

WASTE-TO-ENERGY FACILITY

Appendices of Emissions Testing Report July and September 2022 Survey Third Quarter 2022

Table of Contents

Appendix

- A Quality Assurance / Quality Control Results
- B Laboratory Results
- C Computer Generated Results
- D Field Data Sheets
- E Calibration Sheets and Technician Certificates

APPENDIX - A

QUALITY ASSURANCE / QUALITY CONTROL RESULTS

Quality assurance / quality control (QA/QC) is divided into four categories: administration, preparation, testing, and analysis. The following sections detail results found for the above four categories.

Administration:

- All field, process, and analytical data was reviewed to ensure data integrity and accuracy.
- Duplicate proof of draft and final report, including data entry, conducted.

Preparation:

- All glassware cleaned
- Blank samples of reagents collected.

Testing:

- Stack diameter and absence of cyclonic flow confirmed
- Calibrated magnehelic used for all velocity measurements
- All trains past pre- and post- leak checks.
- Isokinetics all within $100\% \pm 10\%$.

Analysis:

- Trace Metals and Mercury analysis conducted at Element Labs, Surrey, B.C.
- Fluoride (HF) analysis conducted at ALS Environmental in Burnaby, B.C.
- Nitrous Oxide (N₂O) analysis conducted with portable analyzer by A. Lanfranco and Associates.
- Particulate analysis conducted at A. Lanfranco and Associates Inc., Surrey, BC.
- Chain of Custody protocols followed for all samples.
- Acceptable blank values for all sample types. All samples blank corrected.

Sample Type	Blank Value				
Third Quarter 2022	Unit 1	Unit 2	Unit 3		
Filter	0.3 mg	0.1 mg	0.4 mg		
Front Half Washings	-0.9 mg	-0.6 mg	0.4 mg		
Mercury Front	<0.02 ug	<0.02 ug	<0.02 ug		
Mercury Back	<0.21 ug	<0.28 ug	<0.17 ug		
Trace Metals Front *	<43.7 ug	<60.7 ug	<54.7 ug		
Trace Metals Back*	<34.0 ug	<33.8 ug	<43.6 ug		
Ammonia	81.1 ug	8.10 ug	52.2 ug		
Fluoride	<5.0 ug	<5.0 ug	<5.0 ug		

APPENDIX - B LABORATORY RESULTS

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589876

Control Number:

Date Received: Aug 4, 2022 Date Reported: Aug 25, 2022

Report Number: 2774284

Contact	Company	Address		
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street		
		Surrey, BC V4N 4W7		
		Phone: (604) 881-2582 Fax: (604) 881-2581		
		Email: mark.lanfranco@alanfranco.com		
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>		
Email - Merge Deliverable	s PDF	COC / Test Report		
Email - Multiple Deliverab	les By PDF	COA		
Email - Single Deliverable	PDF	COR		

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE Filter Reagent Blanks

Project Name: **Project Location:**

LSD:

P.O.:

Proj. Acct. code:

Lot ID: 1589876

Control Number:

Container 1 (filter)

Date Received: Aug 4, 2022 Date Reported: Aug 25, 2022

Report Number: 2774284

Reference Number 1589876-1 1589876-2 Jul 18, 2022 Sample Date Jul 18, 2022 Sample Time NA NA

Sample Location Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Container 1 (filter)

> Stack Samples Stack Samples Matrix

		Matrix	Otack Gampies	Otack Gampies		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	ction 1A					
Aluminum		μg	8	<5		5
Antimony		μg	<2	<2		2.5
Arsenic		μg	<1	<1		1
Cadmium		μg	<0.3	0.3		0.25
Chromium		μg	0.44	1.5		0.2
Cobalt		μg	<0.3	<0.3		0.25
Copper		μg	1	0.8		0.25
Lead		μg	4.3	<2		1.5
Manganese		μg	0.5	<0.3		0.25
Nickel		μg	1	1.0		0.5
Phosphorus		μg	30	28		2.5
Selenium		μg	2	<2		1.5
Tellurium		μg	5.1	<2		2
Thallium		μg	3.7	2.8		1.5
Vanadium		μg	<1	<1		1
Zinc		μg	2.6	1		0.5
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05		0.05
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	250	250		
Volume	aliquot volume	mL	25	25		
Volume	Final	mL	40	40		
Mercury	Fraction 1B	μg/sample	<0.02	<0.02		

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com
W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589876

Control Number:

Date Received: Aug 4, 2022
Date Reported: Aug 25, 2022
Report Number: 2774284

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Aug 23, 2022	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Aug 11, 2022	Element Vancouver

* Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1599356

Control Number:

Date Received: Sep 15, 2022
Date Reported: Oct 6, 2022
Report Number: 2787726

Contact	Company		Address		
Mark Lanfranco	A. Lanfran	co & Associates	#101, 9488 - 189 Street		
			Surrey, BC V4N 4W7		
			Phone: (604) 881-2582 Fax: (604) 881-2581		
			Email: mark.lanfranco@alanfranco.com		
Delivery		<u>Format</u>	<u>Deliverables</u>		
Email - Multiple Delive	rables By Lot	PDF	COC / COA		
Email - Multiple Delive	rables By Lot	PDF	COC / Test Report		

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE
Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1599356

Control Number:

Date Received: Sep 15, 2022
Date Reported: Oct 6, 2022
Report Number: 2787726

Reference Number 1599356-1 Sample Date Sep 06, 202

Sep 06, 2022 NA

Sample Time Sample Location

Sample Description Reagent Blank Unit 3

Container 1 (filter) / 21.2°C

Matrix Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	ction 1A					
Aluminum		μg	20			5
Antimony		μg	<2			2.5
Arsenic		μg	<1			1
Cadmium		μg	<0.3			0.25
Chromium		μg	<0.2			0.2
Cobalt		μg	<0.3			0.25
Copper		μg	1			0.25
Lead		μg	<2			1.5
Manganese		μg	6.1			0.25
Nickel		μg	<0.5			0.5
Phosphorus		μg	29			2.5
Selenium		μg	2			1.5
Tellurium		μg	<2			2
Thallium		μg	<2			1.5
Vanadium		μg	<1			1
Zinc		μg	2.8			0.5
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05			0.05
Dilution Factor	As Tested		1			
Volume	Sample	mL	250			
Volume	aliquot volume	mL	25			
Volume	Final	mL	40			
Mercury	Fraction 1B	μg/sample	<0.02			

Approved by:

Abhishek Suryawanshi

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE
Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1599356

Control Number:

Date Received: Sep 15, 2022
Date Reported: Oct 6, 2022
Report Number: 2787726

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Oct 5, 2022	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Sep 15, 2022	Element Vancouver

* Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589869

Control Number:

Date Received: Aug 4, 2022 Date Reported: Aug 25, 2022

Report Number: 2774278

Contact	Company	Address		
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street		
		Surrey, BC V4N 4W7		
		Phone: (604) 881-2582 Fax: (604) 881-2581		
		Email: mark.lanfranco@alanfranco.com		
Delivery	<u>Format</u>	<u>Deliverables</u>		
Email - Merge Deliverable	es PDF	COC / Test Report		
Email - Multiple Deliverab	les By PDF	COA		
Email - Single Deliverable	PDF	COR		

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589869

Control Number:

Date Received: Aug 4, 2022 Date Reported: Aug 25, 2022

2774278 Report Number:

Reference Number 1589869-1 1589869-2 Sample Date Jul 18, 2022 Jul 18, 2022 Sample Time NA NA

Sample Location

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2

		Matrix	Stack Samples	Stack Samples		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	ction 1A					
Aluminum		μg	44	<5		5
Antimony		μg	<2	<2		2.5
Arsenic		μg	<1	<1		1
Cadmium		μg	<0.3	<0.3		0.25
Chromium		μg	0.48	1.3		0.2
Cobalt		μg	<0.3	<0.3		0.25
Copper		μg	2	<0.3		0.25
Lead		μg	2	<2		1.5
Manganese		μg	<0.3	<0.3		0.25
Nickel		μg	<0.5	<0.5		0.5
Phosphorus		μg	<2	<2		2.5
Selenium		μg	<2	<2		1.5
Tellurium		μg	3.6	<2		2
Thallium		μg	<2	2.6		1.5
Vanadium		μg	<1	<1		1
Zinc		μg	2.9	1		0.5
Back Half Metals Frac	ction 2A					
Aluminum		μg	<5	<5		5
Antimony		μg	<3	<3		2.5
Arsenic		μg	5.0	<1		1
Cadmium		μg	<0.3	<0.3		0.25
Chromium		μg	<0.2	<0.2		0.2
Cobalt		μg	<0.3	0.3		0.25
Copper		μg	4.3	4.7		0.25
Lead		μg	3.5	2		1.5
Manganese		μg	<0.3	0.3		0.25
Nickel		μg	<0.5	<0.5		0.5
Phosphorus		μg	30	20		2.5
Selenium		μg	<2	<2		1.5
Tellurium		μg	<2	<2		2
Thallium		μg	<2	<2		1.5
Vanadium		μg	<1	<1		1
Zinc		μg	2	1		0.5
Volume	Sample	mL	220	220		
Volume	aliquot volume	mL	170	170		
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05		0.05
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	250	250		

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By:

Company:

Attn: Missy

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589869

Control Number:

Date Received: Aug 4, 2022 Date Reported: Aug 25, 2022

Report Number: 2774278

Reference Number

Sample Date

1589869-1

NA

1589869-2 Jul 18, 2022 Jul 18, 2022

NA

Sample Time **Sample Location**

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2

		Matrix	Stack Samples	Stack Samples		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Volume	aliquot volume	mL	25	25		
Volume	Final	mL	40	40		
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02		
Mercury	As Tested	μg/L	< 0.05	< 0.05		0.05
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	220	220		
Volume	aliquot volume	mL	5.0	5.0		
Volume	Final	mL	50	50		
Mercury	Fraction 2B	μg/sample	<0.1	<0.1		
Mercury	As Tested	μg/L	< 0.05	< 0.05		0.05
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	100	105		
Volume	aliquot volume	mL	25	25		
Volume	Final	mL	40	40		
Mercury	Fraction 3A	μg/sample	<0.008	<0.008		
Mercury	As Tested	μg/L	< 0.05	< 0.05		0.05
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	500	500		
Volume	aliquot volume	mL	25	25		
Volume	Final	mL	40	40		
Mercury	Fraction 3B	μg/sample	< 0.04	< 0.04		
Mercury	As Tested	μg/L	< 0.05	0.12		0.05
Dilution Factor	As Tested		1	1		
Volume	Sample	mL	200	200		
Volume	aliquot volume	mL	25	25		
Volume	Final	mL	40	40		
Mercury	Fraction 3C	µg/sample	<0.02	0.037		

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com
W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Reagent Blanks

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589869

Control Number:

Date Received: Aug 4, 2022
Date Reported: Aug 25, 2022
Report Number: 2774278

ethod	of Ana	lysis
-------	--------	-------

mounta or runary ord				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Aug 23, 2022	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 23, 2022	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 23, 2022	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 22, 2022	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 22, 2022	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 11, 2022	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 11, 2022	Element Vancouver
		* D (

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1599363

Control Number:

Date Received: Sep 15, 2022
Date Reported: Oct 6, 2022
Report Number: 2787734

Contact	Company		Address		
Mark Lanfranco	A. Lanfran	nco & Associates	#101, 9488 - 189 Street		
			Surrey, BC V4N 4W7		
			Phone: (604) 881-2582 Fax: (604) 881-2581		
			Email: mark.lanfranco@alanfranco.com		
<u>Delivery</u> <u>Format</u>		<u>Format</u>	<u>Deliverables</u>		
Email - Multiple Delivera	bles By Lot	PDF	COC / COA		
Email - Multiple Deliverables By Lot PDF		PDF	COC / Test Report		

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks
Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1599363

Control Number:

Date Received: Sep 15, 2022
Date Reported: Oct 6, 2022
Report Number: 2787734

Reference Number 1599363-1 Sample Date Sep 06, 2022 Sample Time NA

Sample Location

Sample Description Reagent Blank Unit 3

/ 21.2°C

Matrix Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	etion 1A					
Aluminum		μg	30			5
Antimony		μg	<2			2.5
Arsenic		μg	<1			1
Cadmium		μg	<0.3			0.25
Chromium		μg	<0.2			0.2
Cobalt		μg	<0.3			0.25
Copper		μg	2			0.25
Lead		μg	<2			1.5
Manganese		μg	<0.3			0.25
Nickel		μg	1			0.5
Phosphorus		μg	<2			2.5
Selenium		μg	7.5			1.5
Tellurium		μg	<2			2
Thallium		μg	<2			1.5
Vanadium		μg	<1			1
Zinc		μg	3.0			0.5
Back Half Metals Frac	tion 2A					
Aluminum		μg	8			5
Antimony		μg	<3			2.5
Arsenic		μg	4.3			1
Cadmium		μg	<0.3			0.25
Chromium		μg	<0.2			0.2
Cobalt		μg	0.4			0.25
Copper		μg	<0.3			0.25
Lead		μg	<2			1.5
Manganese		μg	0.5			0.25
Nickel		μg	<0.5			0.5
Phosphorus		μg	20			2.5
Selenium		μg	<2			1.5
Tellurium		μg	4.1			2
Thallium		μg	<2			1.5
Vanadium		μg	<1			1
Zinc		μg	2			0.5
Volume	Sample	mL	210			
Volume	aliquot volume	mL	160			
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05			0.05
Dilution Factor	As Tested		1			

