40.0 257.600 0.37 53.2 105.2 45.0 261.370 0.34 1.84 65 7.5 284 58.3 104.9 10 50.0 265.250 0.36 1.95 65 65 7.5 284 62.5 105.0 55.0 269.180 0.37 2.00 65 284 66.1 104.9 11 12 60.0 273.000 0.35 1.88 66 8 285 69.4 104.6 Traverse 2 0.0 273.000 276.770 0.34 1.84 66 285 1.5 104.8 10.0 280.600 0.35 1.84 67 67 67 8 287 4.7 104.9 284.430 0.35 1.89 8.4 104.9 15.0 288 20.0 288.530 0.40 2.16 288 104.9 5 25.0 292,570 0.39 2.10 68 68 8.5 290 17.7 104.9 6 30.0 296.660 0.40 2.15 68 68 8.5 292 25.2 105.0 0.42 45.6 104.9 35.0 300.860 40.0 305.160 0.44 2.38 69 290 53.2 104.9 309.410 70 58.3 104.8 45.0 0.43 2.32 70 8.5 292 10 50.0 313.510 0.40 2.12 104.8 11 55.0 317.560 0.39 2.10 71 295 66.1 104.9 321.510 71 69.4 12 60.0 0.37 2.00 9 294 104.9 289.6 Average: 0.378 2.032 66.4 66.4 8.0 104.9

 Client:
 Metro Vancouver
 Date:
 17-Nov-22

 Jobsite:
 WTE (Burnaby, B.C)
 Run:
 1 - Cr⁺⁶

 Source:
 Unit 1
 Run Time:
 11:40 - 15:10

Concentrations:

Hexavalent Chromium 0.0 mg/dscm 0.0000 gr/dscf

0.0 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.00 Kg/hr 0.000 lb/hr

Flue Gas Characteristics:

 Flow
 1287 dscm/min
 45453 dscf/min

 21.45 dscm/sec
 758 dscf/sec

2172 Acm/min 76720 Acf/min

Velocity 14.215 m/sec 46.64 f/sec

Temperature 157.5 oC 315.6 oF

Moisture 10.5 %

Gas Analysis 10.3 % O2

9.9 % CO2

29.990 Mol. Wt (g/gmole) Dry 28.737 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7970 dscm 98.777 dscf

Sample Time 120.0 minutes **Isokineticity** 97.7 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Date: 17-Nov-22 Metro Vancouver Jobsite: WTE (Burnaby, B.C) Run: 1 - Cr+6 Unit 1 Run Time: 11:40 - 15:10 Source: Control Unit (Y) 0.9909 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3053 Cr+6 (grams) 0.00000042 CO2 Impinger 1 -40.0 210.0 Pitot Factor 0.8511 Traverse 1 9.75 10.25 Impinger 2 Baro. Press. (in. Hg) 30.48 10.00 10.25 35.0 Impinger 3 Traverse 2 Static Press. (in. H20) -19.00 Total (grams) 0.0000004 Impinger 4 12.5 Stack Height (ft) 30 Stack Diameter (in.) 70.90 27.5 Stack Area (sq.ft.) 27.417 9.88 Minutes Per Reading 5.0 10.25 Gain (grams) 245.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) 455 050 Traverse 1 0.0 1.5 458.270 0.28 1.33 59 305 98.3 5.0 10.0 0.30 1.43 60 98.8 60 62 60 62 8.4 12.5 15.0 464.840 0.28 1.33 306 1.33 306 97.8 468.060 0.28 20.0 25.0 471.170 0.26 1.24 303 17.7 98.0 62 64 30.0 474.280 0.26 1.24 62 64 302 25.2 97.8 35.0 478.590 0.50 2.38 318 40.0 483.470 0.64 3.04 66 66 320 53.2 98.6 64 66 322 320 9 45.0 488.280 0.62 2.95 64 66 58.3 99.2 50.0 55.0 0.60 2.85 322 98.2 497,770 0.62 2.95 66 66 66.1 12 0.60 2.85 67 322 60.0 502.490 67 69.4 98.4 Traverse 2 0.0 5.0 502,490 0.46 2.19 68 319 97.8 506.620 68 10.0 510.570 0.42 2.00 69 69 320 4.7 97.7 15.0 514.610 0.44 2.09 320 319 8.4 12.5 97.7 20.0 518.920 0.50 2.38 97.6 25.0 523.140 0.48 2.28 319 17.7 97.3 527.180 2.09 2.52 25.2 45.6 6 30.0 0.44 318 97.0 0.53 40.0 535.930 0.50 2.38 74 74 320 53.2 96.9 45.0 540.150 2.28 74 74 318 58.3 9 0.48 96.7 544.290 55.0 548.380 0.45 2.14 75 75 316 66.1 96.4 552.330 12 60.0 0.42 2.00 76 76 69.4 96.2 316

0.451

2.144

67.6

67.6

315.6

Average:

97.7

Client:Metro VancouverDate:18-Nov-22Jobsite:WTE (Burnaby, B.C)Run: $2 - Cr^{+6}$ Source:Unit 1Run Time:08:40 - 10:50

Concentrations:

Hexavalent Chromium 0.0 mg/dscm 0.0000 gr/dscf

0.0 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.00 Kg/hr 0.000 lb/hr

Flue Gas Characteristics:

Flow 1330 dscm/min 46955 dscf/min

22.16 dscm/sec 783 dscf/sec 2208 Acm/min 77962 Acf/min

Velocity 14.445 m/sec 47.39 f/sec

Temperature 152.8 oC 307.1 oF

Moisture 9.9 %

Gas Analysis 10.3 % O2

9.6 % CO2

29.950 Mol. Wt (g/gmole) Dry 28.772 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.9376 dscm 103.741 dscf

Sample Time 120.0 minutes Isokineticity 99.3 %

* **Standard Conditions:** Metric: 20 deg C, 101.325 kPa

Client: 18-Nov-22 Metro Vancouver Date: Jobsite: WTE (Burnaby, B.C) Run: 2 - Cr+6 Unit 1 **Run Time:** 08:40 - 10:50 Source: Control Unit (Y) 0.9909 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3053 Cr+6 (grams) 0.00000045 Impinger 1 -42.0 0.8511 9.75 Pitot Factor Traverse 1 Impinger 2 209.0 Baro. Press. (in. Hg) 30.50 10.25 39.0 9.50 Impinger 3 Traverse 2 Static Press. (in. H20) -19.75 Total (grams) 0.0000005 Impinger 4 Stack Height (ft) 30 Stack Diameter (in.) 70.90 Stack Area (sq.ft.) 27.417 Gel 20.0 Minutes Per Reading 5.0 9.63 10.25 Gain (grams) 241.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (in. Hg.) (oF) (in.) (%) 557.400 Traverse 1 0.0 45 302 1.5 100.9 5.0 0.33 1.57 45 560.910 10.0 0.28 1.33 100.3 304 8.4 12.5 567 350 0.28 1.33 48 48 99 9 46 304 20.0 570.690 0.30 1.43 46 100.6 25.0 574.140 0.32 1.52 304 100.4 30.0 577.660 0.33 1.57 49 49 303 25.2 100.4 35.0 45.6 100.0 40.0 586.530 0.52 2.47 50 50 305 53.2 99.9 2.76 2.95 45.0 591.170 0.58 51 51 304 58.3 99.8 50.0 0.62 52 54 2.61 54 11 55.0 600,480 0.55 304 66.1 99.2 2.47 303 69.4 12 60.0 604.870 0.52 98.8 Traverse 2 0.0 5.0 604.870 0.46 2.19 304 98.6 609.000 56 10.0 613.040 0.44 2.09 57 57 305 4.7 98.5 310 311 15.0 617.430 0.52 2.47 2.57 8.4 12.5 99.1 20.0 621.920 99.3 626.560 0.58 2.76 58 58 312 17.7 99.0 313 313 2.85 2.57 25.2 45.6 30.0 631.280 0.60 59 98.9 8 40.0 640.160 0.52 2.47 59 59 314 53.2 98.8 45.0 644.200 0.44 312 58.3 98.4 2.09 60 60 648.590 2.47 652.820 0.48 2.28 62 62 311 66.1 98.2 12 60.0 656.860 0.44 2.09 309 69.4 97.8 62 62 99.3

54.1

54.1

4.1

307.1

0.469

2.228

Average:

Client: Metro Vancouver Date: 18-Nov-22 3 - Cr⁺⁶ Jobsite: WTE(Burnaby, B.C) Run: **Run Time:** 11:32 - 13:40

Source: Unit 1

Concentrations:

0.0 mg/dscm 0.0000 gr/dscf **Hexavalent Chromium**

> 0.0 mg/Acm 0.0000 gr/Acf

0.0 mg/dscm (@ 11% O2) 0.0000 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.00 Kg/hr 0.000 lb/hr

Flue Gas Characteristics:

Flow 1342 dscm/min 47406 dscf/min 22.37 dscm/sec 790 dscf/sec

2221 Acm/min 78436 Acf/min

14.533 m/sec Velocity 47.68 f/sec

Temperature 154.7 oC 310.5 oF

Moisture 9.1 %

Gas Analysis 10.5 % O2

9.5 % CO2

29.940 Mol. Wt (g/gmole) Dry 28.850 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 102.096 dscf 2.8910 dscm

Sample Time 120.0 minutes Isokineticity 96.8 %

* Standard Conditions: 20 deg C, 101.325 kPa Metric:

Client: Metro Vancouver Date: 18-Nov-22 WTE(Burnaby, B.C) Run: Jobsite: 3 - Cr+6 Source: Unit 1 **Run Time:** 11:32 - 13:40 Control Unit (Y) 0 9909 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3053 Cr+6 (grams) 0.00000043 -42.0 Impinger 1 Pitot Factor 0.8511 Impinger 2 205.0 Baro. Press. (in. Hg) 30.50 Traverse 2 9.25 10.75 Impinger 3 10.0 Static Press. (in. H20) Total (grams) 0.0000004 -19.75 Impinger 4 22.0 Stack Height (ft) 30 Stack Diameter (in.) 70.90 Stack Area (sq.ft.) 27.417 23.0 Minutes Per Reading 9.50 10 50 Gain (grams) 218 0 5.0 **Minutes Per Point** 5.0 Wall Dry Gas Temperature Stack Traverse / Pitot ^P Orifice ^H Isokin. Time Dry Gas Meter Temp. Inlet Outlet Vacuum Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 659.600 312 97.8 0.40 1.90 59 59 1.5 5.0 663,450 10.0 667.400 0.42 2.00 60 60 310 3 15.0 671.530 0.46 2.19 59 59 312 8.4 97.9 2.28 2.28 60 61 60 61 312 312 12.5 17.7 20.0 675.750 0.48 97.8 2.38 62 6 30.0 684,280 0.50 62 312 25.2 97.5 35.0 688.590 0.50 0.52 2.38 2.47 62 63 62 312 45.6 97.5 40.0 692.980 63 53.2 9 45.0 697.020 0.44 2.09 64 64 310 58.3 96.9 10 50.0 700.970 0.42 2.00 64 64 309 62.5 96.9 65 11 55.0 704.820 0.40 1.90 65 308 66.1 96.5 6 12 60.0 708.770 0.42 2.00 66 6 308 69.4 96.4 708.770 Traverse 2 0.0 5.0 712.110 0.30 1.43 66 66 302 1.5 96.0 0.32 0.35 67 67 67 67 10.0 715.560 1.52 304 4.7 95.9 308 15.0 719.170 1.66 8.4 96.3 20.0 722.920 0.38 1.81 308 5 25.0 726,770 0.40 1.90 68 68 310 17.7 96.0 6 30.0 730.520 0.38 1.81 67 67 314 25.2 96.4 735.417 45.6 35.0 0.66 8 2.99 97.6 40.0 740.310 0.63 68 312 53.2 69 45.0 745.260 3.14 69 313 0.66 6 58.3 96.4 10 50.0 750.210 0.66 3.14 11 55.0 754.930 0.60 2.85 68 68 313 66.1 96.5 759.550 69 12 60.0 0.57 2.71 69 6 312 69.4 96.7 310.5 Average: 0.473 2.249 65.0 65.0 5.1 96.8

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 1

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date Test Time		15-Nov-22 10:35 - 11:35	15-Nov-22 12:00 - 13:00	15-Nov-22 13:18 - 14:18
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	30.48	30.48	30.48
DGM Factor	(Y)	1.0167	1.0167	1.0167
Initial Reading	(m^3)	86.204	86.811	87.126
Final Reading	(m^3)	86.801	87.116	87.617
Temp. Outlet	(Avg. oF)	57.5	67.3	66.3
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.63	0.32	0.51
HF	(mg)	0.008	0.007	0.003
Oxygen	(Vol. %)	10.6	10.6	9.9
HF	(mg/Sm³)	0.013	0.021	0.005
HF	(mg/Sm ³ @ 11% O2)	0.012	0.020	0.005
Moisture	(Vol. %)	13.8	13.8	15.2

Tstd. (oF) 68 Pstd. (in. Hg) 29.92

Client: Metro Vancouver Date: 18-Nov-22

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 2 **Run Time:** 09:32 - 11:35

Concentrations:

Particulate 0.0 mg/dscm 0.0000 gr/dscf

0.0 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.003 Kg/hr 0.006 lb/hr

Flue Gas Characteristics:

Flow 1242 dscm/min 43875 dscf/min

 20.71 dscm/sec
 731 dscf/sec

 2122 Acm/min
 74938 Acf/min

Velocity 13.885 m/sec 45.55 f/sec

Temperature 145.3 oC 293.5 oF

Moisture 14.1 %

Gas Analysis 10.6 % O2

9.3 % CO2

29.917 Mol. Wt (g/gmole) Dry 28.239 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.8449 dscm 100.468 dscf

Sample Time 120.0 minutes Isokineticity 101.9 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 18-Nov-22 Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals Source: Unit 2 Run Time: 09:32 - 11:35 Control Unit (Y) 1 0014 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.3067 Filter (grams) 0.00005 9.33 232.0 Nozzle Diameter (in.) Impinger 1 Pitot Factor 0.8506 Washings (grams) 0.00005 Traverse 1 Impinger 2 76.0 Baro. Press. (in. Hg) 30.50 Traverse 2 9.33 10.63 Impinger 3 14.0 Total (grams) 0.00010 Static Press. (in. H20) -19.00 Impinger 4 8.0 Stack Height (ft) 30 Impinger 5 3.0 Stack Diameter (in.) 70.90 2.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 15.0 Minutes Per Reading 9.33 10 60 Gain (grams) 350 0 5.0 Minutes Per Point 5.0 Wall Dry Gas Temperature Stack Dry Gas Meter Pitot ^P Orifice ^H Vacuum Traverse / Time Inlet Outlet Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 984.328 987.900 292 95.1 0.41 2.16 46 46 1.5 5.0 991.740 10.0 0.43 2.26 294 99.8 3 15.0 995.370 0.36 1.89 47 295 8.4 103.1 0.33 0.36 1.73 1.89 297 297 12.5 17.7 102.2 102.2 20.0 998.820 48 48 1002.420 6 30.0 1006.120 0.38 1.99 48 48 299 25.2 102.4 35.0 1010.150 0.45 2.36 2.47 49 49 8 298 45.6 102.3 40.0 1014.280 0.47 50 297 102.3 45.0 1018.540 0.50 2.63 299 58.3 102.3 10 50.0 1022.850 0.51 2.69 52 52 298 62.5 102.2 55.0 1027.080 0.49 2.59 297 66.1 102.3 12 60.0 1031.230 0.47 2.49 53 53 9 295 69.4 102.1 1031.230 Traverse 2 0.0 5.0 1034.830 0.35 1.86 54 294 102.2 296 297 102.2 102.3 2 10.0 1038.380 0.34 1.81 55 55 4.7 0.33 1.75 15.0 1041.880 55 3 8.4 20.0 1045.090 0.28 1.48 298 102.1 5 25.0 1048,320 0.28 1.49 55 55 296 17 7 102.4 6 30.0 1051.480 0.27 1.45 56 56 292 25.2 101.5 0.49 1055.780 2.64 45.6 35.0 102.6 2.87 287 40.0 1060 250 102.3 45.0 58 58.3 1064.900 3.09 9 286 102.4 50.0 1069.700 0.61 3.31 285 102.2 11 1074.600 0.63 3.43 58 58 283 66.1 102.5 12 60.0 281 1079.380 0.60 3.28 59 59 9 69.4 102.1 Average: 0.435 2.317 52.8 52.8 7.8 293.5 101.9

Client: Metro Vancouver Date: 18-Nov-22

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 2 **Run Time:** 12:01 - 14:03

Concentrations:

Particulate 0.04 mg/dscm 0.00002 gr/dscf

0.02 mg/Acm 0.00001 gr/Acf

Emission Rates:

Particulate 0.003 Kg/hr 0.006 lb/hr

Flue Gas Characteristics:

Flow 1264 dscm/min 44648 dscf/min

21.07 dscm/sec 744 dscf/sec 2134 Acm/min 75367 Acf/min

Velocity 13.965 m/sec 45.82 f/sec

Temperature 143.6 oC 290.5 oF

Moisture 13.4 %

Gas Analysis 11.2 % O2

8.8 % CO2

29.861 Mol. Wt (g/gmole) Dry 28.270 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7566 dscm 97.350 dscf

Sample Time 120.0 minutes Isokineticity 101.4 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 18-Nov-22 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: 12:01 - 14:03 Source: Unit 2 Run Time: Control Unit (Y) 1 0014 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3067 Filter (grams) 0.00005 128.0 9.00 Impinger 1 Pitot Factor 0.8506 Washings (grams) 0.00005 Traverse 1 Impinger 2 110.0 Baro. Press. (in. Hg) 30.50 Traverse 2 8.67 11.30 Impinger 3 46.0 -19.00 Total (grams) 0.00010 Static Press. (in. H20) Impinger 4 14.0 Stack Height (ft) 30.16 Impinger 5 5.0 Stack Diameter (in.) 70.90 2.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 15.5 8.83 11 20 Gain (grams) 320 5 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Dry Gas Meter Pitot ^P Orifice ^H Isokin. Time Inlet Outlet Vacuum Temp. Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 79.709 57 101.2 0.42 2.26 57 290 1.5 5.0 83.670 58 10.0 87.750 2.37 101.8 292 3 15.0 91.640 0.40 2.16 58 58 289 8.4 101.5 0.32 0.28 288 290 20.0 95.120 1.73 58 58 58 58 101.4 59 6 30.0 101.520 0.26 1.40 59 291 25.2 101.4 35.0 105.570 0.43 2.33 60 60 60 60 289 45.6 101.6 40.0 109.850 0.48 2.59 292 53.2 101.9 45.0 114.260 0.56 61 61 293 58.3 97.2 10 50.0 118.950 0.58 3.13 62 62 62 295 62.5 101.5 62 11 55.0 123.750 0.60 290 66.1 101.8 3.26 12 60.0 128.590 0.61 3.33 61 61 286 69.4 101.8 Traverse 2 0.0 128.590 5.0 132.750 0.45 2.45 62 62 289 1.5 101.6 63 63 63 63 290 292 10.0 136,960 0.46 2.51 4.7 101.6 15.0 0.42 101.6 140.980 2.28 8.4 20.0 144.750 0.37 290 101.3 5 25.0 148,420 0.35 1 91 64 64 292 17.7 101 4 6 30.0 152.200 0.37 2.01 64 64 295 25.2 101.8 45.6 53.2 0.43 101.8 35.0 156.280 2.34 40.0 64 8 160.320 2.29 64 290 101.8 45.0 0.49 2.67 64 64 291 101.9 164.680 58.3 50.0 168.980 0.48 2.62 291 101.5 11 55.0 173.200 0.46 64 64 63 289 66.1 101.6 177.520 2.63 63 286 12 60.0 0.48 69.4 101.8 0.440 2.389 Average: 61.5 61.5 6.5 290.5 101.4

Client: Metro Vancouver Date: 18-Nov-22

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 2 **Run Time:** 14:25 - 16:27

Concentrations:

Particulate 0.0 mg/dscm 0.0000 gr/dscf

0.0 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.00 Kg/hr 0.006 lb/hr

Flue Gas Characteristics:

Flow 1219 dscm/min 43042 dscf/min

 20.31 dscm/sec
 717 dscf/sec

 2061 Acm/min
 72801 Acf/min

Velocity 13.489 m/sec 44.26 f/sec

Temperature 145.6 oC 294.0 oF

Moisture 13.2 %

Gas Analysis 10.3 % O2

9.6 % CO2

29.946 Mol. Wt (g/gmole) Dry 28.371 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7762 dscm 98.042 dscf

Sample Time 120.0 minutes Isokineticity 101.4 %

* **Standard Conditions:** Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 18-Nov-22 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Unit 2 **Run Time:** 14:25 - 16:27 Source: Control Unit (Y) 1 0014 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3067 Filter (grams) 0.00005 150.0 CO2 Impinger 1 Pitot Factor 0.8506 Washings (grams) 0.00005 Traverse 1 Impinger 2 108.0 Baro. Press. (in. Hg) 30.50 Traverse 2 9.33 10.63 Impinger 3 26.0 Total (grams) 0.0001 Static Press. (in. H20) -19.00 Impinger 4 10.0 Stack Height (ft) 30 Impinger 5 4.0 Stack Diameter (in.) 70.90 2.0 Impinger 6 27.417 16.4 Stack Area (sq.ft.) Gel Minutes Per Reading 9.58 10.32 Gain (grams) 316 4 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Orifice ^H Isokin. Traverse / Time Inlet Outlet Vacuum Temp. Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 178.100 101.3 0.28 1.52 63 63 292 1.5 5.0 181.380 10.0 184.700 0.29 63 63 293 100.8 3 15.0 187.970 0.27 1.47 63 63 291 8.4 102.7 20.0 25.0 0.23 0.25 1.25 1.36 63 64 290 295 12.5 17.7 190.890 99.3 197.150 6 30.0 0.26 1.41 65 298 25.2 101.2 35.0 201.540 0.50 2.71 2.82 65 65 296 45.6 101.6 40.0 206.010 0.52 297 53.2 101.5 45.0 210.730 0.58 3.15 65 65 296 58.3 101.5 10 50.0 215.560 0.60 3.27 66 66 294 62.5 101.9 291 55.0 220.520 0.63 3.45 66 66 66.1 101.9 6 12 60.0 225.380 0.61 3.34 65 65 6 288 69.4 101.5 Traverse 2 0.0 225.380 5.0 228.900 0.32 1.74 66 66 294 101.3 66 66 296 298 10.0 232.480 0.33 1.79 66 6 4.7 101.6 235.880 0.30 1.63 66 3 15.0 8.4 101.3 20.0 239.160 0.28 299 101.2 5 25.0 242.390 0.27 1.47 67 67 297 17.7 101 1 6 30.0 245.630 0.27 1.47 67 67 6 296 25.2 101.4 35.0 249.800 295 45.6 0.45 101.4 254,230 2.77 65 65 40.0 294 53.2 101.4 45.0 258.850 0.55 66 293 3.00 66 58.3 101.6 50.0 263.580 0.58 3.16 292 101.5 11 55.0 268.400 0.60 3.28 65 65 8 291 66.1 101.6 273.090 290 12 60.0 0.57 3.11 64 64 8 69.4 101.6 Average: 0.419 2.280 65.1 65.1 3.0 294.0 101.4

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 2

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date	(min.)	18-Nov-22	18-Nov-22	18-Nov-22
Test Time		10:28 - 11:28	11:35 - 12:35	14:42 - 13:42
Test Duration		60	60	60
Baro. Press.	(in. Hg)	30.50	30.50	30.50
DGM Factor	(Y)	1.0167	1.0167	1.0167
Initial Reading	(m ³)	89.710	90.317	90.844
Final Reading	(m ³)	90.315	90.840	91.394
Temp. Outlet	(Avg. oF)	48.3	58.3	61.3
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.65230	0.55272	0.57801
HF	(mg)	0.006	0.003	0.003
Oxygen	(Vol. %)	11.2	10.3	10.3
HF	(mg/Sm³)	0.010	0.005	0.005
HF	(mg/Sm³ @ 11% O2)	0.010	0.004	0.004
Moisture (isokinetic)	(Vol. %)	13.4	13.4	13.2

*Wet Basis Calculated on moisture from isokinetic tests Tstd. (oF) 68

Pstd. (in. Hg)

29.92

Client: Metro Vancouver Date: 15-Nov-22

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 3 **Run Time:** 12:05 - 14:08

Concentrations:

Particulate 0.83 mg/dscm 0.00036 gr/dscf

0.47 mg/Acm 0.00021 gr/Acf

Emission Rates:

Particulate 0.052 Kg/hr 0.116 lb/hr

Flue Gas Characteristics:

Flow 1057 dscm/min 37337 dscf/min

 17.62 dscm/sec
 622 dscf/sec

 1848 Acm/min
 65255 Acf/min

Velocity 12.091 m/sec 39.67 f/sec

Temperature 149.1 oC 300.3 oF

Moisture 15.2 %

Gas Analysis 10.0 % O2

10.0 % CO2

30.000 Mol. Wt (g/gmole) Dry 28.179 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.4171 dscm 85.361 dscf

Sample Time 120.0 minutes Isokineticity 102.7 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 15-Nov-22 1 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 3 Run Time: 12:05 - 14:08 Control Unit (Y) 0 9909 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3053 Filter (grams) 0.00090 232.0 CO2 10.00 Impinger 1 Pitot Factor 0.8511 Washings (grams) 0.00110 Traverse 1 Impinger 2 56.0 Baro. Press. (in. Hg) 30.50 Traverse 2 10.00 10.00 Impinger 3 14.0 Total (grams) 0.00200 Static Press. (in. H20) -19.50 Impinger 4 6.0 3.0 Stack Height (ft) 30 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 12.5 10.00 10 00 Gain (grams) 324 5 Minutes Per Reading 5.0 Minutes Per Point 5.0 Wall Dry Gas Temperature Stack Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 5.0 177.850 106.3 0.42 2.03 52 302 1.5 181.870 52 10.0 186.030 0.45 2.18 54 304 106.0 3 15.0 190.340 0.48 2.32 54 54 304 8.4 106.4 54 54 54 54 304 303 12.5 17.7 20.0 194.370 0.42 2.03 106.3 25.0 2.32 54 6 30.0 202.380 0.39 1.85 54 304 25.2 103.7 35.0 205.430 0.25 1.19 56 56 56 304 45.6 103.6 40.0 208.290 0.22 1.05 56 303 53.2 103.5 45.0 211.010 0.20 0.95 58 58 302 58.3 102.7 10 50.0 213.740 0.20 0.95 59 59 302 62.5 102.9 0.18 55.0 216.330 0.90 60 60 302 66.1 102.7 11 12 60.0 218.840 0.17 0.81 62 62 301 69.4 101.9 0.0 218.840 Traverse 2 221.950 0.26 1.24 62 62 300 1.5 102.2 225.170 228.390 62 64 62 64 10.0 0.28 1.33 300 4.7 102.0 1.33 0.28 8.4 15.0 299 101.5 20.0 231.250 0.22 1.05 101.6 5 25.0 234,110 0.22 1.05 65 65 298 17.7 101.4 6 30.0 237.090 0.24 1.14 66 66 298 25.2 101.0 0.40 240.940 45.6 35.0 1.90 101.2 66 53.2 40.0 244.920 2 04 66 297 100.9

68

68

69

60.9

68

68

69

60.9

2.00

2.00

2.09

2.09

1.577

58.3

66.1

69.4

297

296

295

300.3

6.0

100.9

100.9

100.8

100.6

102.7

248.870

252.820

256.860

260.900

0.42

0.42

0.44

0.44

0.330

45.0

50.0

60.0

10

11

12

Average:

Client: Metro Vancouver Date: 16-Nov-22

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 3 **Run Time:** 09:56 - 11:57

Concentrations:

Particulate 3.40 mg/dscm 0.00149 gr/dscf

1.93 mg/Acm 0.00084 gr/Acf

3.11 mg/dscm (@ 11% O2) 0.00136 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.237 Kg/hr 0.522 lb/hr

Flue Gas Characteristics:

Flow 1160 dscm/min 40967 dscf/min

 19.33 dscm/sec
 683 dscf/sec

 2047 Acm/min
 72292 Acf/min

Velocity 13.395 m/sec 43.95 f/sec

Temperature 152.5 oC 306.4 oF

Moisture 15.4 %

Gas Analysis 10.1 % O2

9.8 % CO2

29.977 Mol. Wt (g/gmole) Dry 28.129 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.6775 dscm 94.554 dscf

Sample Time 120.0 minutes Isokineticity 103.8 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 16-Nov-22 Run: Jobsite: WTE (Burnaby, B.C) 2 - Particulate / Metals Run Time: 09:56 - 11:57 Source: Unit 3 Control Unit (Y) 0 9909 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.3053 Filter (grams) 0.00740 CO2 9.67 Nozzle Diameter (in.) 220.0 02 Impinger 1 Pitot Factor 0.8506 Washings (grams) 0.00170 Impinger 2 100.0 Baro. Press. (in. Hg) 30.54 Traverse 2 10.00 10.07 Impinger 3 18.0 Total (grams) 0.00910 Static Press. (in. H20) -19.50 Impinger 4 8.0 Stack Height (ft) 30 3.0 Impinger 5 Stack Diameter (in.) 70.90 2.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 15.5 9.83 10.08 Gain (grams) 366.5 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Orifice ^H Vacuum Isokin. Traverse / Time Inlet Outlet Temp. Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 261.878 103.9 0.31 1.47 50 50 295 1.5 5.0 265,250 10.0 4.7 0.33 1.56 103.7 268.720 298 3 15.0 272.350 0.36 1.70 51 51 4.5 299 8.4 103.9 20.0 25.0 0.32 0.33 300 295 4 275.770 1.52 4.5 12.5 103.7 53 6 30.0 282,700 0.32 1.53 294 25.2 103.7 35.0 287.100 0.53 2.51 54 54 4.5 304 45.6 103.8 40.0 291.660 0.57 2.68 4.5 310 53.2 103.9 9 45.0 296.280 0.58 2.73 56 311 58.3 104.3 10 50.0 300.740 0.54 2.55 58 58 4.5 312 62.5 103.9 55.0 0.50 305.060 2.38 59 59 306 66.1 104.0 12 60.0 308.990 0.41 1.96 61 61 5 305 69.4 103.9 0.0 5.0 Traverse 2 308.990 313.420 0.52 2.47 63 313 1.5 104.2 0.53 0.51 2.53 2.44 10.0 317.890 64 64 312 4.7 103.9 312 15.0 65 65 8.4 322.280 103.8 3 20.0 326.760 104.0 5 25.0 331,250 0.53 2.54 66 66 311 17.7 103.9 6 30.0 335.480 0.47 2.25 66 66 313 25.2 104.0 35.0 339.090 0.34 1.63 45.6 103.9 8 40.0 342.300 1.30 68 53.2 103.3 45.0 345.420 0.25 1.21 104.1 9 69 69 309 58.3 10 50.0 348.200 0.20 0.97 308 62.5 103.6 11 55.0 350.980 0.20 0.97 69 69 308 66.1 103.6 60.0 353.620 12 0.18 0.87 69 69 306 69.4 103.5 60.5 Average: 0.401 1.912 60.5 4.6 306.4 103.8

Client: Metro Vancouver Date: 16-Nov-22

Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals

Source: Unit 3 **Run Time:** 12:22 - 14:23

Concentrations:

Particulate 3.57 mg/dscm 0.00156 gr/dscf

2.05 mg/Acm 0.00089 gr/Acf

Emission Rates:

Particulate 0.246 Kg/hr 0.542 lb/hr

Flue Gas Characteristics:

Flow 1147 dscm/min 40493 dscf/min

 19.11 dscm/sec
 675 dscf/sec

 2000 Acm/min
 70641 Acf/min

Velocity 13.089 m/sec 42.94 f/sec

Temperature 155.7 oC 312.3 oF

Moisture 13.8 %

Gas Analysis 10.5 % O2

9.3 % CO2

29.913 Mol. Wt (g/gmole) Dry 28.269 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.6038 dscm 91.952 dscf

Sample Time 120.0 minutes Isokineticity 102.1 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Metro Vancouver Date: 16-Nov-22 Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals 12:22 - 14:23 Source: Unit 3 **Run Time:** Control Unit (Y) 0 9909 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3053 Filter (grams) 0.00610 216.0 9.17 Impinger 1 02 Pitot Factor 0.8506 Washings (grams) 0.00320 Impinger 2 Baro. Press. (in. Hg) 30.54 Traverse 2 9.50 10.20 Impinger 3 12.0 Total (grams) 0.00930 Static Press. (in. H20) -19.50 Impinger 4 6.0 Stack Height (ft) 30 3.0 Impinger 5 Stack Diameter (in.) 70.90 Impinger 6 1.0 27.417 Stack Area (sq.ft.) Gel 12.7 9.33 10 48 Gain (grams) 3127 Minutes Per Reading 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Orifice ^H Isokin. Traverse / Time Inlet Outlet Vacuum Temp. Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 356.302 102.3 0.49 2.34 66 66 313 1.5 5.0 360.620 10.0 364.980 0.50 2.39 66 66 314 102.4 3 15.0 369.460 0.53 2.53 66 66 315 8.4 102.3 2.29 2.34 67 66 315 314 12.5 17.7 20.0 373.730 0.48 67 102.2 25.2 6 30.0 382.040 0.42 2.01 67 67 313 102.1 35.0 385.440 0.30 0.26 1.44 68 68 312 45.6 102.3 40.0 388.600 1.25 69 69 313 53.2 102.0 45.0 391.700 0.25 1.20 69 69 313 58.3 102.0 10 50.0 394,420 0.19 0.92 70 70 307 62.5 102.0 397.080 11 55.0 0.18 0.88 70 70 302 66.1 102.1 12 60.0 399.590 0.16 0.79 70 70 297 69.4 101.9 Traverse 2 0.0 399.590 5.0 403.160 0.33 1.59 69 69 310 1.5 102.1 0.35 0.32 70 70 10.0 406.830 1.69 70 312 4.7 101.9 70 15.0 316 410.340 1.54 8.4 102.2 0.30 1.44 316 12.5 102.3 5 25.0 417 050 0.28 1.35 71 71 316 17.7 102.4 6 30.0 420.620 0.33 1.59 71 71 315 25.2 102.1 45.6 53.2 0.55 0.56 72 72 102.2 425.230 2.65 316 72 8 40.0 429.880 2.70 316 102.2 45.0 434.370 73 58.3 102.0 0.52 2.52 73 314 438.750 0.49 2.38 313 62.5 102.3 11 55.0 443.170 0.50 2.43 74 74 312 66.1 102.1 447.120 74 74 12 60.0 0.40 1.95 311 69.4 101.8

69.8

69.8

4.3

312.3

102.1

0.383

1.842

Average:

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 3

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date	(min.)	16-Nov-22	16-Nov-22	16-Nov-22
Test Time		10:12 - 11:12	11:23 - 12:23	12:34 - 13:34
Test Duration		60	60	60
Baro. Press.	(in. Hg)	30.54	30.54	30.54
DGM Factor	(Y)	1.0167	1.0167	1.0167
Initial Reading	(m ³)	87.630	88.248	88.824
Final Reading	(m ³)	88.240	88.818	89.461
Temp. Outlet	(Avg. oF)	54.7	59.3	60.7
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.65023	0.60245	0.67076
HF	(mg)	0.003	0.003	0.011
Oxygen	(Vol. %)	10.1	10.1	10.5
HF	(mg/Sm³)	0.004	0.004	0.016
HF	(mg/Sm³ @ 11% O2)	0.004	0.004	0.015
Moisture (isokinetic)	(Vol. %)	15.4	15.4	13.8

*Wet Basis Calculated on moisture from isokinetic tests Tstd. (oF) 68

Pstd. (in. Hg)

29.92

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Parameter: N₂O

Molecular Weight: 44.0 grams/mol Reportable Detection

Lab Detection Limit: 0.1 ppm Limit: 0.18 mg/Sm³

Sample ID	Date	Time	N₂O ppm	N₂O mg/Sm³	N₂O mg/Sm³ @ 11% O₂
Unit 1 - Run 1 Unit 1 - Run 2 Unit 1 - Run 3 Average	16-Nov-22 16-Nov-22 16-Nov-22	10:35-11:35 12:00-13:00 13:15-14:15	1.5 0.0 0.0	2.7 0.2 0.2	2.6 0.2 0.2 1.0
Unit 2 - Run 1 Unit 2 - Run 2 Unit 2 - Run 3 Average	18-Nov-22 18-Nov-22 18-Nov-22	10:40-11:40 11:41-12:41 12:42-13:42	2.0 0.0 1.0	3.7 0.2 1.8	3.4 0.2 1.8 1.8
Unit 3 - Run 1 Unit 3 - Run 2 Unit 3 - Run 3 Average	16-Nov-22 16-Nov-22 16-Nov-22	10:00-11:00 11:02-12:02 12:05-13:05	1.0 1.0 0.0	1.8 1.8 0.2	1.8 1.8 0.2 1.3

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Parameter: Multiple VOCs

Date:	15-Nov-22			18-Nov-22			16-Nov-22		
	Unit 1			Unit 2			Unit 3		
	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
Test Times:	10:35 - 11:35	12:00 - 13:00	13:18 - 14:18	10:28 - 11:28	11:35 - 12:35	12:42 - 13:42	10:12 - 11:12	11:23 - 12:23	12:34 - 13:34
Methane	1.30	1.30	ND	1.8	3.4	ND	ND	3.50	1.9
Ethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3 as Propane	ND	ND	ND	ND	ND	ND	ND	ND	ND
C4 as n-Butane	ND	ND	ND	ND	ND	ND	ND	ND	ND
C5 as n-Pentane	1.4	ND	1.3	ND	ND	ND	ND	1.8	ND
C6 as n-Hexane	1.7	ND	0.92	ND	ND	ND	ND	ND	ND
C6+ as n-Hexane	3.4	ND	ND	ND	ND	ND	ND	ND	ND
Detection Limits:									
Methane	1.6	1.4	1.5	1.5	1.6	1.5	1.5	1.3	1.7
Ethane	0.48	0.43	0.44	0.46	0.47	0.45	0.46	0.39	0.50
Ethene	0.48	0.43	0.44	0.46	0.47	0.45	0.46	0.39	0.50
C3 as Propane	0.80	0.72	0.74	0.77	0.79	0.75	0.76	0.65	0.83
C4 as n-Butane	0.80	0.72	0.74	0.77	0.79	0.75	0.76	0.65	0.83
C5 as n-Pentane	0.80	0.72	0.74	0.77	0.79	0.75	0.76	0.65	0.83
C6 as n-Hexane	0.80	0.72	0.74	0.77	0.79	0.75	0.76	0.65	0.83
C6+	1.6	1.4	1.5	1.5	1.6	1.5	1.5	1.3	1.7
Using 1/2 DL Convention									
Sample Date:	15-Nov-22			18-Nov-22			16-Nov-22		
	Unit 1			Unit 2			Unit 3		
Sample Date:	Unit 1 Run 1	Run 2	Run 3	Unit 2 Run 1	Run 2	Run 3	Unit 3 Run 1	Run 2	Run 3
	Unit 1	Run 2 12:00 - 13:00	Run 3 13:18 - 14:18	Unit 2	Run 2 11:35 - 12:35	Run 3 12:42 - 13:42	Unit 3	Run 2 11:23 - 12:23	Run 3 12:34 - 13:34
Sample Date:	Unit 1 Run 1			Unit 2 Run 1			Unit 3 Run 1		
Sample Date: Test Times:	Unit 1 Run 1 10:35 - 11:35 1.30 0.24	12:00 - 13:00 1.30 0.22	13:18 - 14:18 0.75 0.22	Unit 2 Run 1 10:28 - 11:28 1.80 0.23	11:35 - 12:35 3.40 0.24	12:42 - 13:42 0.75 0.23	Unit 3 Run 1 10:12 - 11:12 0.75 0.23	11:23 - 12:23 3.50 0.20	12:34 - 13:34 1.90 0.25
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24	12:00 - 13:00 1.30 0.22 0.22	13:18 - 14:18 0.75 0.22 0.22	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23	11:35 - 12:35 3.40 0.24 0.24	12:42 - 13:42 0.75 0.23 0.23	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23	11:23 - 12:23 3.50 0.20 0.20	12:34 - 13:34 1.90 0.25 0.25
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40	12:00 - 13:00 1.30 0.22 0.22 0.36	13:18 - 14:18 0.75 0.22 0.22 0.37	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39	11:35 - 12:35 3.40 0.24 0.24 0.40	12:42 - 13:42 0.75 0.23 0.23 0.38	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38	11:23 - 12:23 3.50 0.20 0.20 0.33	12:34 - 13:34 1.90 0.25 0.25 0.42
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Cthene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 0.40	12:00 - 13:00 1.30 0.22 0.22 0.36 0.36	13:18 - 14:18 0.75 0.22 0.22 0.37 0.37	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.23 0.39 0.39	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.23 0.38 0.38	11:23 - 12:23 3.50 0.20 0.20 0.33 0.33	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42
Sample Date: Test Times: Methane (ppm) Ethane (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 0.40 0.40 1.40	1.30 0.22 0.36 0.36 0.36	13:18 - 14:18 0.75 0.22 0.22 0.37 0.37 1.30	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39 0.39 0.39	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38	11:23 - 12:23 3.50 0.20 0.20 0.33 0.33 1.80	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 0.40 0.40 1.40 1.70	1.30 0.22 0.22 0.36 0.36 0.36	13:18 - 14:18 0.75 0.22 0.22 0.37 0.37 1.30 0.92	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39 0.39 0.39 0.39	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40 0.40 0.40	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38 0.38	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38 0.38 0.38	3.50 0.20 0.20 0.33 1.80 0.33	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42 0.42 0.42
Sample Date: Test Times: Methane (ppm) Ethane (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 0.40 0.40 1.40	1.30 0.22 0.36 0.36 0.36	13:18 - 14:18 0.75 0.22 0.22 0.37 0.37 1.30	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39 0.39 0.39	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38	11:23 - 12:23 3.50 0.20 0.20 0.33 0.33 1.80	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 0.40 0.40 1.40 1.70	1.30 0.22 0.22 0.36 0.36 0.36	13:18 - 14:18 0.75 0.22 0.22 0.37 0.37 1.30 0.92	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39 0.39 0.39 0.39	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40 0.40	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38 0.38	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38 0.38 0.38	3.50 0.20 0.20 0.33 1.80 0.33	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42 0.42 0.42
Sample Date: Test Times: Methane (ppm) Ethane (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 0.40 1.40 1.70 3.40	12:00 - 13:00 1.30 0.22 0.22 0.36 0.36 0.36 0.36 0.36	13:18 - 14:18 0.75 0.22 0.22 0.37 0.37 1.30 0.92 0.75	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39 0.39 0.39 0.39 0.75	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40 0.40 0.40 0.80	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38 0.38 0.38	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38 0.38 0.38 0.75	3.50 0.20 0.20 0.33 0.33 1.80 0.33 0.65	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42 0.42 0.42
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 0.40 1.40 1.70 3.40	12:00 - 13:00 1.30 0.22 0.22 0.36 0.36 0.36 0.36 0.36 0.70	13:18 - 14:18 0.75 0.22 0.22 0.37 0.37 1.30 0.92 0.75	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39 0.39 0.39 0.39 0.75	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40 0.40 0.80	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38 0.38 0.75	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38 0.38 0.38 0.75	11:23 - 12:23 3.50 0.20 0.20 0.33 0.33 1.80 0.33 0.65	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42 0.42 0.42 1.27
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 0.40 1.40 1.70 3.40	12:00 - 13:00 1.30 0.22 0.22 0.36 0.36 0.36 0.36 0.70 0.87 0.14	13:18 - 14:18 0.75 0.22 0.22 0.37 0.37 1.30 0.92 0.75 0.50 0.15	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39 0.39 0.39 0.39 0.75	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40 0.40 0.80 2.27 0.16	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38 0.75 0.50 0.15	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38 0.38 0.38 0.38 0.75	11:23 - 12:23 3.50 0.20 0.20 0.33 0.33 1.80 0.33 0.65	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42 0.42 0.42 0.85
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) Ethene (mg/m³ as CH₄)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.40 0.40 1.40 1.70 3.40 0.87 0.16 0.16	12:00 - 13:00 1.30 0.22 0.22 0.36 0.36 0.36 0.70 0.87 0.14 0.14	13:18 - 14:18 0.75 0.22 0.22 0.37 1.30 0.92 0.75 0.50 0.15 0.15	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39 0.39 0.39 0.75 1.20 0.15 0.15	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40 0.80 2.27 0.16 0.16	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38 0.75 0.50 0.15 0.15	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38 0.38 0.38 0.75 0.50 0.15 0.15	11:23 - 12:23 3.50 0.20 0.20 0.33 0.33 1.80 0.33 0.65 2.34 0.13 0.13	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42 0.42 0.42 0.85 1.27 0.17
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C5 as n-Pentane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH₄) Ethane (mg/m³ as CH₄) C3 as Propane (mg/m³ as CH₄) C4 as n-Butane (mg/m³ as CH₄)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 0.40 1.40 1.70 3.40 0.87 0.16 0.16 0.27 0.27	12:00 - 13:00 1.30 0.22 0.22 0.36 0.36 0.36 0.70 0.87 0.14 0.14 0.24 0.24	13:18 - 14:18 0.75 0.22 0.22 0.37 1.30 0.92 0.75 0.50 0.15 0.15 0.25 0.25	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39 0.39 0.39 0.75 1.20 0.15 0.15 0.26 0.26	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40 0.80 2.27 0.16 0.16 0.26 0.26	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38 0.75 0.50 0.15 0.15 0.25 0.25	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38 0.38 0.38 0.75 0.50 0.15 0.15 0.25 0.25	11:23 - 12:23 3.50 0.20 0.20 0.33 1.80 0.33 0.65 2.34 0.13 0.13 0.22 0.22	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42 0.42 0.70 0.85 1.27 0.17 0.17 0.28 0.28
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) C4 as n-Butane (mg/m³ as CH ₄) C5 as n-Pentane (mg/m³ as CH ₄)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 1.40 1.70 3.40 0.87 0.16 0.16 0.27 0.27	12:00 - 13:00 1.30 0.22 0.22 0.36 0.36 0.36 0.70 0.87 0.14 0.14 0.24 0.24 0.24	13:18 - 14:18 0.75 0.22 0.22 0.37 1.30 0.92 0.75 0.50 0.15 0.15 0.25 0.25 0.87	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39 0.39 0.39 0.75 1.20 0.15 0.15 0.26 0.26	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40 0.80 2.27 0.16 0.16 0.26 0.26 0.26	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38 0.75 0.50 0.15 0.15 0.25 0.25 0.25	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38 0.38 0.75 0.50 0.15 0.15 0.25 0.25 0.25	11:23 - 12:23 3.50 0.20 0.20 0.33 0.33 1.80 0.33 0.65 2.34 0.13 0.13 0.22 0.22 1.20	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42 0.42 0.85 1.27 0.17 0.17 0.17 0.28 0.28 0.28
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C6 as n-Pentane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) C3 as Propane (mg/m³ as CH ₄) C4 as n-Butane (mg/m³ as CH ₄) C5 as n-Pentane (mg/m³ as CH ₄) C6 as n-Hexane (mg/m³ as CH ₄)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 0.40 1.70 3.40 0.87 0.16 0.16 0.27 0.27 0.93 1.13	12:00 - 13:00 1.30 0.22 0.22 0.36 0.36 0.36 0.36 0.70 0.87 0.14 0.14 0.14 0.24 0.24 0.24 0.24	13:18 - 14:18 0.75 0.22 0.22 0.37 0.37 1.30 0.92 0.75 0.50 0.15 0.15 0.25 0.25 0.87 0.61	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.39 0.39 0.39 0.75 1.20 0.15 0.15 0.26 0.26	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40 0.40 0.80 2.27 0.16 0.16 0.26 0.26 0.26 0.26	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38 0.75 0.50 0.15 0.15 0.25 0.25 0.25 0.25	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38 0.38 0.75 0.50 0.15 0.25 0.25 0.25 0.25	11:23 - 12:23 3.50 0.20 0.20 0.33 0.33 1.80 0.33 0.65 2.34 0.13 0.13 0.22 1.20 0.22	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42 0.42 0.7 0.17 0.17 0.17 0.17 0.28 0.28 0.28
Sample Date: Test Times: Methane (ppm) Ethane (ppm) Ethene (ppm) C3 as Propane (ppm) C4 as n-Butane (ppm) C6 as n-Hexane (ppm) C6+ as n-Hexane (ppm) Methane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) Ethane (mg/m³ as CH ₄) C4 as n-Butane (mg/m³ as CH ₄) C5 as n-Pentane (mg/m³ as CH ₄)	Unit 1 Run 1 10:35 - 11:35 1.30 0.24 0.24 0.40 1.40 1.70 3.40 0.87 0.16 0.16 0.27 0.27	12:00 - 13:00 1.30 0.22 0.22 0.36 0.36 0.36 0.70 0.87 0.14 0.14 0.24 0.24 0.24	13:18 - 14:18 0.75 0.22 0.22 0.37 1.30 0.92 0.75 0.50 0.15 0.15 0.25 0.25 0.87	Unit 2 Run 1 10:28 - 11:28 1.80 0.23 0.23 0.39 0.39 0.39 0.75 1.20 0.15 0.15 0.26 0.26	11:35 - 12:35 3.40 0.24 0.24 0.40 0.40 0.40 0.80 2.27 0.16 0.16 0.26 0.26 0.26	12:42 - 13:42 0.75 0.23 0.23 0.38 0.38 0.38 0.75 0.50 0.15 0.15 0.25 0.25 0.25	Unit 3 Run 1 10:12 - 11:12 0.75 0.23 0.23 0.38 0.38 0.38 0.75 0.50 0.15 0.15 0.25 0.25 0.25	11:23 - 12:23 3.50 0.20 0.20 0.33 0.33 1.80 0.33 0.65 2.34 0.13 0.13 0.22 0.22 1.20	12:34 - 13:34 1.90 0.25 0.25 0.42 0.42 0.42 0.42 0.85 1.27 0.17 0.17 0.17 0.28 0.28 0.28

All data is corrected to standard conditions (S) of 20 °C, 101.325 kPa (dry) unless otherwise noted.

APPENDIX - D FIELD DATA SHEETS

ULIE	NT MU				PROBE	MUOI	DIA	/ETER, IN.	383	IMPINGER	INITIAL	FINAL	TOTAL GAIN
OUF	RCE LINET	- #1			PROBE	70		Cp 28	50	VOLUMES		(mL)	(mL)
	METER / RUN	No metals/	12.1		PORTIES	10711				Imp. #1	0	1/66.	- programme
ATE			101		PORT LEN					Imp. #2	100	19991	166
PER	ATOR:	G+CP.				RESSURE, II	N. H2O	-19		Imp. #3	100		
			V 12021		STACK DIA					Imp. #4	0	1361	5.6
		AC 6/05	ΔН@ / 5	16	STACK HE	IGHT					100	104	,10
ARO	METRIC PRES	STIDE IN U. O.	27	33						The same of the sa	100	107	7
SU	MED MOISTUR		36		INITIAL LE	AK TEST	1001	6/15/		Upstream D		101	2
	WED MOISTOR	KC, DW	19/0	,	FINAL LEA	K TEST	100 11	21-4		Downstream	Diameters		
_	T 01 1 m						1000	3/>		L	Diameters		
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature	op		testo			
oint	12:02	25 626	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe		T	Pump Vac.		yrites	
	12:07	20,878			Outlet	0.000	1 1006	Box	Impinger	IN. Hg	CO ₂	O ₂	
	5	24,92	1,6/2	7,12	61	20-	10		Exit		Vol. %	Vol. %	
	10	29,10	195	277		300	251	251	59	5 5			
?	15	33,24	uu	2.22	61	362					9.5	10,6	
7	20	37.35	17/2	2.19	61	300	252	1252	159	5.5		10,0	
	25	4/1/32	195	16101	62	295				1			
-	30	45.14	170	2,04	62	293	250	252	55	6,0		 	
	35	49.98	137	1,90	62	291			1	0,0			
22 I	40	34,91		3,03	63	290	751	250	597	70		-	
_	45		.101	13,15	104	289			31	7.0		-	
5	50	99.73	158	3,00	65	289	124	257	59	8.0	0		
-		69,48	156	2191	66	287		-5 (121	200	9,0	10,1	
,	95	69,27	157	2.9%	10.6	287		1		-			
2	60	74.08	157	2,97	67	286	250	7-1	SC	-			
_		===		. , ,	61	1000	100	1251	28	8.0			
_	_ 5	78,96	1,47	2,46	67	282	257	250	00	-			
	10	82,69	144	2:30	107	282	6)1	230	S8	600			
_	15	87.02	00146	2.41	67	283	2510	101			9.4	10.6	
	20	91,79	145	7.121	67	200	249	250	87	70	"		
	25	98.62	146	2,40	68	786 286	-		5				
	30	99.85	,4/4	2,29	98	686	257	287	57	8,0			
Ì	35	104.36	150		68	288							
		109,09	Company of the last of the las	2,60	69	290	252	253	57	8,5			
	45	113.64		7,80	69	292				()	9,5	10.7	
	93	118.28	52	2.70	69	290	216	250	57	810	///	10.7	
1	55	127.31	144	2:25	69	290				7			- lá
		The Gero	142	2.18	ter	290	249	249	97	9.0			
1	14:11	EM) test	190	2.00	69	291	235.0						- M
7		Styll lest											4
7													
+													
+													
							1						(a),
													2.0

CLIE	MU				NOZZLE	6-307		ETER, IN.	3083	IMPINGE	R! INITIAL	I FINAL T	
SOUF		#1			PROBE -	7ALCO	1212-1		506	VOLUME		7 17 42	TOTAL GAIN
		No metals 12)				-		300	Imp. #1		(mL)	(mL)
DATE	11.15.22	11/E1/19 / 1C	6		PORT LEN					Imp. #2	The state of the s	138;	158
PER	ATOR TA	ECD F 175			STATIC P	RESSURE, I	N. H2O	- 1		Imp. #3	1110	2/4	114
CONT	ROL UNIT CA	C 6/2 3	V 60.	*	STACK DI			(-4)		Imp. #3	17.0	134	34
	CA	(= (4 (U))	Y ,996	12	STACK HE	IGHT				Imp. #5		1 /201	1
ARO	METRIC PRES	SURE IN Ho 75	48	23						Imp. #6	10	193	5,
SSU	MED MOISTUR	SURE, IN. Hg 30 E, Bw /30	77		INITIAL LE	AK TEST ,	602 Q1	5 4		Upstream		101	
		137	0		FINAL LEA		022/2/15			Downstrea			
	Clock Time	Dry Gas Meter ft	Div. AD	T		7971	1			testa			
oint		Dry Gus Metel It	Pitot ΔP	Orifice AH			Temperature °F			Pump Vac	The second second		
~ *415	10:02	177 011	IN. H₂O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	⊣ ^		yrites	
7	a	127.845	770		Outlet				Exit	IN. Hg	CO ₂	O ₂	
		13).42	1,33	1.71	50	1295	750	1700	39		Vol. %	Vol. %	
2	10	135/10	,35	1.81	50	296	100	100	79	7.0			
1	17	133,78	135	17,81	150	216	251	757	0.0		9.0	10,5	
2	70	1412177	,4//	12/12	50	295	100	100	59	800			
	25	150.63			51	195	750	249	0.00				
7	30		263 139 7			194	100	67	59	8.0			
1	110	154,69	12/2	12,18	301	744	750	() (2 mg/l)	100	-			
9		158,56	1.4/4	2,30	35	296	100	250	25	9es	4		
0		162,98	1413	224	56	709	757	700	1000	- 72			
7	50	100,97	,40	2.10	57	295	(652	58	8,5	9,5	1018	
2	-55	110,92	1301	204	54	247	250	20103	P7 =-				
-	100	174,76	137	1,94	58	297	10/	12.73	55	3,5			
\dashv	2	1000							-				
	3	138,73	139	2,06	101	295	250	745	65	(3)			
		187.65	37	1,95	Ti	2/10		(1)	7 7	9,0			
	70	186.36	135	2,55	6i	2016	251	250	34	0			
	75	130,21	.33.	1.74	61	317		12/	25	9-5-	9.0	10,4	
	30	193,83	1362	1,90	62	296	250	249	39	100			
1		197.60	35	1,85	102	296		- //	7 /	10.0			
+	10	201.92	16/6	2,43	63	748	257	248	59	4 1 1			
+		200.72		7.39	65	2017		640	27	10,0			
	-	719.61	47		6.5	247	252	25-41	95	9,5	72 / /		
+			140	2,13		295			71	7/5	9,61	10.7	100
7		45 118:107 129 9:07 121:1632 138 9:03			65	746	2521	255	57	80		//	3
1	2:00	END Fest	138	2.03	106	295			-	1,0			36
1		COLUMN TOO											4
													. nika . gira
													25

CLIEN.	mU				NOZZLE (7-	DIAN	METER, IN.	3043	IMPINGER	INITIAL	T	BUT
SOUR	E Unit+	+1			PROBE	FAL G	PUDDI	Cp FS	06	VOLUMES			TOTAL GAIN
	METER / RUN		77.7				the state of	703		Imp. #1		(mL)	(mL)
ATE	11,15		165		PORT LEN						0	1250	230
PERA	TOR: JGT	CD +DC			STATIC P	RESSURE, II	V. H2O	-19			100	182	87
ONTR	OL UNIT	15 115			STACK DI					Imp. #3	100	1/6	16
	-	+(- G/(I)	Y ,99		STACK HE	IGHT					0	161	- 6
AROM	ETRIC PRES	SURE, IN. Hg 30	ΔH@ //-	733						Imp. #5	100	102	7
SSUM	ED MOISTUR		Accept the second		INITIAL LE	AK TEST	00d/s	-01		Imp. #6	100	101	/
		RE, Bw /30	6		FINAL LEA		was () 1	74		Upstream Di			1
T	Clock Time	Des Con Material					-	1		Downstream			1
Point	1	Dry Gas Meter ft'	Pitot ∆P	Orifice AH			Temperature	olD		testo	Jac.		
TOIR	2:47	226,297	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe		_	Pump Vac.	Fy	rites	
1			1		Outlet		1,1006	Box	Impinger	IN. Hg	CO ₂	O ₂	
	-5	230,25	138	7.03	103	790	1700	1	Exit		Vol. %	Vol. %	1
2	10	234,15	1:37	1,98	63	290	1650	12 5	98	1.4.0			
3	15	737,94	135	1.86	63	The second section is not a second	1300	1					
4		24/10/	133	1.75	43	292	152	257	58	70	8.9	9	
5	25	245,015	136	1141	80		2000	,			4-(100	
6	20	419	138	2.03	64	795	249	152	55	75		+	
7	25	253,67	16/6/	2.36	1001	290	7						
2	1/0	757160	137	2.00	105	289	250	251	158	75			
7	45	26137	134	184	65	294	-						
0		265,25	136	195	125	224	157	525	158	75			
	/	269,18	137	2,00		284				1	9.0	10.0	
7	/	273,00	-35	7.88	(05	285	250	15/20	58	8.0	110	70.0	
	30	1	1-3	1791	60	255							
7		276,77	1341	1.801	1.1.	6162.50							
2		780,60	35-	1.89	106	285	157	253	53	8.0			
		28443	35	1689	67	287					39	9,9	
4		788,53	140	2.16	10 t	288	252	253	58	8.0		7,7	
		297.57	39	210	198	288				-			
		296:66	,40	310	65	250	251	252	54	8.5			
2		300,86	147	2137	88	792				- Annual Control	2,0	10,0	
		305,16	44	2:38		290	252	257	95	9.0	7	1010	
		309,41	143	732	69	290	-	(/-			
2		313,51	,40	7.16	10	292	250	249	55	8.5			
	P	317:51:		7:16	79	292	0.00						
		521,570	131	District Control	1	295	257	249	54	90			
1/6	1:92	ENDITECT	/	100	1	6 101				, ,			
-													
					-						-		- 1
													7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
													2

V6.09 4.75 AH

A. Lanfranco and Associates Inc.

LIENT MURD		OZZLE	MUOL	DIAM	TER, IN.	3055	IMPINGER	INITIAL	! FINAL !	70711
	PF	ROBE	H			BIL	VOLUMES		(mL)	TOTAL GAI
					16	7./	Imp. #1	17-0	110:	(mL)
		ORT LENG					Imp. #2	1170		-40
PERATOR:			ESSURE, IN.	H2O -	19.00	7	Imp. #3	75	285	210
		ACK DIA		7090	1100		Imp. #4	70	110	_35
	ST	ACK HE	GHT	201			Imp. #5	-		
AROMETRIC PRESSURE, IN. Hg				-			Imp. #6	1	1	
20114 2000 2400	INI	TIAL LEA	K TEST	2.008	015	1	Upstream D	iomotore		
SSUMED MOISTURE, BW 156	FIN	VAL LEAK	TEST O	006	(0 1Z	-11	Downstream			
Cl. 1 Ti D. C. Min S							Downstiean	Diameters		
	fice ΔH			Temperature °	F		D 17			
oint 11:40 455.050 IN. H20 IN	. H ₂ O	Dry Gas	Stack	Probe	Box	I Immin	Pump Vac.		rites	
		Outlet		11000	l Box	Impinger Exit	IN. Hg	CO ₂	02	
458.27 128 TE	35 2	39	25	NIA	NA	EXIT		Vol. %	Vol. %	
1666 62 30 16	13 7	0	20	10/11	0011	50	6	0	100	
1 464 84 128 13	1000	0	306			1-1	7	700	1050	
100,00 20 13	55 2	30	Sol			56	6			
5 6400 0 US 4 7 17 26 11	24 7		303			7-				
14 10 H 14 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 7	0	302			60	6			
1 170,59 50 5		7	318			70				
483.47 64 3.		5	320			60	6	100	10.0	
100 00 162 2	95 6	7	300			10			1-4	
1929 49 60 03		6	350			100	6			
144+++ 10 10	15 6	7	333							
2 502.49 60 2		2	1			60	6			
		2.T	200							
506.62 146 21	9/	8	319	ASTES	()10	,				
15054 100	\$ 8	0	300	NIA	NIA	60	5			
546 4 2	59 6	9	300			7-17		100	10.0	
518.93 50 33	7 - 17	20	319			58	5			
525 19 48 2	00 3	21	319			71				
537.69 .44 33	39 7	0	318			51	5			
53/62 53 25	3) 12	2	319							
535 93 60 7	8 7	4	200			50	5		-	
549 5 48 33	8 3	4	318			25/		0,0	05	
1544.29 146 35	9 7	5	317			54	5	- 21		
54838 45 31	4 7	5	36			EH	,-			
	20 7	-	36			54	2			
000	7		-310				_			
		-								
		_								

K

CLIEN	MY M	7			NOZZLE	MUOI	DIAM	ETER, IN.	355	IMPINGER	INITIAL	. FINAL	TOTAL GAI
SOUR		1++			PROBE	TC		Cp &	511	VOLUMES		(mL)	(mL)
	METER / RUN	No COTO CO	12			A ==				imp. #1	150	108.	-42
ATE			1		PORT LEN			α		Imp. #2	75	284	209
	ATOR:	CLIB)		STATIC PE	RESSURE, IN	. H2O	4,75		Imp. #3	1	1114	39
	ROL UNIT	PULL S	Y 997	()	STACK DI		70.9	0"		Imp. #4	1		5
		-NO 15	ΔH@	4	STACK HE	IGHT	-20	ţ.		Imp. #5		1	
ARO	METRIC PRES	SURE, IN. Ha	30.50	,	INDTIAL 10				il .	Imp. #6		i	
SSU	MED MOISTUR	E, Bw 150	- Acti	/	INITIAL LE	AK TEST	2.010	the latest designation of the latest designa	,,,	Upstream Di			
		1)	0		FINAL LEA	K TEST	2,005	301) (Downstream	Diameters		
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice AH	-		- II						
oint	-		IN. H ₂ O	IN. H ₂ O	7.0	T	Temperature '	°F		Pump Vac.	Fy	rites	
	08:40	1554.400	111.1120	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	1
1		6/0 91	35	11	Outlet				Exit		Vol. %	Vol. %	
2	T	EEG 12	38	123	177	30%	NIA	NIA	112	3			
3		567 35	128	1132	110	304	-		-				
1		570.69	138	1772	48	300			42	3	95	10.5	
2		1374 14		122	710	701,						1	
		577 66	多	157	207	304	-	-	142	3			
7		500 12	122	24	50	307			7111				
3		505 53	70	2011	La	34			2/4	4			
		59117	58	2.76	51	201			117				
0		595 96	162	395	120	2-1	-		46	1	10.0	10.0	
		600 48	155	3 51	54	304			111	-			
2		604 87	150	367	55	305			46				
					2								
		609.00	1.46	219	56	2001	NIA	NIA	45	4			
2		613 04	1.44	209	57	304	1011	WA	10				
-		91740	53	1247	56	310			46	4	95	15 -	
		941 42		25+	57	311				-1	90	10.0	
\dashv		0,56.70	.58	276	±3	30			48	4			
H		921.00	160	255	59	313			10				
		973 tt	.5	dot	50	313			50	5			_
\vdash		60,16	172	3.47	59	34				-			
5		644.20	144		60	312			52	5			
		4201	186	345	6)	310					15	10.5	
2	10:50	656.86	44	3.30	5	311			50	5		10,10	
		CIED	77.	20	52	301							
7													
T													