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled Bv:

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1599363

Control Number:

Date Received: Sep 15, 2022
Date Reported: Oct 6, 2022
Report Number: 2787734

Reference Number

Sample Date

1599363-1 Sep 06, 2022

Sample Time NA Sample Location

Sample Description Reagent Blank Unit 3

/ 21.2°C

Matrix Stack Samples

	IVIALITX	Stack Samples			Nominal Detection
	Units	Results	Results	Results	Limit
ontinued					
Sample	mL	250			
aliquot volume	mL	25			
Final	mL	40			
Fraction 1B	μg/sample	<0.02			
As Tested	μg/L	< 0.05			0.05
As Tested		1			
Sample	mL	210			
aliquot volume	mL	5.0			
Final	mL	45			
Fraction 2B	μg/sample	<0.09			
As Tested	μg/L	< 0.05			0.05
As Tested		1			
Sample	mL	100			
aliquot volume	mL	25			
Final	mL	40			
Fraction 3A	μg/sample	<0.008			
As Tested	μg/L	< 0.05			0.05
As Tested		1			
Sample	mL	500			
aliquot volume	mL	25			
Final	mL	40			
Fraction 3B	μg/sample	<0.04			
As Tested	μg/L	0.06			0.05
As Tested		1			
Sample	mL	200			
aliquot volume	mL	25			
Final	mL	40			
Fraction 3C	μg/sample	0.02			
	Sample aliquot volume Final Fraction 1B As Tested As Tested Sample aliquot volume Final Fraction 2B As Tested As Tested Sample aliquot volume Final Fraction 3A As Tested As Tested Sample aliquot volume Final Fraction 3A As Tested As Tested Sample aliquot volume Final Fraction 3B As Tested As Tested Sample aliquot volume Final Fraction 3B As Tested As Tested Fraction 3B As Tested As Tested Fraction 3B As Tested	Units Ontinued Sample mL aliquot volume mL Final mL Fraction 1B µg/sample As Tested µg/L As Tested Sample mL aliquot volume mL Final mL Fraction 2B µg/sample As Tested Sample mL aliquot volume mL Final mL Fraction 3B µg/sample As Tested Sample mL aliquot volume mL Final mL Fraction 3A µg/sample As Tested Sample mL As Tested Fraction 3B µg/sample As Tested Sample mL aliquot volume mL Final mL Fraction 3B µg/sample As Tested Sample mL aliquot volume mL Final mL Fraction 3B µg/sample As Tested Sample mL As Tested	Units Results Ontinued Sample mL 250 aliquot volume mL 40 Final mL 40 Fraction 1B µg/sample <0.02	Units Results Results ontinued Sample mL 250 aliquot volume mL 25 Final mL 40 Fraction 1B μg/sample <0.02	Units Results Results Sample mL 250 aliquot volume mL 25 Final mL 40 Fraction 1B μg/sample <0.02

Approved by:

Abhishek Suryawanshi

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Reagent Blanks

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1599363

Control Number:

Date Received: Sep 15, 2022
Date Reported: Oct 6, 2022
Report Number: 2787734

Method of Analysis

monitor of things is				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Oct 5, 2022	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Oct 5, 2022	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Oct 5, 2022	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Oct 4, 2022	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Oct 4, 2022	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Sep 15, 2022	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Sep 15, 2022	Element Vancouver
		4.D. () 14. () 14. () 1		

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID:

Metro Vancouver WTE

Metals and Hg Samples

Project Name: **Project Location:**

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589843

Control Number:

Date Received: Aug 4, 2022 Date Reported: Aug 25, 2022

Report Number: 2774292

Contact	Company	Address			
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street			
		Surrey, BC V4N 4W7			
		Phone: (604) 881-2582 Fax: (604) 881-2581			
		Email: mark.lanfranco@alanfranco.com			
Delivery	<u>Format</u>	<u>Deliverables</u>			
Email - Merge Deliverables	PDF	COC / Test Report			
Email - Multiple Deliverable	s By PDF	COA			
Email - Single Deliverable	PDF	COR			

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589843

Control Number:

Date Received: Aug 4, 2022 Date Reported: Aug 25, 2022

2774292 Report Number:

Reference Number Sample Date Sample Time **Sample Location**

1589843-1 Jul 28, 2022 NA

1589843-2 Jul 29, 2022 NA

1589843-3 Jul 29, 2022

NA

Sample Description Unit 1 Run 1 (Unit 1

R-1 + 4 Bottles)

Unit 1 Run 2 (MV Unit 1 R-2 +4 Bottles)

Unit 1 Run 3 (MV Unit 1 R-3 + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fr	action 1A					Liiii
Aluminum		μg	7	20	10	5
Antimony		μg	<2	3	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	3.99	1.9	3.13	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	2	4.1	3.1	0.25
Lead		μg	4.1	3.7	<2	1.5
Manganese		μg	2	0.9	2	0.25
Nickel		μg	6.2	3.1	6.4	0.5
Phosphorus		μg	42	37	34	2.5
Selenium		μg	<2	2	<2	1.5
Tellurium		μg	4.4	2	7.1	2
Thallium		μg	<2	5.2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	13	13	8.6	0.5
Back Half Metals Fra	action 2A					
Aluminum		μg	38	44	10	5
Antimony		μg	3	<2	<2	2.5
Arsenic		μg	< 0.9	<0.8	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	2.0	0.68	<0.2	0.2
Cobalt		μg	<0.2	<0.2	0.6	0.25
Copper		μg	3.2	4.5	2.2	0.25
Lead		μg	<1	3.4	4.5	1.5
Manganese		μg	2.4	1	1	0.25
Nickel		μg	0.8	2	0.5	0.5
Phosphorus		μg	22	26	23	2.5
Selenium		μg	<1	2.8	<1	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<1	<1	1	1.5
Vanadium		μg	<0.9	<0.8	<0.9	1
Zinc		μg	6.8	9.9	4.2	0.5
Volume	Sample	mL	780	860	810	
Volume	aliquot volume	mL	730	810	760	
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589843

Control Number:

Date Received: Aug 4, 2022 Date Reported: Aug 25, 2022

2774292 Report Number:

Reference Number 1589843-1 1589843-2 1589843-3 Sample Date Jul 28, 2022 Jul 29, 2022 Jul 29, 2022 Sample Time NA NA NA

Sample Location

Sample Description Unit 1 Run 1 (Unit 1

R-1 + 4 Bottles)

Unit 1 Run 2 (MV Unit 1 R-2 +4 Bottles)

Unit 1 Run 3 (MV Unit 1 R-3 + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - Co	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	<0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	780	860	810	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	145	155	175	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.01	<0.01	<0.01	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	< 0.04	< 0.04	<0.04	
Mercury	As Tested	μg/L	< 0.05	0.19	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	<0.02	0.062	<0.02	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589843

Control Number:

Date Received: Aug 4, 2022 Date Reported: Aug 25, 2022

2774292 Report Number:

Reference Number Sample Date Sample Time **Sample Location**

1589843-4 Jul 18, 2022 NA

Bottles)

1589843-5 Jul 19, 2022 NA

1589843-6 Jul 19, 2022

NA

Sample Description Unit 2 Run 1 (MV Unit 2 Run-1 + 4

Unit 2 Run 2 (Unit 1 Run-2 + 4 Bottles)

Unit 2 Run 3 (MV Unit 2 Run-3 + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals F	raction 1A					•
Aluminum		μg	<5	<5	50	5
Antimony		μg	3	<2	<2	2.5
Arsenic		μg	1	5.1	1	1
Cadmium		μg	0.4	<0.3	0.3	0.25
Chromium		μg	6.89	1.2	1.8	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	3.0	<0.3	3.0	0.25
Lead		μg	11	3.1	3.0	1.5
Manganese		μg	1	0.8	1	0.25
Nickel		μg	9.4	2	2	0.5
Phosphorus		μg	33	29	36	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	6.7	<2	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	4.2	17	6.6	0.5
Back Half Metals Fr	action 2A					
Aluminum		μg	20	36	9	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<0.9	2.8	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	1.6	3.25	0.22	0.2
Cobalt		μg	<0.2	<0.2	0.5	0.25
Copper		μg	4.3	0.8	<0.2	0.25
Lead		μg	6.9	2.3	<1	1.5
Manganese		μg	1	2	0.7	0.25
Nickel		μg	1.0	2	<0.4	0.5
Phosphorus		μg	26	26	25	2.5
Selenium		μg	<1	<1	<1	1.5
Tellurium		μg	<2	<2	3.1	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	5.7	5.5	3.2	0.5
Volume	Sample	mL	780	780	780	
Volume	aliquot volume	mL	730	730	730	
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05	<0.05	< 0.05	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Metals and Hg Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589843

Control Number:

Date Received: Aug 4, 2022 Date Reported: Aug 25, 2022 Report Number: 2774292

Reference Number 1589843-4 1589843-5 1589843-6 Sample Date Jul 18, 2022 Jul 19, 2022 Jul 19, 2022 Sample Time NA NA NA

Sample Location

Sample Description Unit 2 Run 1 (MV Unit 2 Run 2 (Unit 1 Unit 2 Run 3 (MV Unit 2 Run-3 + 4 Unit 2 Run-1 + 4 Run-2 + 4 Bottles)

Bottles)

Bottles) -I. C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	780	780	780	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	155	175	155	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.01	<0.01	<0.01	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	1000	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.08	< 0.04	<0.04	
Mercury	As Tested	μg/L	< 0.05	0.17	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	<0.02	0.054	< 0.02	

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE
Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1589843

Control Number:

Date Received: Aug 4, 2022
Date Reported: Aug 25, 2022
Report Number: 2774292

Method	of .	Analys	is
--------	------	--------	----

mound of 7 mary old				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Aug 23, 2022	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 23, 2022	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 23, 2022	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 22, 2022	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 22, 2022	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 11, 2022	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Aug 11, 2022	Element Vancouver
		* D (

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1599349

Control Number:

Date Received: Sep 15, 2022 Date Reported: Oct 6, 2022

Report Number: 2787719

Contact	Company	Address	
Mark Lanfranco	A. Lanfranc	o & Associates	#101, 9488 - 189 Street
			Surrey, BC V4N 4W7
			Phone: (604) 881-2582 Fax: (604) 881-2581
			Email: mark.lanfranco@alanfranco.com
Delivery		<u>Format</u>	<u>Deliverables</u>
Email - Multiple Deliverab	les By Lot	PDF	COC / COA
Email - Multiple Deliverables By Lot PDF		PDF	COC / Test Report

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1599349

Control Number:

Date Received: Sep 15, 2022
Date Reported: Oct 6, 2022
Report Number: 2787719

Reference Number Sample Date Sample Time 1599349-1 Sep 07, 2022 NA 1599349-2 Sep 08, 2022 NA 1599349-3 Sep 08, 2022 NA

Sample Location

Sample Description Unit 3 Run 1 (Mf Unit Unit 3 Run 2 (Mf Unit Unit 3 Run 3 (Mf Unit 3 R-1 + 4 Bottles) / 3 R-2 + 4 Bottles) / 3 R-3 + 4 Bottles) /

21.6°C

21.6°C

21.6°C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	action 1A					
Aluminum		μg	33	31	20	5
Antimony		μg	6	8	4	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	2.6	3.0	3.1	0.25
Chromium		μg	69.1	19.4	14.6	0.2
Cobalt		μg	1	0.7	0.7	0.25
Copper		μg	10	7.6	13	0.25
Lead		μg	20	20	23	1.5
Manganese		μg	6.6	2	2.5	0.25
Nickel		μg	33.5	12	11	0.5
Phosphorus		μg	46	63	45	2.5
Selenium		μg	6.7	<2	<2	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	160	152	277	0.5
Back Half Metals Fra	ection 2A					
Aluminum		μg	34	225	10	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<0.9	<0.9	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	1.1	1.1	<0.2	0.2
Cobalt		μg	<0.2	0.4	0.9	0.25
Copper		μg	<0.2	<0.2	2	0.25
Lead		μg	2	2	<1	1.5
Manganese		μg	1	0.9	7.7	0.25
Nickel		μg	1	1	1	0.5
Phosphorus		μg	26	31	20	2.5
Selenium		μg	<1	<1	3.0	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	4.9	9.5	3.4	0.5
Volume	Sample	mL	790	725	700	
Volume	aliquot volume	mL	740	675	650	
Mercury by CVAA						
Mercury	As Tested	μg/L	0.12	0.06	0.11	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Metro Vancouver WTE

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project Name: Metals and Hg Samples **Project Location:**

Project ID:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1599349

Control Number:

Date Received: Sep 15, 2022 Date Reported: Oct 6, 2022

Report Number: 2787719

Reference Number 1599349-1 1599349-2 1599349-3 Sample Date Sep 07, 2022 Sep 08, 2022 Sep 08, 2022 Sample Time NA NA NA **Sample Location**

Sample Description Unit 3 Run 1 (Mf Unit Unit 3 Run 2 (Mf Unit Unit 3 Run 3 (Mf Unit 3 R-1 + 4 Bottles) / 3 R-2 + 4 Bottles) / 3 R-3 + 4 Bottles) /

21.6°C 21.6°C 21.6°C

Matrix	Stack Samples	Stack Samples	Stack Samples

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	0.046	0.02	0.044	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	790	725	700	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	180	165	190	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.01	<0.01	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	500	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.04	< 0.04	<0.04	
Mercury	As Tested	μg/L	0.17	< 0.05	0.23	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.054	< 0.02	0.074	

Approved by:

Abhishek Suryawanshi

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1599349

Control Number:

Date Received: Sep 15, 2022
Date Reported: Oct 6, 2022
Report Number: 2787719

Method of Analysis

Method of Analysis						
Method Name	Reference	Method	Date Analysis Started	Location		
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Oct 5, 2022	Element Vancouver		
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Oct 5, 2022	Element Vancouver		
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Oct 5, 2022	Element Vancouver		
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Oct 4, 2022	Element Vancouver		
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Oct 4, 2022	Element Vancouver		
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Sep 15, 2022	Element Vancouver		
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Sep 15, 2022	Element Vancouver		

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

CERTIFICATE OF ANALYSIS

Work Order : VA22B8958

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF

C-O-C number : ---Sampler : AL
Site ----

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 15-Aug-2022 13:20

Date Analysis Commenced : 18-Aug-2022

Issue Date : 21-Aug-2022 15:08

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Tracy Harley Supervisor - Water Quality Instrumentation Inorganics, Burnaby, British Columbia

Page : 2 of 3 Work Order : VA22B8958

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
μg/sample mL	micrograms per sample millilitre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

Analytical Results

Sub-Matrix: Impinger			CI	ient sample ID	Unit 1 HF Run 1	Unit 1 HF Run 2	Unit 1 HF Run 3	
(Matrix: Air)								
			Client samp	ling date / time	29-Jul-2022	29-Jul-2022	29-Jul-2022	
Analyte	CAS Number	Method	LOR	Unit	VA22B8958-001	VA22B8958-002	VA22B8958-003	
					Result	Result	Result	
Field Tests								
volume, impinger		EP248	0.1	mL	442	438	398	
Anions and Nutrients								
fluoride	16984-48-8	E248.F	5.0	μg/sample	<22.1 DLDS	<5.0	<5.0	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 3 of 3 Work Order : VA22B8958

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : VA22B8958

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF

C-O-C number : ---Sampler : AL
Site : ----

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 5

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279
Date Samples Received : 15-Aug-2022 13:20
Issue Date : 21-Aug-2022 15:08

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

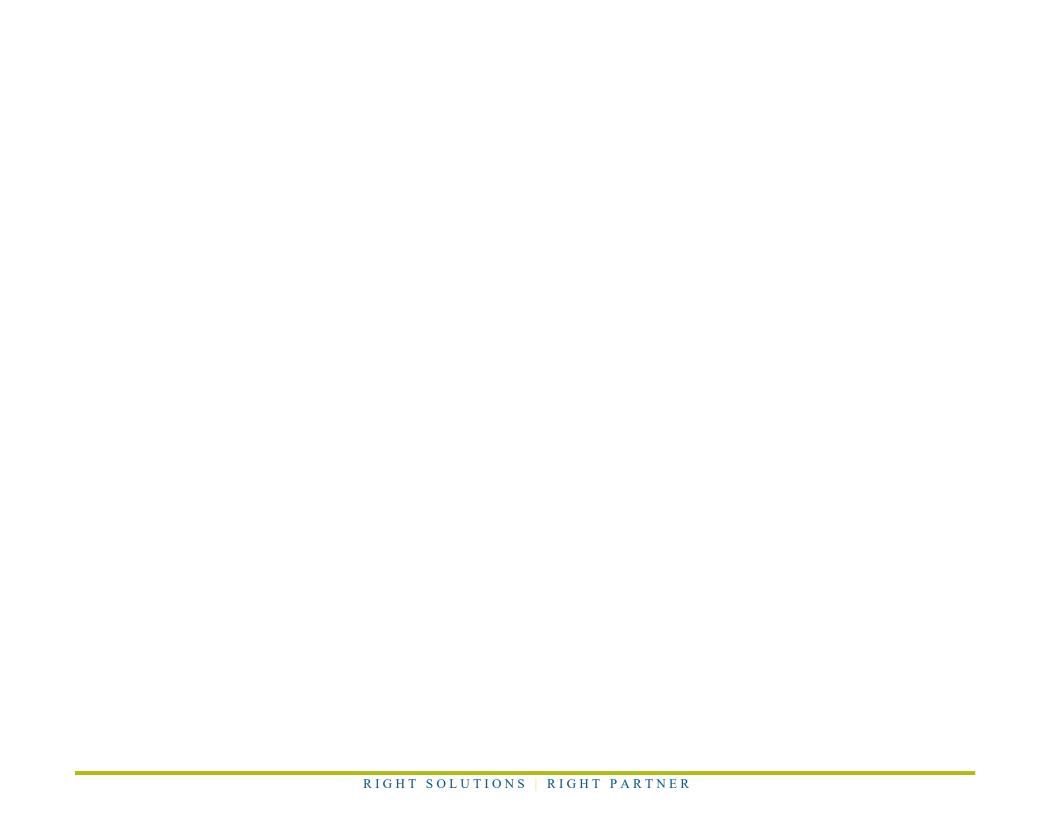
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 5 Work Order : VA22B8958

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Air Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

watiix. Ali						valuation. * -	Holding time excee	suarice,	– vvitilili	Holding Tillie
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding	Holding Times Eval		Analysis Date Holding Times		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 1 HF Run 1	E248.F	29-Jul-2022	18-Aug-2022				18-Aug-2022	28 days	20 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 1 HF Run 2	E248.F	29-Jul-2022	18-Aug-2022				18-Aug-2022	28 days	20 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 1 HF Run 3	E248.F	29-Jul-2022	18-Aug-2022				18-Aug-2022	28 days	20 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : VA22B8958

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Air Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Analytical Methods Method QC Lot # QC Regular Actual Expected Evaluation Laboratory Duplicates (DUP) Fluoride by IC (Impinger, mg/sample) 607498 4 25.0 5.0 E248.F Laboratory Control Samples (LCS) Fluoride by IC (Impinger, mg/sample) 607498 1 4 25.0 5.0 E248.F Method Blanks (MB) Fluoride by IC (Impinger, mg/sample) 607498 E248.F 1 4 25.0 5.0 Matrix Spikes (MS) Fluoride by IC (Impinger, mg/sample) 607498 1 4 25.0 5.0 E248.F

Page : 5 of 5 Work Order : VA22B8958

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Fluoride by IC (Impinger, mg/sample)	E248.F Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation of Anions for IC (Impinger)	EP248 Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.