V6.09 4.752H

4

CLIEN	I MUZ	1			NOZZLE	MOI	DIAMI	eter, in. 💈	365	IMPINGER		FINAL	TOTAL GAIN
SOUR		+ #1 =			PROBE	7		Cp (554	VOLUMES		(mL)	(mL)
	METER / RUN I	VOCAB RU	13		PORT LEN	IOTU				Imp. #1	150	108	-42
DATE		11000	110			RESSURE, IN	1100	A-48		Imp. #2	75	280	205
	ATOR:	LABIL		200	STACK DI		.H2O _/	9.10	*	Imp. #3	75	85	10
	ROL UNIT	2012	Y 990	a	STACK DI			0.40		Imp. #4		17	
		170	ΔH@		STACK HE	IGHT		501		Imp. #5		1	
BARO	METRIC PRES	SURE, IN. Hg	250		INITIALLE	AV TEST		2201		Imp. #6			
	MED MOISTUR		7		FINAL LEA	AK TEST	000			Upstream D			
		(-)			1144	ar iedi 6	010	015		Downstream	n Diameters		
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature '	PF		D 11			
Point	11:21	100 100	IN. H₂O	IN. H₂O	Dry Gas	Stack	Probe	Box	T	Pump Vac.		rites	
	11:32	659.600			Outlet	Junea	11000	DOX	Impinger	IN. Hg	CO ₂	O ₂	4
1		665.45	140	1190	131	312	MA	MA	Exit	7/	Vol. %	Vol. %	
2		667.00	142	2.00	60	30	19/1	1017	177	21			
3		6715	1,26	1219	139	30			46	21	OF	-	
4		645 75	1218	208	60	312			190	17	9.5	10.5	
2		649 97	1.46	228	61	312	_		46	4			
2 7		684.28	50	238	60	130			1710	17		-	
		688 51	.50	1238									
3_		692 98	154	10) 11-1	63	302			1	5_			
(64702	H	239	164	1310			120	5	100	10.0	
0		700 97	142	200	BH	1309			-6		100	10.0	
1		702 83	:42	1195	65	308			52	6			
12		108.77	14	2:00	66	308							
		201	75	1112	-,-								
5		715 56	130	143	65	304	NIA	NIA	1219	5			_
3		F19 72			000	304							
4		122 92	35	187	95	308			148	5			
7		126 17	,40	190	58	300			-				
6		430 50	38	1.85	0	319			48	5	95	10.5	
7		130 47	166	314	65	37							
3		740 31	:63	299	88	30			50	5			
7		745.06	166	314		33	-		10	-			
01		tho. 21	66	34	89	33			52	6			
	المدم	193	1.60	285	68				53	1	0		
2	1240	759.55	57	27	69	313			2	6	9.0	11-0	
<u> </u>						1							
_													
_													

Leak Initial	Check	Nov-12-		Run	20,48 Chris	δ	Run 3	>/	Leak Initial	e	Run 1		Y Cp Pbar Operator Rur			atic Run 3	
Final		0.000		0	, 6 0	0	00	201	Final								
Test No.	Time (hhmm)	DGM Volume (cu ft) / (m³)	DGM	rature (°F)	Imp. Vol.		∆P IN. H₂	0	Test No.	Time (hhmm)	DGM Volume (cu ft) / (m³)	Tempera	ature (°F)	Imp. Vol.	Δ	∆P IN. H₂0	0
	10:35	0 / 0.11	Outlet	- Ctack	(mL)	R1	R2	R3		(**************************************	(04) . ()	Outlet	Stack	(mL)	R1	R2	R3
	10.45		54														
	10:55		71												- 7		
1	14:15	96.7012	6/						1			tha.					
	11.35	86.8010	64		7									4			
	12:00	46.8106	hr	T	 +				-				-				
	10	62	05										100				
2	20	46. 9788	68	,					2								
	50				-									100			
	1300	82. 1163	51														
	13:18	87, 126	13				3						1				
		4 + 1876					10										
3	13 48	47.2432 87.3300 87.4218	67						3								
	14:18	87 5152	69														
			•						1								

METRO VANCOUVER WTE - BURNABY B.C.	NOZZLE	G-30°	DIAME	TER, IN. O.	3067	IMPINGER	INITIAL	FINAL	TOTAL GAIN
	PROBE	7 AL	SVRO	Op 0.85	506	VOLUMES	(mL)	(mL)	(mL)
OURCE UNIT 2	/					Imp. #1	0	132	732
ARAMETER / RUN No Motols / PARticulate / R-1	PORT LEN			,,		Imp. #2	100	176	76
ATE NOV. 18, 2022		ESSURE, IN.		0"		Imp. #3	100	114	14
PERATOR: 05	STACK DIA		70.94			Imp. #4	0	0	+
ONTROL UNIT FE 18 Y 1.0019	STACK HE	GHT 3	D. D'			Imp. #5	100	103	3
ΔH@ 1/875						Imp. #6	100	102	2
AROMETRIC PRESSURE, IN. Hg 30.50	INITIAL LEA			0 15"		InG #3/	200	li i	.55
SSUMED MOISTURE, BW /5%	FINAL LEAF	K TEST	2.003	015		Imp. #8		'	
Clock Time Dry Gas Meter ft ³ Pitot ΔP Orifice ΔF			Temperature °	F		Pump Vac.	Fo	rites	
Point N. II.O. N. II.O.	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
20 09:32 984.328 IN. H ₂ 0 IN. H ₂ 0	Outlet	State	11006	BOX	Exit	_ пл. ггд	Vol. %	Vol. %	
1 987.9D D41 216	UL Cutter	292	258	A LA			V U1. 70	V 01. 70	
	75	1.16	100	255	45	6	0-	101	
11.760.0	77	294	251	0-1	92	-	95	106	$\overline{}$
70 700	75	295	23/	25/	72	7		1	
560013	178	797	100		7.13	7			
000000000000000000000000000000000000000	48	39.1	256	254	43	7			
1000010001111	78	299	1-1		110	-	112	1 2	
100000000000000000000000000000000000000	77	298	257	258	45	8	95	10.3	
	50	299	2-1	-	775	9		-	
	5/		257	250	47	7			
1022.03 0.31 201	52	298	7-7	7-0	115	9	0	1	
	52	297	257	256	98	7	90	10.8	
12 60 1037.23 0.47 2.49	23	295							
1 /034.83 0.35 /86,	59	294	255	256	45	7			
2 10 /038.38 0.39 /.8/	55	296		20.0			9.0	10.8	
3 /04/88 0.33 /25	55	207	237	254	48	7	(10	10.0	
4 20 /045.09 0.28 /.48	59	297	Cart.	20/	7.6			1	
5 /648 32 028 /99	35	296	255	256	49	7		1	
6 30 1051.48 027 145		792	100	20			95	10.6	
7 1055 78 099 2.69	57	291	256	253	46	9	(1)	10.0	
8 40 /050.75 053 9.87	57	387		دىء	10	/		1	
9 1064.90 057 3.09		726	257	255	46	9			
10 50 1069.70 0.61 331	132	705	2-7	100	12	/		1 1	-+-
11 /074 60 0.63 3.43	28 28 28	286 283 283	256	254	48	9	2.5	105	
12 11:35 1079 38 0.60 3.28	59	281	200	/	78	-	(.5	10,5	
1, 20 (0.20 0.00 5.28	1 /	-21							
· · · · · · · · · · · · · · · · · · ·									

METRO VANCOUVER WTE - BURNABY B.C.		S. 309		TER, IN.			INITIAL	FINAL	TOTAL GAIN
	PROBE	+'ALG	-URO	P 0.85	506	VOLUMES	(mL)	(mL)	(mL)
SOURCE Unit #2		•				Imp. #1	0	128	128
PARAMETER / RUN No Motols / Practiculate / R-2	PORT LENG					Imp. #2	100	2/0	110
DATE NOV. 18, 2022		ESSURE, IN.		D"		Imp. #3	100	146	46
OPERATOR: QS /	STACK DIA		0.911			Imp. #4	.0	14	14
CONTROL UNIT FE 18 Y 1.0014	STACK HEI	энт з	D.D			Imp. #5	100	105	5
ΔH@ / 875						Imp. #6	100	1/02	2
BAROMETRIC PRESSURE, IN. Hg 30.50	INITIAL LEA		2005	@ 150		Ima	2001	\	
ASSUMED MOISTURE, BW /5/	FINAL LEAK	TEST	2.00/	@ 154		Imp. #8)		
Clock Time Dry Gas Meter ft Pitot ΔP Orifice ΔΗ			Temperature °	D.		Pump Vac.	T-	rites	
Point IN II O IN II O	Dry Gas	Stack	Probe	Box	Touring and	IN. Hg	CO ₂		
men 12:01 79.709 M. H20 M. H20	Outlet	SINCK	11006	Bux	Impinger Exit	IIV. Hg	Vol. %	O ₂ Vol. %	
1 83.67 0.42 2.26	- Cutter	290	234	207	LIAIL	_	V OL. 70	V O1. 70	
2 10 23 37 77 77 77	3	292	627	241	77	6	0	1/2	
3 97.54 2.45 2.15	138	200	257	711	un		90	1/2	
1 20 65 7 655 779	138	289	257	25/	75	6		 	
5 98 38 228 151	130	590	258	201	47			 	
6 30 101.52 0.26 1.90	20	291	200	26/	77	_>_	90	10 0	
7 106 52 2 2 2 3 43	30	289	257	7/1	48	6	10	10.9	
8 40 109 85 0.58 259	60	292	257	201	70	6		-	
9 114 26 056 363	61	393	258	262	49	7		+ +	
10 50 //8 95 0583.13	25,	295	200	202	9/				
11 /23.75 0.30 3.26	62	290	257	260	50	7	90	11.7	
12 60 /28.59 0.6/ 3.33	161	286	201	260	30	-	10	11.2	
1 /32.75 045 245	62	289	257	260	52	7			
2 10 /36.96 0.46 2.5/	63	290					7.0	110	
3 4 20 194 8 0.42 2.28	63	292	256	26D	54	7	M 823		
17173031	63	290	3 - 3			15			
5 (48.47 0.35 7.97	69	292	257	259	5/	6			
100.00 0.01	69	292	750		4=		8.5	11.5	
7 (56.28 0.43 2.34 8 40 (50.32 0.42 2.29	24,	272	258	259	52	6		-	
	69	290	717						
	64	29/	257	26/	54	7	- A		
	15%,	276	050	0.45		07	22	114	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	69	289	257	260	25	8			
12 14:03 177.52 6.48 2.63	63	286							
								 	

METRO VANCOUVER WTE - BURNABY B.C.		5-309	DIAME	TER, IN. O.	3067	IMPINGER	INITIAL	FINAL	TOTAL GAIN
	PROBE		(Çp		VOLUMES	(mL)	(mL)	(mL)
SOURCE DNIT 12						Imp. #1	0	150.	150
PARAMETER / RUN No Metals / Particulate / Ro.	>					Imp. #2	100	208	100
DATE NOV. 18, 2022		ESSURE, IN.	H2O/	9.0"		Imp. #3	100	1726	26
OPERATOR:	STACK DIA		0.911			Imp. #4	0	10	10
CONTROL UNIT FE 18 Y /, 50/9	STACK HEI	GHT 3	2.01			Imp. #5	100	104	4
AH@ 1.875						Imp. #6	100	102	- 5
BAROMETRIC PRESSURE, IN. Hg ZO, SD	INITIAL LEA	K TEST /	.002	0 150		Imp.	1200		
ASSUMED MOISTURE, BW	FINAL LEA	CTEST D	003	0 15		Imp. #8		1 1	
Clock Time Dry Gas Meter ft Pitot ΔP Orifice ΔI			Temperature °	F		Pump Vac.	Fv	rites	
Point IN. H ₂ O IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN, Hg	CO ₂	O ₂	
MEN 14:25 178,100	Outlet			20.0	Exit		Vol. %	Vol. %	
1 181.38 0.28 1.50	63	292	747	740	E/1	~	, 51. 70	7 51. 70	
2 10 80 70 079 75	22	293	272	270	5/	2	10.0	99	-+-
671000000	93		239	752	53	5	(0.0)	1.7	
4 20 195.29 0.27 1.95	03	396	2.37	101	25	2			
5 193 99 025 732	97		2-1	7000				-	
6 30 79273 23	69		257	250	_55	5	1-1	0.7	
17.00,000,0	60	298	0-1	77770			100	9.7	
7 201.54 OSD 2.71	65	295	257	249	56	6			
8 40 206.0/ 0.57 2.82	65	297							
9 2/0.73 0.58 3.15	65	296	256	250	54	6			
10 50 215.56 060 327	66	294			•				
11 220.52 8.63 3.43	66	297	257	752	55	6	95	10.4	
12 60 225.38 0.6/ 3.39	65	288							
			_						
1 228.90 032 1.74	66	294	256	25/	54	6			
2 10 232.48 0.33 7.79	66	298	-				95	10.6	
3 235.88 0.30 /.63	66	298	256	250	5.5	6		<u> </u>	
4 20 239.16 0.28 1.5	2 66	299							
5 242.39 0.27 7.47	67	297	256	751	54	6			
6 30 245.63 027 7.47	67	296			-				
7 249.80 0.45 24	66	795	258	252	52	7	95	105	
8 40 754.73 0.57 2.2	7 6	294					/	()	
9 258 85 0 55 360	65	293	258	251	53	7			
10 50 263 58 058 3.16	85	292		/				 	
11 268.40 0.60 3.28	65	291	257	248	55	8	90	108	
12 16 27 273.09 0.57 371	84	290		210	22		7.6	10.0	-+-
- 2.21 - 7.01 0.31 2.11	- 07	210						+	
	-					 		 	
	_							+	
						 		_	_
		1				1	1		

Client Source Parai Date	ce	Unit #2 HF 18-Nov-2:		Y Cp Pbar Operator				167	Client Source Parar Date	e	<u>*</u> 1		Y Cp Pbar Operator			atic	
	Check	Run 1		Rur	12		Run	3	Leak	Check	Run 1		Rur	1 2·		Run 3	3
Initial Final		0.0001	7	0.000			.000		Initial Final								
Test No.	Time (hhmm)	DGM Volume (cu ft) / (m³)	Tempe DGM	erature (°F)	Imp. Vol.		∆P IN. H₂	0.0	Test	Time	DGM Volume	Tempera	ature (°F)	Imp.	Δ	.P IN. H₂	0
	10:24	89.7100	Outlet	Stack	(mL)	R1	R2	R3	No.	(hhmm)	(cu ft) / (m³)	Outlet	Stack	(mL)	R1	R2	R
		89,9242															
1	10:58	90.106	48						1		¥						
	11:28	90:3152	52														
	11:35	90.3173	54														
2	12:05	1 1 1 1 1							2								

1		89,9242					+	1			_			
1		0019212	+				-							
1	10.40	Q0 10/1/	1100											
	1053	1006	48	-	_		-	11						
		90.1726												
		No.		-										
-	111.70	903152	52											
-	1	G = 217 =	T/-											
	11:25	90.3173	54											
		90,7986												
Z	12:05							2						
		90.6610	60											
	12:35	90.8402	61											
		,	-111									1		
	12:42	90.8440	50			Sar						T		_
							11.				+	+		
												+		
3	13:12	91.1042	62					3		 _		+		
			В					J -		_			 	
								1	-	 _				
	13:42	91,3940	64					1		 		\vdash		
		111-110				-								
						-								
												Į.		
						+								
						1								

16.20 4.84 DH -6.09- -4.75-

NOZZIE N. O DIMETER, IN. MMPINGER, INITIAL FINAL F	TOTAL GA
PARAMETER / RUN No	(mL)
DATE DOPERATOR: STATIC PRESSURE, IN, H2O — Imp. #2 O / 4 Imp. #3 O / 4 Imp. #3 O / 4 Imp. #4 O Imp. #4 O Imp. #4 Imp. #5 O / 4 Imp. #6 O O O Imp. #6 O Imp. #6 O Imp. #6 O O Imp. #6 O	137
STACK DIAMETER Imp. #4 Imp. #5 Imp. #6 Imp. #	
Imp. #4 Imp. #5 Imp. #5 Imp. #6 Imp.	50
STACK HEIGHT Imp. #5 Imp. #5 Imp. #6	-14
AROMETRIC PRESSURE, IN. Hg INITIAL LEAK TEST Upstream Diameters FINAL LEAK TEST Upstream Diameters Downstream Diameters Downstream Diameters Pump Vac. Fyrites N. Hg CO2 Vol. % Vol.	- 9
ASSUMED MOISTURE, BW FINAL LEAK TEST OUT Clock Time Dry Gas Meter R' Pint Clock Time Dry Gas Meter R' IN. H ₂ O IN. H ₃ O Dry Gas Outlet Stack Probe Box Impinger Exit PVol. % Vol. %	
Pink Clock Time Dry Gas Meter ft Pitot ΔP IN. H ₃ O Dry Gas Outlet Temperature "F Pump Vac. Fyrites Fyr	
Clock Time Dry Gas Meter ft Pitot ΔP IN. H ₂ O Dry Gas Outlet Stack Prob Box Impinger Exit Pitot Vol. % Vol.	
Point 12 05 177 256 IN H ₂ O IN H ₂ O IN H ₂ O IN H ₂ O Dry Gas Outlet Stack Probe Box Impinger Exit Point In H ₂ O IO 10 10 10 10 10 10 10 10 10 10 10 10 10	
Outlet	- 1
	1
2 16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
198.54	
1	
25 13 25 16 56 31 250 250 44 6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	
25 13 25 16 56 31 250 250 44 6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	
205.13	
2 25 25 25 25 26 20 20 20 20 20 20 20 20 20 20 20 20 20	
2 20 20 20 20 20 20 20 20 20 20 20 20 20	
20.05	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
2 20.05 26 24 250 250 250 46 6 20 250 250 250 250 250 250 250 250 250	
28.31 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	
28.31 25 25 25 25 250 250 45 6 10 0 10 0 23.25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	
20 00 00 00 00 00 00 00 00 00 00 00 00 0	
20 00 00 00 00 00 00 00 00 00 00 00 00 0	
256.86 14 2.8 68 26 250 250 46 6	
240.90 10 190 45 30 250 50 6 210.67 12 2 0 66 204 250 250 50 6	
240.90 120 190 16 30 1 250 250 50 6 246.67 12 3 0 6 20 1 20 20 10 0 0 0	
318.67 12 3.00 68 29.7 200 100 10.0 10.0 10.0 10.0 10.0 10.0 1	
256.86 14 2.0 68 216 250 450 45	
256.86 14 2.0 68 216 25 25 46	
111-0 256.86 44 2.09 68 216 250 650 46 8	
110000000000000000000000000000000000000	
0.010.0	

	METRO VAI	NCOUVER WTE	DUDNAD	V D C	NOZZLE	MU-01	DIAME	TER, IN. O.	3053	IMPINGER	INITIAL	FINAL	TOTAL GAIN
		WCOUVER WIE	- BURNAD	1 B.C.	PROBE	FAL GU		P 0.85		VOLUMES	(mL)	(mL)	(mL)
SOUR	6/1/1	43								Imp. #1	((0))	220	220
PARAN	METER / RUN N		extrestate	e/R-2	PORT LENG					lmp. #2	100	200	100
DATE	NOV.	16,2022		•		ESSURE, IN.		95"		Imp. #3	100	1/2	18
OPER/	ATOR:	5			STACK DIA	METER	70.9"			Imp. #4	0	1 2	8
CONT	ROL UNIT	9015		09	STACK HEI	GHT	300	/		Imp. #5	100	103	3
				49						Imp. #6	100	102	2
	METRIC PRESS		54		INITIAL LEA		2010 6	9 15"		Imp #77	12000	\ .	
4\$SUN	MED MOISTURE	, Bw /5%			FINAL LEAK	TEST O	007	0/5"		lmp. #8		1	
	Clock Time	Dry Gas Meter ft	Pitot ∆P	Orifice ΔH			Temperature °	F		Pump Vac.		rites	
Point	100.51	01100	IN. H₂O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
20,210	09:56	261 878			Outlet		-		Exit		Vol. %	Vol. %	
1	- 10	265.25	0.51	1.47	50	295	259	235	.5/	4			
2	10	268.72	0.33	1.56	5/	298				/	7.5	103	
3		272.35	036	170	5/	299	252	245	50	45			
4	20	275.77	032	152	52	300				791			
5		279.26	0.33	1.58	53	295	250	258	49	4	9.5	102	
6	30	282.70	032	/53	53	304			1 /				
7		287.10	0.53	25/	54	309	249	259	49	4.5			
8	40	291.66	0.54	268	55	3/17							
9		296.28	0.58	2+3	56	311	25D	249	49	45	10.0	9.8	
10 11	50	300,49	054	255	SX	312						, -	
12	60	305.06	0.50	2.38	27	306	248	249	47	5			
12	60	308.99	041	1.96	61	305							
1		9/9 (1)	0	0117	12	7/2	7-7	24-5	1,0	-	/0.5	87	
2	10	317 78	0.52	247	63	3/3	253	252	47	5	10 D	97	
3	10	3/15/36	0.53	253	27	3/2	250	249	11-1	-			
4	20	300 47	0.57	2 -3	83	3/2	200	677	77	_>_			
5		337 50	0 53	250	22	3//	250	250	47	5	100	9.9	
6	30	337.73	0 33	277	29	3/3	200	200	77		10.0	7.1	
7		239.09	0 20	722	25	3/7	25/	ZSD	47	~			
8	40	392.30	0 34	130	68	3/0	12	200	78	_>_			
9		345.42	0.15	121	69	309	250	250	49	-5			
10	50	348.70	0.20	097	39	308	250	000	7.1	-20	10.D	10.6	
11		350.98	020	295	39		248	249	50	8	10.0	10.6	
12	11 57	353.62	018	0.87	69	308	210		50	4			
1497	/	230,00	- (2)	La C		200				†		 	
	·												
										-			

	METRO VAI	NCOUVER WTE	- RUDNAR	VRC	NOZZLE	MV-0				IMPINGER	INITIAL	FINAL	TOTAL GAIN
			- DOMNAD	1 5.0.	PROBE	7'AL	GURD	Op 0.5	3506	VOLUMES	(mL)	(mL)	(mL)
SOUR			1							Imp. #1	0	216	216
	METER / RUN N		Liculate	1 R-3	PORT LENG					lmp. #2	100	182	62
DATE	NOU.	6 2022	_ '5 =			ESSURE, IN.		9,5		Imp. #3	100	1/12	12
OPER	ATOR:	51			STACK DIA	METER	0911			Imp. #4	0	6	6
CONT	ROL UNIT	1015	Y 0.9	909	STACK HEI	GHT 🗦	30'0			Imp. #5	100	103	3
			ΔH@ 1.9	279					4112	Imp. #6	100	101	/
	METRIC PRESS	URE, IN. Hg 30	.59		INITIAL LEA		10/2	0 /3	54	Imp#6	200		
ASSUN	IED MOISTURE	, Bw /5%			FINAL LEAK	TEST	2.0/0	e /5	4	Imp. #8		7	
												•	
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °	F		Pump Vac.	Fy	rites	
Point		901	IN. H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
	12:22	356.302	+		Outlet				Exit	~	Vol. %	Vol. %	
1		360.62	2.49	2.34	66	3/3	956	247	59	3		1	
2	10	364.98	0.50	239	66	314					95	10.6	
3		369.46	0.53	253	61	3/5	254	237	46	4	7.00	10.0	
4	20	373,73	0.4%	279	67	3/5				-		1	
5		378 04	0.49	234	11	3/4	255	258	48	~		1	
6	30	382,04	0.47	201	67	3/3		200	70			1 1	
7		32 44	130	744	ZX	3/7	253	256	SD	3	9.0	10.9	
8	40	388.66	0.26	125	69	3/3	725	200			-60	10.7	
9		397.70	0.25	1.20	69	3/3	250	252	47	.5		1	
10	50	394 47	0 19	0.92	70	307	200	00/	- (- (/		 	
11		397 08	0.18	0.88	70	302	252	255	47		9.0	10.8	
12	60	399.59	0.16	079	70	297		200	-//		40	10.0	
			0.79	0.77	- 70	-01						† +	
1		403.16	0.33	1.59	69	3/0	252	250	44	4		 	
2	10	406.83	0.35	1.69	70	3/2	-12	200			9.5	10.3	
3		410.34	0.37	134	70	3/6	252	250	45	4	1.0	10.3	
4	20	113.75	0.30	194	71	316		200		/			
5		41705	0.78	135	71	3/6	250	25/	45	4		1	
6	30	420.62	032	759	71	3/5		/	(-)	-/-		 	
7		425.23	0.55	225	72	3/6	25D	151	44	5	9.5	10.2	
8	40	429.88	051	270	72	3/6				1	٠٠٠	10.0	
9		43437	0.57	252	73	3/4	251	250	45	-		1 -	
10	50	438 75	0.49	2.38	79	3/3					95	10.1	
11		443.17	0.50	2843	74	3/2	249	7.5D	46	5	(101	
12	14 23	44717	0.40	1.95	24	377	- (/	200	10			1	
	,	((())		(-/-3	7/	2//							$\overline{}$
	73.											1	
		7											
												 	$\overline{}$

+2_	Run 1 (7.00% 0.00% DGM Volume (cu ft) / (m³) 87.6714 87.8598 88.0672 86.2398 99.2477 99.3372 98.4212	Tempera DGM Outlet \$1	Rur O. O. ature (°F) Stack) G e	C	Run (7 . 0 6 . 0)) 	Leak Initia Final Test No.		DGM Volume (cu ft) / (m³)		ature (°F)	Imp. Vol. (mL)	R1	Run :	2O
:42 :42	DGM Volume (cu ft) / (m³) 87 6298 87,6714 87 3598 88 0672	Tempera DGM Outlet \$1	の. り ature (°F)	Imp.	Δ	7 - 0 6 6 AP IN. H ₂	?/ :0	Test No.	Time	DGM Volume	Temper:	ature (°F)	Imp. Vol.		ΔP IN. H ₂ :	2O
:42 :42	DGM Volume (cu ft) / (m³) 87 6298 87.6714 87.8598 88.0672	Tempera DGM Outlet	ature (°F)	Imp. Vol.	Δ	∆P IN. H₂	0	Test No.	Time		DGM		Vol.			_
:42 :42	(cu ft) / (m³) 87 6298 87 6714 87 3598 88 0672	DGM Outlet 51		Vol.				No.			DGM		Vol.			
12 12	87 6298 87 6714 87 8598 88 0672	Outlet 51	Stack		R1	R2	R3	No.			DGM		Vol.			
12	87.8598 88.0672 86.2398	5 5			KI	R2	R3	1			Outlet		(ML)	R1	R2	R3
+2_	87.8598 88.0672 86.2398	5 5						1								
+2_	88.2398	58						1								
+2_	88.2398	58														
										1000						I .
							-									
23	89-2477	11											-			
	110 2000	56								D.						
	88 4712															
53 8	EB 55 73	60						2		*						
23	88.3180	62														
		7.														
1	88.4920	56														
	88.9202							-								
04	84.0498	52						3					-			
-	39.1852													-	-	
34	89.4608 6	4		-				-		- 1						
													-	-		-
																_
0	4	\$\$.4930 \$\$.9702 4 \$9.04\$8 \$9.1852	88.8930	88.8930 88.9702 4 89.0488 62 39.1852	88.8930 88.9702 4 89.0488 62 39.1852	88.4930 88.9702 4 89.0488 62 39.1852	\$8.8930 \$9.9702 4 \$9.0488 62 39.1852	88.8930 88.9702 4 89.0488 62 39.1852	88.8930 88.9702 4 89.0488 62 39.1852	88.8930 89.9702 4 89.0488 62 39.1852	88.8930 88.9702 4 89.0488 62 39.1852	\$\$.3930 \$\$.9702 4 \$9.04\$\$ 62 \$9.1852	\$8.8930 \$9.9702 4 \$9.04\$8 62 39.1852	\$8.3930 \$9.9702 4 \$9.04\$8 62 \$9.1852	\$8.3930 \$9.9702 4 \$9.04\$8 62 \$9.1852	88.8930 88.9702 4 89.0488 62 39.1852

,						
Plant	M.U. W.T.E	То	st Date	41	<i>i</i>	
File N	lo.			JUDY.	15,2022	
		Re	covery Date			
	11 1 # 1					
Source	e: Unit #1					
	NOV.15 7077	RI	RZ	R3		
Pbar in	ng	30.48	30.48			
Caniste	r number		500225	\$ SC02013		
	ller number	000119	2-4-1/102	0A01825		
Initial:	Start time	1035	17 UD	1318		
	Flask Vac. (in Hg)	-324	-304	-33"		
Final:	Finish time	11.5	1300	1418		
	Flask Vac. (in Hg)	-94	-6.5	011		
			0.5	D		
Source	: Unit #3				4.6	
		KI.	22	R3	Nov 16,2	022
Pbar in		30,521	30,54	36,54		
	er number	SC02191	Swans			
	ller number	0AN1007	DAN 266	And the latest the lat		
Initial:	Start time	10:12	11:23	12:36		
7: 4	Flask Vac. (in Hg)	-32	728	-25		
Final:	End time	11,12	17:23	3:34		
	Flask Vac. (in Hg)	1. 8	To X	-9		-
C						
source:	Unit#	121	122	123	NW 18	505
Pbar in h		EVO -	_	7 3		
Canister		30,50	30,50	30,50		
Controlle				5602255		
Initial:		0401820	0 ADQ084 1	X00491		
шиат.	Start time	10,28	1135	12,42		
Final:	Flask Vac. (in Hg) End time	-29	28 -	32		
- 11GI.	Flask Vac (in Ua)	11:18	12.35 /	5,42		

Source:

Pbar in h	ıg			
Canister	number	 		
	er number			
Initial:	Start time Flask Vac. (in Hg)			
Final:	End time			
	Flask Vac. (in Hg)			

APPENDIX – E CALIBRATION SHEETS and TECHNICIAN CERTIFICATES

A.Lanfranco & Associates inc.

Meter Box Calibration

English Meter Box Units, English K' Factor

(in. Hg)

Model #: **AU 15**

15-Sep-22 Barometric Pressure: 29.89

0028SPC-081915-1 Serial #:

Theoretical Critical Vacuum: 14.10 (in. Hg)

111111111

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above. The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

----- DRY GAS METER READINGS ------CRITICAL ORIFICE READINGS-Volume Volume Volume Initial Temps. Final Temps. Orifice K' Orifice Actual -- Ambient Temperature -dΗ Time Initial Final Total Inlet Outlet Inlet Outlet Serial# Coefficient Vacuum Initial Final Average (in H2O) (min) (cu ft) (cu ft) (cu ft) (deg F) (deg F) (deg F) (deg F) (number) (see above) (in Ha) (deg F) (deg F) (deg F) 84.751 100.880 74.0 74.0 82.0 3.50 15.00 16.129 82.0 75.0 73 0.8185 17.0 76.0 79.0 1.80 18.00 70.730 84.751 14.021 75.0 74.0 79.0 74.0 63 0.5956 20.0 83.0 83.0 83.0 1.10 18.00 59.787 70.730 10.943 74.0 73.0 76.0 74.0 55 0.4606 22.0 79.0 79.0 79.0 0.62 15.00 52.866 59.787 6.921 74.0 74.0 75.0 74.0 48 0.3560 23.0 80.0 80.0 80.0 0.30 15.00 48.110 52.866 4.756 74.0 73.0 74.0 73.0 0.2408 25.0 83.0 83.0 83.0

		******	*****	******* RES	ULTS *****	*******	******	***		
DRY GA	S METER		ORIFICE		DRY GA	S METER			ORIFICE	
VOLUME CORRECTED	VOLUME CORRECTED	VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL	CALIBRATIO	ON FACTOR Y	CA	LIBRATION FA	CTOR	
Vm(std) (cu ft)	Vm(std) (liters)	Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)	Value (number)	Variation (number)	Value (in H2O)	Value (mm H2O)	Variation (in H2O)	Ko (value)
15.995	453.0	15.807	447.6	16.159	0.988	-0.003	1.750	44.44	0.030	0.728
13.866	392.7	13.752	389.4	14.162	0.992	0.001	1.713	43.52	-0.006	0.734
10.829	306.7	10.674	302.3	10.912	0.986	-0.005	1.740	44.19	0.020	0.733
6.841	193.7	6.869	194.5	7.035	1.004	0.013	1.643	41.73	-0.076	0.740
4.704	133.2	4.633	131.2	4.771	0.985	-0.006	1.750	44.46	0.031	0.731
				Average Y>	0.9909	Average dH@>	1.719	43.7	Average Ko>	0.733

т	EMPERATURE CALIBRAT	ION	
Calibration Standard>	Omega Model CL23A S/N:T-2	18768	
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Re Variation (degF)	sults Percent of Absolute
32	32	0	0.00%
100	100	0	0.00%
300	300	0	0.00%
500	500	0	0.00%
1000	1000	0	0.00%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02. For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equales to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +0.2. For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by:	Scott Ferguson	Signature:	Date:	September 15, 2022

A.Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: CAE G10J Date: 05-Jul-22

 Serial #:
 0028-1X1310-1
 Barometric Pressure:
 29.88
 (in. Hg)

 Theoretical Critical Vacuum:
 14.09
 (in. Hg)