QUALITY CONTROL REPORT

Work Order : VA22B8958

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF
C-O-C number :---Sampler : AL
Site :----

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 15-Aug-2022 13:20

Date Analysis Commenced : 18-Aug-2022

Issue Date : 21-Aug-2022 15:08

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Tracy Harley Supervisor - Water Quality Instrumentation Vancouver Inorganics, Burnaby, British Columbia

Page : 2 of 3
Work Order : VA22B8958

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Air							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 607498)										
VA22B8958-001	Unit 1 HF Run 1	fluoride	16984-48-8	E248.F	0.0221	mg/sample	<22.1 µg/sample	<0.0221	0	Diff <2x LOR	
		volume, impinger		EP248	0.1	mL	442	442		Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Air

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 60749	98)					
fluoride	16984-48-8	E248.F	0.005	mg/sample	<0.0050	
volume, impinger		EP248	0.1	mL	500	

Page : 3 of 3 Work Order : VA22B8958

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Air					Laboratory Control Sample (LCS) Report						
			Spike	Recovery (%)	Recovery	Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 607498)											
fluoride	16984-48-8	E248.F	0.005	mg/sample	0.5 mg/sample	102	90.0	110			

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Air					Matrix Spike (MS) Report							
					Spike Recovery (%)			Recovery				
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Anions and Nutri	ents (QCLot: 607498)											
VA22B8958-002	Unit 1 HF Run 2	fluoride	16984-48-8	E248.F	0.415 mg/sa mple	0.438 mg/sa mple	94.8	75.0	125			
		volume, impinger		EP248		mL		0	0			

CERTIFICATE OF ANALYSIS

Work Order : VA22B6983

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF C-O-C number · ----

Sampler : A. Lanfranco

Site : ---

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 2

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 22-Jul-2022 11:20

Date Analysis Commenced : 24-Jul-2022

Issue Date : 05-Aug-2022 10:10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Craig Peters Laboratory Analyst Inorganics, Burnaby, British Columbia
Ophelia Chiu Department Manager - Organics Inorganics, Burnaby, British Columbia

Page : 2 of 2 Work Order : VA22B6983

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
μg/sample mL	micrograms per sample millilitre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Impinger			CI	ient sample ID	Unit 2 HF Run 1	Unit 2 HF Run 2	Unit 2 HF Run 3	
(Matrix: Air)								
			Client samp	ling date / time	19-Jul-2022	19-Jul-2022	19-Jul-2022	
Analyte	CAS Number	Method	LOR	Unit	VA22B6983-001	VA22B6983-002	VA22B6983-003	
					Result	Result	Result	
Field Tests								
volume, impinger		EP248	0.1	mL	295	300	340	
Anions and Nutrients								
fluoride	16984-48-8	E248.F	5.0	μg/sample	<5.0	<5.0	<5.0	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : VA22B6983

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF C-O-C number : ----

Sampler : A. Lanfranco

Site : ----

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 5

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279
Date Samples Received : 22-Jul-2022 11:20
Issue Date : 05-Aug-2022 10:10

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 5 Work Order : VA22B6983

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Air Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

							c. ag ac conce	,		g
Analyte Group	Method	Sampling Date	Ext	raction / Pro	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE										
Unit 2 HF Run 1	E248.F	19-Jul-2022	24-Jul-2022				24-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE										
Unit 2 HF Run 2	E248.F	19-Jul-2022	24-Jul-2022				24-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE										
Unit 2 HF Run 3	E248.F	19-Jul-2022	24-Jul-2022				24-Jul-2022	28 days	6 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : VA22B6983

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Air Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Analytical Methods Method QC Lot # QC Regular Actual Expected Evaluation Laboratory Duplicates (DUP) Fluoride by IC (Impinger, mg/sample) 575201 4 25.0 5.0 E248.F Laboratory Control Samples (LCS) Fluoride by IC (Impinger, mg/sample) 575201 1 4 25.0 5.0 E248.F Method Blanks (MB) Fluoride by IC (Impinger, mg/sample) 575201 E248.F 1 4 25.0 5.0 Matrix Spikes (MS) Fluoride by IC (Impinger, mg/sample) 575201 1 4 25.0 5.0 E248.F

Page : 5 of 5 Work Order : VA22B6983

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Fluoride by IC (Impinger, mg/sample)	E248.F Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation of Anions for IC (Impinger)	EP248 Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.

QUALITY CONTROL REPORT

Work Order : VA22B6983

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF C-O-C number : ----

Sampler : A. Lanfranco

Site :---

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone :778-370-3279

Date Samples Received :22-Jul-2022 11:20

Date Analysis Commenced :24-Jul-2022

Issue Date : 05-Aug-2022 10:10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Craig Peters Laboratory Analyst Vancouver Inorganics, Burnaby, British Columbia
Ophelia Chiu Department Manager - Organics Vancouver Inorganics, Burnaby, British Columbia

Page : 2 of 3
Work Order : VA22B6983

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Air							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 575201)										
VA22B6982-001	Anonymous	fluoride	16984-48-8	E248.F	0.0050	mg/sample	<5.0 μg/sample	<0.0050	0	Diff <2x LOR	
		volume, impinger		EP248	0.1	mL	320	320		Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Air

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 5752)	01)					
fluoride	16984-48-8	E248.F	0.005	mg/sample	<0.0050	
volume, impinger		EP248	0.1	mL	500	

Page : 3 of 3 Work Order : VA22B6983

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Air					Laboratory Control Sample (LCS) Report						
			Spike	Recovery (%)	Recovery						
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 575201)											
fluoride	16984-48-8	E248.F	0.005	mg/sample	0.5 mg/sample	96.9	90.0	110			

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Air	ub-Matrix: Air						Matrix Spike (MS) Report							
					Spi	ike	Recovery (%) Recovery Lim		Limits (%)					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
Anions and Nutri	ents (QCLot: 575201)													
VA22B6983-001	Unit 2 HF Run 1	fluoride	16984-48-8	E248.F	0.300 mg/sa mple	0.295 mg/sa mple	102	75.0	125					
		volume, impinger		EP248		mL		0	0					