111111111

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

			DRY GA	S METER READI	NGS					-CF	RITICAL ORIF	ICE READING	S-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial T Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Aml Initial (deg F)	bient Tempera Final (deg F)	ture Average (deg F)
3.50	15.00	356.655	372.859	16.204	79.0	79.0	82.0	82.0	73	0.8185	15.5	79.0	72.0	75.5
1.80	18.00	342.552	356.565	14.013	75.0	75.0	78.0	78.0	63	0.5956	18.5	75.0	80.0	77.5
1.10	18.00	331.600	342.499	10.899	73.0	73.0	75.0	75.0	55	0.4606	20.0	76.0	78.0	77.0
0.64	22.00	321.430	331.548	10.118	71.0	71.0	72.0	72.0	48	0.3560	21.5	75.0	77.0	76.0
0.32	17.00	316.000	321.395	5.395	71.0	71.0	71.0	71.0	40	0.2408	22.5	70.0	72.0	71.0
			******	******	*****	******* RES	ULTS *****	*****	*****	*****	***			
DRY GAS	DRY GAS METER ORIFICE DRY GAS MET						S METER				ORIFICE			

		******	******	****** RES	ULTS *****	*******	*******	***			
DRY GA	S METER		ORIFICE		DRY GAS METER			ORIFICE			
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)	VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)	Value (number)	ON FACTOR Y Variation (number)	CA Value (in H2O)	LIBRATION FA dH@ Value (mm H2O)	CTOR Variation (in H2O)	Ko (value)	
15.938	451.4	15.853	449.0	16.106	0.995	-0.002	1.719	43.68	-0.014	0.731	
13.828	391.6	13.817	391.3	14.090	0.999	0.003	1.689	42.90	-0.044	0.736	
10.787	305.5	10.690	302.7	10.891	0.991	-0.005	1.732	44.00	-0.001	0.733	
10.050	284.6	10.108	286.3	10.279	1.006	0.010	1.692	42.97	-0.041	0.731	
5.359	151.8	5.308	150.3	5.348	0.990	-0.006	1.833	46.57	0.100	0.714	
				Average Y>	0.9962	Average dH@>	1.733	44.0	Average Ko>	0.729	

TEMPERATURE CALIBRATION							
Calibration Standard> Omega Model CL23A S/N:T-218768							
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Re Variation (degF)	sults Percent of Absolute				
32	32	0	0.00%				
100	100	0	0.00%				
300	300	0	0.00%				
500	500	0	0.00%				
1000	1000	0	0.00%				

Calibrated by: Scott Ferguson

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02.
For Orfice Calibration Factor 04/6, the orfice differential pressure in inches of H20 that equates to 0.75 cfm of air 68 F and 29.9 sinches of Hg, acceptable tolerance of individual values from the average is +0.2.
For Temperature Device, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Signature: _______ Date: July 5, 2022

A.Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: FE 18 Date: 4-Jul-22

Serial #: 0028-020118-1 Barometric Pressure: 29.87 (in. Hg) Theoretical Critical Vacuum: 14.09 (in. Hg)

111111111

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)/3*(deg R)/0.5/((in.Hg)*(min)).

			DRY GA	S METER READIN	IGS	-				-CI	RITICAL ORIF	ICE READING	GS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Te Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Temperati Final (deg F)	ure Average (deg F)
3.60	18.00	54.520	73.555	19.035	72.0	72.0	73.0	73.0	73	0.8185	15.0	78.0	80.0	79.0
1.90	18.00	40.670	54.425	13.755	70.0	70.0	72.0	72.0	63	0.5956	17.5	81.0	80.0	80.5
1.20	18.00	29.815	40.582	10.767	70.0	70.0	72.0	72.0	55	0.4606	19.5	79.0	80.0	79.5
0.69	15.00	22.830	29.685	6.855	70.0	70.0	70.0	70.0	48	0.3560	21.0	75.0	80.0	77.5
0.35	15.00	18.095	22.792	4.697	72.0	72.0	71.0	71.0	40	0.2408	22.5	73.0	74.0	73.5
DRY GAS	VOLUME		VOLUME	VOLUME	VOLUME		DRY GAS			CAL	IBRATION FA	ORIFICE CTOR		
CORRECTED Vm(std) (cu ft)	CORRECTED Vm(std) (liters)		CORRECTED Vcr(std) (cu ft)	CORRECTED Vcr(std) (liters)	NOMINAL Vcr (cu ft)		Value (number)	Y Variation (number)		Value (in H2O)	dH@ Value (mm H2O)	Variation (in H2O)		Ko (value)
19.002	538.1		18.955	536.8	19.390		0.998	-0.004		1.808	45.91	-0.068		0.714
13.713	388.3		13.774	390.1	14.129		1.004	0.003		1.812	46.02	-0.064		0.710
10.716	303.5		10.662	301.9	10.917		0.995	-0.006		1.910	48.51	0.034		0.699
6.827	193.3		6.880	194.8	7.018		1.008	0.006		1.835	46.61	-0.041		0.704
4.660	132.0		4.671	132.3	4.730		1.002	0.001		2.013	51.14	0.138		0.676
					Avera	ıge Y>	1.0014	Avera	ge dH@>	1.875	47.6	Av	erage Ko>	0.701

т	TEMPERATURE CALIBRATION							
Calibration Standard>	Omega Model CL23A S/N:T-2	18768						
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Res Variation (degF)	sults Percent of Absolute					
32	32	0	0.00%					
100	100	0	0.00%					
300	300	0	0.00%					
500	500	0	0.00%					
1000	1000	0	0.00%					

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02.
For Orlifice Calibration Factor drill 6, the orlifice differential pressure in inches of H20 that equates to 0.75 dm of air at 88 F and 289 tiches of Hg, acceptable tolerance of individual values from the average is +0.2.
For Temperature Devices, the reading must be within 1.5% of certified calibration standard (absolute temperature) be) be acceptable.

Calibrated by: Liam Forrer

Date: July 4, 2022

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-D Date: 5-Jul-22

Serial #: Wizit 4618 Barometric Pressure: 29.88 (in. Hg)

Theoretical Critical Vacuum: 14.09 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above. IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

IMPORTANT

			DRY GA	S METER READIN	NGS	-				-CI	RITICAL ORIF	ICE READING	GS-	
		Volume	Volume	Volume	Initial To			Temps.	Orifice	K' Orifice	Actual		bient Tempera	
dH (in H2O)	Time (min)	Initial (m³)	Final (m³)	Total (cu ft)	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	Serial# (number)	Coefficient (see above)	Vacuum (in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)
0.00	27.00	63.825	64.175	12.353	73.0	73.0	74.0	74.0	48	0.3560	20.0	75.0	74.0	74.5
0.00	18.00	64.176	64.410	8.267	74.0	74.0	76.0	76.0	48	0.3560	20.0	74.0	78.0	76.0
0.00	25.00	64.412	64.737	11.477	75.0	75.0	78.0	78.0	48	0.3560	20.0	76.0	80.0	78.0
VOLUME	VOLUME		VOLUME	VOLUME	VOLUME			S METER ON FACTOR		CAL	IBRATION FA	ORIFICE CTOR		
CORRECTED Vm(std)	CORRECTED Vm(std)		CORRECTED Vcr(std)	CORRECTED Vcr(std)	NOMINAL Vcr		Value	Y Variation		Value	dH@ Value	Variation		
(cu ft)	(liters)		(cu ft)	(liters)	(cu ft)		(number)	(number)		(in H2O)	(mm H2O)	(in H2O)		
12.205	345.6		12.423	351.8	12.598		1.018	0.001		0.000	0.00	0.000		
8.145	230.7		8.270	234.2	8.410		1.015	-0.001		0.000	0.00	0.000		
11.276	319.3		11.465	324.7	11.703		1.017	0.000		0.000	0.00	0.000		
					Aver	age Y>	1.0167	Avera	nge dH@>	0.0000	0.00			

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer Signature: _____ Date: July 5, 2022

Pitot Tube Calibration

 Date:
 5-Jul-22
 Temp (R): 539

 Pbar (in.Hg):
 29.91
 Dn (in.): 0.25

Pitot ID:	7A-1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.035	0.050	12.5	0.8283	0.0098
0.130	0.180	24.1	0.8413	0.0032
0.250	0.350	33.4	0.8367	0.0014
0.480	0.660	46.3	0.8443	0.0061
0.720	1.000	56.7	0.8400	0.0019
		Average :	0.8381	0.0045

Pitot ID:	ST 8A			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.035	0.050	12.5	0.8283	0.0044
0.140	0.200	25.0	0.8283	0.0044
0.250	0.350	33.4	0.8367	0.0040
0.600	0.850	51.7	0.8318	0.0009
0.710	0.990	56.3	0.8384	0.0057
		Average :	0.8327	0.0039

Pitot ID:	7B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.035	0.050	12.5	0.8283	0.0046
0.100	0.140	21.1	0.8367	0.0038
0.230	0.320	32.0	0.8393	0.0064
0.430	0.610	43.8	0.8312	0.0017
0.680	0.970	55.1	0.8289	0.0040
		Average:	0.8329	0.0041

Pitot ID:	ST 8B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.040	0.055	13.4	0.8443	0.0032
0.140	0.190	25.0	0.8498	0.0087
0.270	0.380	34.7	0.8345	0.0066
0.500	0.700	47.2	0.8367	0.0044
0.720	1.000	56.7	0.8400	0.0010
		Average :	0.8411	0.0048

	Pitot ID:	7 AL GVRD-	1		
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
	0.040	0.055	16.3	0.8443	0.0063
	0.120	0.160	19.9	0.8574	0.0067
	0.200	0.270	25.3	0.8521	0.0014
	0.430	0.580	35.8	0.8524	0.0018
	0.710	0.970	48.4	0.8470	0.0036
,			Average:	0.8506	0.0040

Pitot ID:	ST 8C			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	14.9	0.8478	0.0021
0.105	0.145	19.4	0.8425	0.0033
0.210	0.290	29.0	0.8425	0.0033
0.500	0.680	43.1	0.8489	0.0032
0.710	0.970	52.8	0.8470	0.0013
		Average:	0.8457	0.0026

Pitot ID:	7C			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.040	0.055	13.4	0.8443	0.0068
0.130	0.180	16.3	0.8413	0.0098
0.250	0.335	33.4	0.8552	0.0041
0.630	0.840	30.5	0.8574	0.0063
0.690	0.920	47.0	0.8574	0.0063
		Average :	0.8511	0.0066

Pitot ID:				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average :		

Calibrated by: Justin Ching Signature: Date: July 5, 2022

^{*} Average absolute deviation must not exceed 0.01.

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

GLASS NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Scott Ferguson
Date: July 5, 2022

Signature:

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
Α	0.1260	0.1260	0.1270	0.0010	0.1263	0.0000870
G-165	0.1200	0.1200	0.1270	0.0010	0.1203	0.0001473
G-170	0.1700	0.1720	0.1690	0.0030	0.1703	0.0001473
G-178	0.1700	0.1720	0.1820	0.0030	0.1703	0.0001302
J	0.1790	0.1000	0.1820	0.0030	0.1893	0.0001774
E	0.1690	0.1900	0.1890	0.0010	0.1993	0.0001983
Q	0.1910	0.1910	0.1900	0.0010	0.1907	0.0001963
L	0.2000	0.2030	0.2020	0.0040	0.2043	0.0002277
G-215	0.2090	0.2100	0.2120	0.0030	0.2103	0.0002413
G-218	0.2170	0.2140	0.2140	0.0010	0.2143	0.0002508
G-216 G-221	0.2170	0.2190	0.2200	0.0030	0.2197	0.0002608
G-2231	0.2310	0.2280	0.2300	0.0030	0.2297	0.0002877
G-2232	0.2240	0.2220	0.2220	0.0020	0.2227	0.0002704
G-225	0.2220	0.2190	0.2200	0.0030	0.2203	0.0002648
G-2501	0.2490	0.2500	0.2510	0.0020	0.2500	0.0003409
Р	0.2590	0.2570	0.2580	0.0020	0.2580	0.0003631
G-282	0.2910	0.2870	0.2880	0.0040	0.2887	0.0004545
G-2871	0.2860	0.2870	0.2870	0.0010	0.2867	0.0004482
G-292	0.2905	0.2890	0.2875	0.0030	0.2890	0.0004555
MV-01	0.3060	0.3040	0.3060	0.0020	0.3053	0.0005085
G-3072	0.3080	0.3080	0.3090	0.0010	0.3083	0.0005185
G-309	0.3060	0.3070	0.3070	0.0010	0.3067	0.0005129
G-3121	0.3080	0.3100	0.3110	0.0030	0.3097	0.0005230
G-345	0.3460	0.3440	0.3460	0.0020	0.3453	0.0006504
G-433	0.4320	0.4320	0.4340	0.0020	0.4327	0.0010210
P-29	0.4680	0.4680	0.4690	0.0010	0.4683	0.0011963
P-7	0.4920	0.4890	0.4920	0.0010	0.4910	0.0011303
В ,	0.5010	0.5020	0.5030	0.0020	0.5020	0.0013745
G-540	0.5390	0.5390	0.5390	0.0000	0.5390	0.0015745

Where:

- (a) D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.
- (b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.
- (c) Average = average of D1, D2 and D3

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Calibrated by: Daryl Sampson 30-Jun-22 Date:

Signature:

TEMPERATURE DEVICE CALIBRATIONS

Daryl Sampson

Reference Device								Temp	erature Set	ttings (degre	es F)					
Model CL23A Calib	rator		3	32 100			200		300		500		800		1700	
Device	ALA#	Serial #	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation
Omega HH11A	3	300132	33	0.20%	99.5	-0.09%	201	0.15%	301.5	0.20%	498	-0.21%	798.2	-0.14%	1696	-0.19%
Omega HH11A	4	200167	32	0.00%	98.5	-0.27%	200.5	0.08%	301	0.13%	499	-0.10%	799	-0.08%	1695	-0.23%
Omega HH11A	6	600059	32	0.00%	99.8	-0.04%	201.5	0.23%	301.5	0.20%	498.4	-0.17%	799.5	-0.04%	1696	-0.19%
TPI 341K	7	2.0315E+10	31	-0.20%	99.2	-0.14%	199.6	-0.06%	299.8	-0.03%	499.6	-0.04%	796.4	-0.29%	1695	-0.23%
TPI 341K	8	2.0313E+10	32	0.00%	99.2	-0.14%	200.3	0.05%	300.5	0.07%	490.2	-1.02%	797.6	-0.19%	1695	-0.23%
Cont Cmpny	10	102008464	30.5	-0.31%	98	-0.36%	199.3	-0.11%	298.5	-0.20%	498	-0.21%	796.8	-0.25%	1697	-0.14%
Omega HH11	14	409426	31.5	-0.10%	99.5	-0.09%	199	-0.15%	299	-0.13%	499	-0.10%	797	-0.24%	1698	-0.09%
TPI 341K	16	400120029	31	-0.20%	99	-0.18%	199.1	-0.14%	298.4	-0.21%	501	0.10%	799.8	-0.02%	1700	0.00%
TPI 341K	18	2.0329E+10	31.4	-0.12%	99.4	-0.11%	198.5	-0.23%	299.3	-0.09%	499.5	-0.05%	799.2	-0.06%	1698	-0.09%
TPI 341K	20	2.0329E+10	30.6	-0.28%	98.5	-0.27%	198.2	-0.27%	299.1	-0.12%	498.2	-0.19%	798	-0.16%	1697	-0.14%
TPI 341K	22	2.0329E+10	31.2	-0.16%	99.2	-0.14%	198.5	-0.23%	299	-0.13%	498.4	-0.17%	798	-0.16%	1698	-0.09%
Reference device is	a NIST ce	rtified digital th	ermocouple	calibrator												

Variation expressed as a percentage of the absolute temperature must be within 1.5 %

BAROMETER CALIBRATION FORM						
		Pbar E	nv Canada	Device (inc	hes of Hg)	Difference
				Elevation		
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)
LA	1-Jul-22	102.1	30.16	30.06	30.13	0.02
DS	1-Jul-22	102.1	30.16	30.04	30.11	0.04
CL	1-Jul-22	102.1	30.16	30.03	30.10	0.05
ML	1-Jul-22	102.1	30.16	30.14	30.21	-0.06
SB	1-Jul-22	102.1	30.16	30.15	30.22	-0.07
SH	1-Jul-22	102.1	30.16	30.15	30.22	-0.07
MG	1-Jul-22	102.1	30.16	30.15	30.22	-0.07
SF	1-Jul-22	102.1	30.16	30.16	30.23	-0.08
JG	1-Jul-22	102.1	30.16	30.12	30.19	-0.04
JC	1-Jul-22	102.1	30.16	30.15	30.22	-0.07
LF	1-Jul-22	102.1	30.16	30.15	30.22	-0.07

Signature: <u>Jeremy Gibbs</u>

Date:

01-Jul-22

Performance Specification is

Jeremy Gibbs

Calibrated by:

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74 metric e.html

Edmonton Spec Gas Plant/Usine 12143 68th Street Edmonton AB T5B 1P9 Canada

MCRT NITROUS OXIDE 90PPM N2 BAL 32SZ/ MCRT OXYDE NITREUX 90PPM N2 BAL 32SZ CERTIFIED

Component Composant

Nitrous Oxide / OXYDE NITREUX

action of the

Nitrogen / AZOTE

Nominal **Nominale** 90 PPM

Certified **Certifiée** 92.2 PPM

BAL

Cylinder Details/ Détails - bouteille:

Cylinder Size/ Taille de la bouteille; 32 Contents/ Capacité: 0.742 M3 Valve Outlet/ Robinet de sortie: 590 Nominal

Pressure/Pression nominale: 2,000 PSG

Analytical Details/ Détails d'analyse:

Certification Accuracy \pm 2% for concentrations 10 ppm and above, \pm 5% for concentrations < 10 ppm. INMS and NIST traceability by one of the following: 1) Mass calibration certificate 2154736Z, 2154736B, 1845447, 2204452,

W-017181-11799 or W-028737-17611; 2) Comparison to SRM or NTRM gas mixture.

Certification de précision ± 2% pour des concentrations de 10 ppm et plus, ± 5% pour des concentrations < 10 ppm. Traçabilité IENM et NIST par l'une des façons suivantes : 1) Certificat d'étalonnage de la masse 2154736B, 1845447, 2204452, W-017181-11799 ou W-028737-17611; 2) Comparaison avec le mélange gazeux SRM ou NTRM.

Messer Canada Inc. plant management quality system is ISO 9001 registered. The product furnished under the referenced lot number is certified to contain the component concentration listed above. All values are mole/mole basis gas phase unless otherwise indicated. The reported uncertainty is at the 95% confidence level assuming a normal distribution. Messer Canada Inc. warrants that the above product conforms at time of shipment to the above description. The customers exclusive remedy should any of the products furnished under this certificate of analysis not conform to the manufacturers description shall be to receive replacement of the product or refund of the purchase price.

Le système de gestion de la qualité des usines de Messer Canada Inc. a été enregistré avec la Norme internationale ISO 9001. Il est certifié que tout produit fourni, avec un numéro de lot spécifié, contient la concentration d'éléments ci-dessus mentionnés. Toutes les valeurs sont exprimés en mole/ phase gazeuse, sauf indication contraire. Les incertitudes indiquées dans les descriptions sont des incertitudes élargies correspondant à un niveau de confiance d'environ 95 p. 100. Elles sont fondées sur une distribution normale. Messer Canada Inc. garantit qu'au moment de l'expédition, le produit est conforme à la description ci-dessus. Si l'un des produits fournis en vertu de ce certificat d'analyse n'est pas conforme à la description du fabricant, le recours exclusif du client sera d'exiger le remboursement ou le remplacement du produit.

To reorder, please quote/ Pour renouveler une commande, veuillez indiquer le code: 24108500

Certificate Date (mm/dd/yy) / Date du certificat (mm/j/aa) 10/31/2020

Use by / Utilisé par: 10/30/2023

Approved Signature/ Approbation du Signataire

Analyst/Analyste: Randall Myhre

Lot No./ No. lot 1494961

Cylinder No./ No. bouteille FF-58284

Code 24108500 Page 1/1

Edmonton Spec Gas Plant/Usine 12143 68th Street Edmonton AB T5B 1P9 Canada

MCRT NITROUS OXIDE 40PPM N2 BAL 32SZ/ MCRT OXYDE NITREUX 40PPM N2 BAL 32SZ CERTIFIED

Component

Composant

Nitrous Oxide / OXYDE NITREUX

Nitrogen / AZOTE

Nominal **Nominale** 40 PPM

Certified Certifiée 41.1 PPM

BAL

Cylinder Details/ Détails - bouteille:

Cylinder Size/ Taille de la bouteille: 32 Contents/ Capacité: 0.742 M3 Valve Outlet/ Robinet de sortie: 590 Nominal

Pressure/Pression nominale: 2,000 PSG

Analytical Details/ Détails d'analyse:

Certification Accuracy ± 2% for concentrations 10 ppm and above, ± 5% for concentrations < 10 ppm. INMS and NIST traceability by one of the following: 1) Mass calibration certificate 2154736Z, 2154736B, 1845447, 2204452, W-017181-11799 or W-028737-17611; 2) Comparison to SRM or NTRM gas mixture.

Certification de précision ± 2% pour des concentrations de 10 ppm et plus, ± 5% pour des concentrations < 10 ppm. Traçabilité IÉNM et NIST par l'une des façons suivantes : 1) Certificat d'étalonnage de la masse 2154736Z, 2154736B, 1845447, 2204452, W-017181-11799 ou W-028737-17611; 2) Comparaison avec le mélange gazeux SRM ou NTRM.

Messer Canada Inc. plant management quality system is ISO 9001 registered. The product furnished under the referenced lot number is certified to contain the component concentration listed above. All values are mole/mole basis gas phase unless otherwise indicated. The reported uncertainty is at the 95% confidence level assuming a normal distribution. Messer Canada Inc. warrants that the above product conforms at time of shipment to the above description. The customers exclusive remedy should any of the products furnished under this certificate of analysis not conform to the manufacturers description shall be to receive replacement of the product or refund of the purchase price.

Le système de gestion de la qualité des usines de Messer Canada Inc. a été enregistré avec la Norme internationale ISO 9001. Il est certifié que tout produit fourni, avec un numéro de lot spécifié, contient la concentration d'éléments ci-dessus mentionnés. Toutes les valeurs sont exprimés en mole/ phase gazeuse, sauf indication contraire. Les incertitudes indiquées dans les descriptions sont des incertitudes élargies correspondant à un niveau de confiance d'environ 95 p. 100. Elles sont fondées sur une distribution normale. Messer Canada Inc. garantit qu'au moment de l'expédition, le produit est conforme à la description ci-dessus. Si l'un des produits fournis en vertu de ce certificat d'analyse n'est pas conforme à la description du fabricant, le recours exclusif du client sera d'exiger le remboursement ou le remplacement du produit.

To reorder, please quote/ Pour renouveler une commande, veuillez indiquer le code: 24108499

Certificate Date (mm/dd/yy) / Date du certificat (mm/jj/aa) :10/31/2020

Use by / Utilisé par: 10/30/2023

Approved Signature/ Approbation du Signataire

Analyst/Analyste: Randall Myhre

Canadian Association for Laboratory Accreditation Inc.

Certificate of Accreditation

A. Lanfranco and Associates Inc. 101 - 9488 - 189th Street Surrey, British Columbia

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Accreditation No.: A4232

Issued On: February 5, 2021

Accreditation Date: February 5, 2021

Expiry Date: August 6, 2023

CALA REPORTED TO THE PROPERTY OF THE PROPERTY

Olydran M. Oldans

President & CEO

Faculty of Continuing Education and Extension

Carter Lanfranco

has successfully completed

Stack Sampling

May 2009

Date

Dean

Faculty of Continuing Education and Extension

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional <u>Carter Lankano</u>
	Title Chief operations officer (au
2.	Are you a registered member of a professional association in B.C.?
	Name of Association:Registration #
3.	Brief description of professional services:
pro pu ca pe	ofessional ethics and accountability. By signing and submitting this statement you consent to its blication and its disclosure outside of Canada. This consent is valid from the date submitted and mnot be revoked. If you have any questions about the collection, use or disclosure of your resonal information please contact the Ministry of Environment and Climate Change Strategy adquarters Office at 1-800-663-7867.
	<u>Declaration</u>
	m a qualified professional with the knowledge, skills and experience to provide expert formation, advice and/or recommendations in relation to the specific work described above.
X	witnessed by: x Must faithful
	int Name: <u>Carter Lastrance</u> Pribt Name: // Jhalin Harrington
Da	ite signed: Dec. T/2020

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Doclaration

	Deciaration
1_ Carter Lanfranco	, as a member of _Air and Waste Management Association
declare	
Select one of the following:	
Absence from conflict of interest	
Other than the standard fee I will receiv	ve for my professional services, I have no financial or
other interest in the outcome of this	project . I further declare that should a
conflict of interest arise in the future du	uring the course of this work, I will fully disclose the
circumstances in writing and without de Mr. Sajid Barlas	elay to, erring on the side of caution.

Real or perceived conflict of interest
Description and nature of conflict(s):
I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.
In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:
Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.
onflict of interest disclosure statement is collected under section 26(c) of the Freedom of nation and Protection of Privacy Act for the purposes of increasing government

This of . Info transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name: Conter

Witnessed by:

Mark Lanfranco Print name:

Date: Dec. 16, 2020

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Faculty of Continuing Education and Extension

Daryl Sampson

has successfully completed

The program of studies and is awarded the certificate in

STACK SAMPLING

May 2005

Date

Dear

Faculty of Continuing Education and Protection

1.	Name of Qualified Professional <u>Daryl Sampson</u>				
	Title Senior Environmental Technician/Project Manager				
2.	Are you a registered member of a profess	sional association in B.C.? ☐ Yes ☒ No			
	Name of Association:	Registration #			
3.	3. Brief description of professional services:				
	Environmental consulting, specializing in a	ir and atmospheric sciences			
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.					
	<u>Declaration</u>				
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.					
Sig	nature:	Witnessed by:			
<u>x 2</u>	Daryl Sampson	x Zen Com			
Pri	Daryl Sampson nt Name: <u>Daryl Sampson</u>	Print Name: Louis Agassiz			
Da	te signed: November 23, 2020				

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration I Daryl Sampson , as a member of Air and Waste Management Association declare Select one of the following: Absence from conflict of interest Other than the standard fee I will receive for my professional services, I have no financial or other interest in the outcome of this project . I further declare that should a conflict of interest arise in the future during the course of this work, I will fully disclose the circumstances in writing and without delay to Mr. Sajid Barlas , erring on the side of caution.

\square Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conduction and standards of practice.	ng my work in accordance with my Code of Ethics
In addition, I will take the following ste have disclosed, to ensure the public int	ps to mitigate the real or perceived conflict(s) I erest remains paramount:
	sure may be interpreted as a threat to my by the statutory decision maker accordingly.
Information and Protection of Privacy Act for transparency and ensuring professional ethic statement you consent to its publication and	es and accountability. By signing and submitting this its disclosure outside of Canada. This consent is revoked. If you have any questions about the information please contact the Ministry of
Signature:	Witnessed by:
X Daryl Sampson	Mark Lanfranco
Print name: Daryl Sampson	Print name:
Date: Dec.18, 2020	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

MOUNT ROYAL UNIVERSITY

Faculty of Continuing Education and Extension

Jeremy Shawn Gibbs

has successfully completed

Stack Sampling

35 Hours / 2019

May 22, 2019

Date

knowledge, experience and objectivity necessary to fulfill this role.			
1. Name of Qualified Professional Jeverny Obles			
Title Environmental technician			
2. Are you a registered member of a professional association in B.C.? ☐ Yes ☐ No			
Name of Association:Registration #			
3. Brief description of professional services: Environmental Consultant Specialize in Gir and atmospheric Sciences			
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.			
<u>Declaration</u>			
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above. Signature: Witnessed by:			
* home All			
Print Name: Deremy 6.45 Print Name: Connoc Jaan			
Date signed: Nav 1 2020			

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{}f 1}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

	•	-07.
	<u>Declaration</u>	1
Jeremy Gibbs	as a mer	nber of Air and Waste Management Association
declare		
Select one of the following:		
Absence from conflict of interest		
Other than the standard fee I will rec	eive for my pr	ofessional services, I have no financial or
other interest in the outcome of this	project	. I further declare that should a
conflict of interest arise in the future	during the co	urse of this work, I will fully disclose the
circumstances in writing and without Mr. Sajid Barlas	delay to	_, erring on the side of caution.

☐ Real or perceived conflict of interest		
Description and nat	ure of conflict(s):	
I will maintain my o and standards of pr	bjectivity, conducting my work in accordance with my Code of Ethics actice.	
	ke the following steps to mitigate the real or perceived conflict(s) I nsure the public interest remains paramount:	
	dge that this disclosure may be interpreted as a threat to my will be considered by the statutory decision maker accordingly.	

This conflict of interest disclosure statement is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name

Date: Dec.16, 2020

Witnessed by:

Mark Lanfranco
Print name:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Shawn Harrington

has met the requirements of

Stack Testing for Pollutants (CHSC 7760)

School of Process, Energy and Natural Resources Chemical Sciences Program

Endorsed by:

Environment Canada

Environnement

British Columbia Ministry of

JUNE 21, 2001

School of Process, Energy and Natural Resources

Marsh Hemekey, Dean

		·
1.	Name of Qualified Professional	Shawn Harrington
	Title	Senior Environmental Technician /Project manager
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☑No
	Name of Association:	Registration #
3.	Brief description of professional se Environmental consulting ,spe	ervices: ecializing in air and atmospheric sciences
Pro pro pu car pe	otection of Privacy Act for the purpo ofessional ethics and accountability blication and its disclosure outside nnot be revoked. If you have any q	ected under section 26(c) of the <i>Freedom of Information and</i> oses of increasing government transparency and ensuring r. By signing and submitting this statement you consent to its of Canada. This consent is valid from the date submitted and uestions about the collection, use or disclosure of your the Ministry of Environment and Climate Change Strategy 67.
		<u>Declaration</u>
	·	knowledge, skills and experience to provide expert ndations in relation to the specific work described above.
<u>X</u> Pri	int Name: Shawn Harrington te signed: November 26, 2020	Witnessed by: X Print Name: Mark anfranco

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;

1/

- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

I <u>Shawn Harrington</u> , as a m declare	ember of Air and Waste Management Association
Select one of the following:	
☑ Absence from conflict of interest	
Other than the standard fee I will receive for my	professional services, I have no financial or
other interest in the outcome of this project	. I further declare that should a
conflict of interest arise in the future during the o	course of this work, I will fully disclose the
circumstances in writing and without delay to Mr. Sajid Barlas	, erring on the side of caution.

Date: Dec.16, 2020

Description	on and nature of conflic	t(s):	
		.(0).	
·			
and the second			
	ntain my objectivity, cood dards of practice.	nducting my work	in accordance with my Code of Ethics
	on, I will take the followi losed, to ensure the pul	• .	nte the real or perceived conflict(s) I ins paramount:
-		•	e interpreted as a threat to my tory decision maker accordingly.
			under section 26(c) of the Freedom c
•			untability. By signing and submitting t
•	·		re outside of Canada. This consent is
			f you have any questions about the new please contact the Ministry of
	•		s Office at 1-800-663-7867.
ignature:	// · A	Wi	itnessed by:
Manua	Home alon		$\mathcal{L}(\mathcal{A})$

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Print name:

Mark Lanfranco

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

1.	Name of Qualified Professional	Mark Lanfranco	
	Title _	President Owner	
2.	Are you a registered member of a	professional association in B.C.?	☐ Yes ☒ No
	Name of Association:	Registration #	
3.	Brief description of professional ser Environmental consulting, specia	vices: Ilizing in air and atmospheric sciences	
Pro pro pul car per	otection of Privacy Act for the purposofessional ethics and accountability. blication and its disclosure outside on not be revoked. If you have any qu	ected under section 26(c) of the Freedonses of increasing government transparable signing and submitting this statement Canada. This consent is valid from the estions about the collection, use or displaying the matter of Environment and Climater.	rency and ensuring ent you consent to its ne date submitted and sclosure of your
		<u>Declaration</u>	
		nowledge, skills and experience to prodations in relation to the specific work	-
Sigi	nature:	Witnessed by:	
<u>x~</u>		x max	
Prir	nt Name: Mark Lanfranco	Print Name: Melis	ssa Watking
Dat	re signed: Nov.16, 2020		

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{}f 1}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

\square Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conducting and standards of practice.	my work in accordance with my Code of Ethics
In addition, I will take the following steps have disclosed, to ensure the public interest	to mitigate the real or perceived conflict(s) I est remains paramount:
Further, I acknowledge that this disclosure	e may be interpreted as a threat to my
independence and will be considered by the	he statutory decision maker accordingly.
This conflict of interest disclosure statement is of Information and Protection of Privacy Act for the	e purposes of increasing government
transparency and ensuring professional ethics a statement you consent to its publication and its valid from the date submitted and cannot be re-	
collection, use or disclosure of your personal inf	
Environment and Climate Change Strategy Head	Iquarters Office at 1-800-663-7867.
Signature:	Witnessed by,
x P	x
Print name: Mark Lanfranco	Print name: Carter LanGanco
Date: Dec.16, 2020	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.