CERTIFICATE OF ANALYSIS

Work Order : VA22C1691

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF C-O-C number · ----

Sampler : A. Lanfranco

Site : ---

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 12-Sep-2022 11:20

Date Analysis Commenced : 17-Sep-2022

Issue Date : 21-Sep-2022 09:50

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Lindsay Gung Supervisor - Water Chemistry Inorganics, Burnaby, British Columbia

Page : 2 of 3 Work Order : VA22C1691

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
μg/sample mL	micrograms per sample millilitre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

Analytical Results

Sub-Matrix: Impinger			CI	ient sample ID	Unit 3 HF Run 1	Unit 3 HF Run 2	Unit 3 HF Run 3	
(Matrix: Air)								
			Client samp	ling date / time	08-Sep-2022	08-Sep-2022	08-Sep-2022	
Analyte	CAS Number	Method	LOR	Unit	VA22C1691-001	VA22C1691-002	VA22C1691-003	
					Result	Result	Result	
Field Tests								
volume, impinger		EP248	0.1	mL	370	350	335	
Anions and Nutrients								
fluoride	16984-48-8	E248.F	5.0	μg/sample	<18.5 DLDS	<17.5 DLDS	<16.8 DLDS	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 3 of 3 Work Order : VA22C1691

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

QUALITY CONTROL INTERPRETIVE REPORT

: VA22C1691 **Work Order**

Client : A. Lanfranco & Associates Inc.

Contact · Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project Metro Vancouver WTE

PO · HF C-O-C number

Sampler : A. Lanfranco

Site

Quote number : Standing Offer

No. of samples received : 3 No. of samples analysed : 3 Page : 1 of 5

Laboratory : Vancouver - Environmental

Account Manager · Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone :778-370-3279 **Date Samples Received** : 12-Sep-2022 11:20 Issue Date

: 21-Sep-2022 09:51

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 5
Work Order : VA22C1691

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Air Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	Holding Times Eval		Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE										
Unit 3 HF Run 1	E248.F	08-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	10 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE										
Unit 3 HF Run 2	E248.F	08-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	10 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE										
Unit 3 HF Run 3	E248.F	08-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	10 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : VA22C1691

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Air Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Analytical Methods Method QC Lot # QC Regular Actual Expected Evaluation Laboratory Duplicates (DUP) Fluoride by IC (Impinger, mg/sample) 652439 4 25.0 5.0 E248.F Laboratory Control Samples (LCS) Fluoride by IC (Impinger, mg/sample) 652439 1 4 25.0 5.0 E248.F Method Blanks (MB) Fluoride by IC (Impinger, mg/sample) 652439 E248.F 1 4 25.0 5.0 Matrix Spikes (MS) Fluoride by IC (Impinger, mg/sample) 652439 1 4 25.0 5.0 E248.F

Page : 5 of 5 Work Order : VA22C1691

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Fluoride by IC (Impinger, mg/sample)	E248.F Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation of Anions for IC (Impinger)	EP248 Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.

QUALITY CONTROL REPORT

Work Order : VA22C1691

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF C-O-C number : ----

Sampler : A. Lanfranco

Site :--

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone :778-370-3279

Date Samples Received :12-Sep-2022 1

Date Samples Received :12-Sep-2022 11:20

Date Analysis Commenced : 17-Sep-2022

Issue Date : 21-Sep-2022 09:50

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Lindsay Gung Supervisor - Water Chemistry Vancouver Inorganics, Burnaby, British Columbia

Page : 2 of 3
Work Order : VA22C1691

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Air					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient											
VA22C1691-001	Unit 3 HF Run 1	fluoride	16984-48-8	E248.F	0.0185	mg/sample	<18.5 µg/sample	<0.0185	0	Diff <2x LOR	
		volume, impinger		EP248	0.1	mL	370	370		Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Air

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 65243	39)					
fluoride	16984-48-8	E248.F	0.005	mg/sample	<0.0050	
volume, impinger		EP248	0.1	mL	500	

Page : 3 of 3
Work Order : VA22C1691

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Air		Laboratory Control Sample (LCS) Report							
		Spike	Recovery (%)	Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 652439)									
fluoride	16984-48-8	E248.F	0.005	mg/sample	0.5 mg/sample	97.8	90.0	110	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Air		Matrix Spike (MS) Report								
			Spike		Recovery (%) Rec		Limits (%)			
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutrients (QCLot: 652439)										
VA22C1691-002	Unit 3 HF Run 2	fluoride	16984-48-8	E248.F	1.80 mg/sample	1.75 mg/sample	103	75.0	125	
		volume, impinger		EP248		mL		0	0	

CERTIFICATE OF ANALYSIS

Work Order : VA22B8959

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF

C-O-C number : ---Sampler : AL
Site ----

Quote number : Standing Offer

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 2

Date Analysis Commenced

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

: 18-Aug-2022

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 15-Aug-2022 13:20

Issue Date : 21-Aug-2022 15:08

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Tracy Harley Supervisor - Water Quality Instrumentation Inorganics, Burnaby, British Columbia

Page : 2 of 2 Work Order : VA22B8959

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
μg/sample mL	micrograms per sample millilitre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Impinger			CI	ient sample ID	Unit 1 HF Blank	 	
(Matrix: Air)							
			Client samp	ling date / time	29-Jul-2022	 	
Analyte	CAS Number	Method	LOR	Unit	VA22B8959-001	 	
					Result	 	
Field Tests							
volume, impinger		EP248	0.1	mL	288	 	
Anions and Nutrients							
fluoride	16984-48-8	E248.F	5.0	μg/sample	<5.0	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : VA22B8959

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF

C-O-C number : ---Sampler : AL
Site : ----

Quote number : Standing Offer

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 5

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279
Date Samples Received : 15-Aug-2022 13:20
Issue Date : 21-Aug-2022 15:08

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

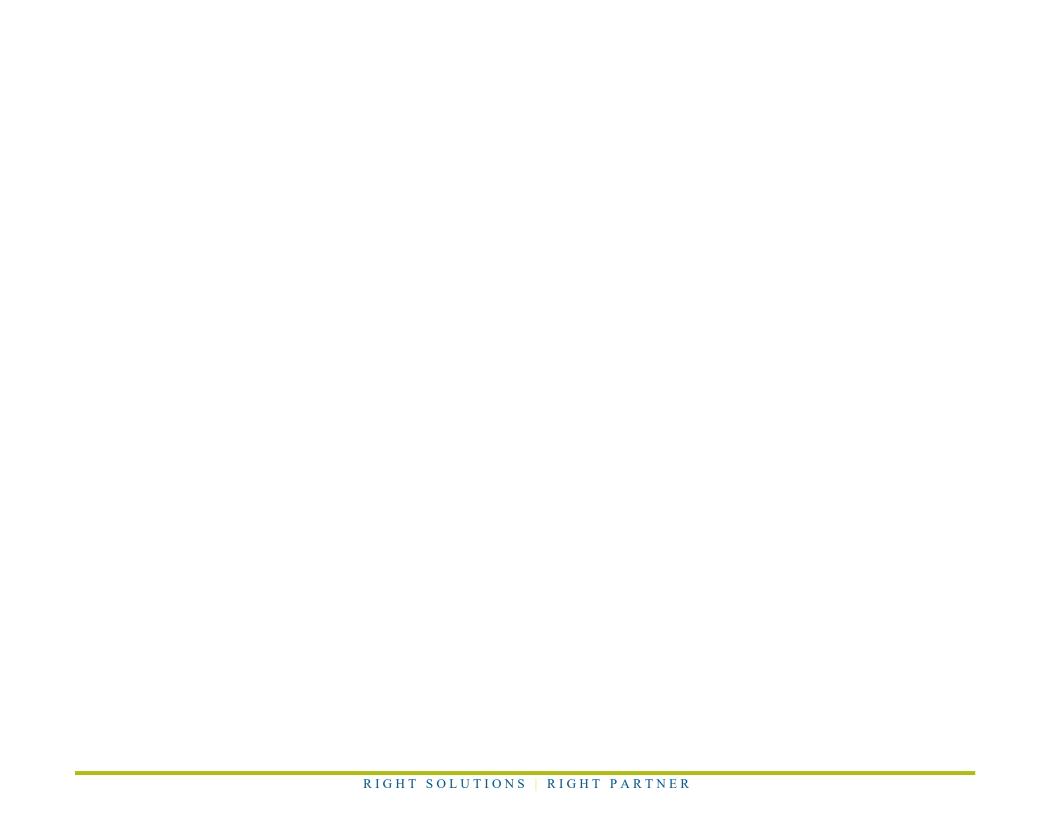
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 5 Work Order : VA22B8959

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Air Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

							i rerairing tilline exteet	,		g
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE										
Unit 1 HF Blank	E248.F	29-Jul-2022	18-Aug-2022				18-Aug-2022	28 days	20 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : VA22B8959

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Air Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Analytical Methods Method QC Lot # QC Regular Actual Expected Evaluation Laboratory Duplicates (DUP) Fluoride by IC (Impinger, mg/sample) 607498 4 25.0 5.0 E248.F Laboratory Control Samples (LCS) Fluoride by IC (Impinger, mg/sample) 607498 1 4 25.0 5.0 E248.F Method Blanks (MB) Fluoride by IC (Impinger, mg/sample) 607498 E248.F 1 4 25.0 5.0 Matrix Spikes (MS) Fluoride by IC (Impinger, mg/sample) 607498 1 4 25.0 5.0 E248.F

Page : 5 of 5 Work Order : VA22B8959

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Fluoride by IC (Impinger, mg/sample)	E248.F Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation of Anions for IC (Impinger)	EP248 Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.

QUALITY CONTROL REPORT

Work Order : VA22B8959

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF
C-O-C number :---Sampler : AL
Site :----

Quote number : Standing Offer

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 15-Aug-2022 13:20

Date Analysis Commenced : 18-Aug-2022

Issue Date : 21-Aug-2022 15:08

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Tracy Harley Supervisor - Water Quality Instrumentation Vancouver Inorganics, Burnaby, British Columbia

Page : 2 of 3
Work Order : VA22B8959

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Air					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	Anions and Nutrients (QC Lot: 607498)										
VA22B8958-001	Anonymous	fluoride	16984-48-8	E248.F	0.0221	mg/sample	<22.1 µg/sample	<0.0221	0	Diff <2x LOR	
		volume, impinger		EP248	0.1	mL	442	442		Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Air

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 60749	98)					
fluoride	16984-48-8	E248.F	0.005	mg/sample	<0.0050	
volume, impinger		EP248	0.1	mL	500	

Page : 3 of 3 Work Order : VA22B8959

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Air						Laboratory Control Sample (LCS) Report					
						Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low High		Qualifier		
Anions and Nutrients (QCLot: 607498)											
fluoride	16984-48-8	E248.F	0.005	mg/sample	0.5 mg/sample	102	90.0	110			

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Air					Matrix Spike (MS) Report						
					Spi	ike	Recovery (%) Reco		Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Anions and Nutri	ents (QCLot: 607498)										
VA22B8958-002	Anonymous	fluoride	16984-48-8	E248.F	0.415 mg/sa mple	0.438 mg/sa mple	94.8	75.0	125		
		volume, impinger		EP248		mL		0	0		

CERTIFICATE OF ANALYSIS

Work Order : VA22B6982

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF C-O-C number · ----

Sampler : A. Lanfranco

Site : ----

Quote number : Standing Offer

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 2

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 22-Jul-2022 11:20

Date Analysis Commenced : 24-Jul-2022

Issue Date : 05-Aug-2022 10:10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Craig Peters Laboratory Analyst Inorganics, Burnaby, British Columbia
Ophelia Chiu Department Manager - Organics Inorganics, Burnaby, British Columbia

Page : 2 of 2 Work Order : VA22B6982

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
μg/sample mL	micrograms per sample millilitre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Impinger			CI	ient sample ID	Unit 2 HF Blank	 	
(Matrix: Air)							
Client sampling date / time					19-Jul-2022	 	
Analyte	CAS Number	Method	LOR	Unit	VA22B6982-001	 	
					Result	 	
Field Tests							
volume, impinger		EP248	0.1	mL	320	 	
Anions and Nutrients							
fluoride	16984-48-8	E248.F	5.0	μg/sample	<5.0	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Page

Issue Date

Work Order : VA22B6982

Client : A. Lanfranco & Associates Inc. Laboratory : Vancouver - Environmental

Contact : Mark Lanfranco Account Manager : Brent Mack

Address : Unit # 101 9488 - 189 St Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

: 05-Aug-2022 10:10

: 1 of 5

 Telephone
 : 604 881 2582
 Telephone
 : 778-370-3279

 Project
 : Metro Vancouver WTE
 Date Samples Received
 : 22-Jul-2022 11:20

PO : HF C-O-C number : ----

Surrey BC Canada V4N 4W7

Sampler : A. Lanfranco

Site : ----

Quote number : Standing Offer

No. of samples received : 1
No. of samples analysed : 1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

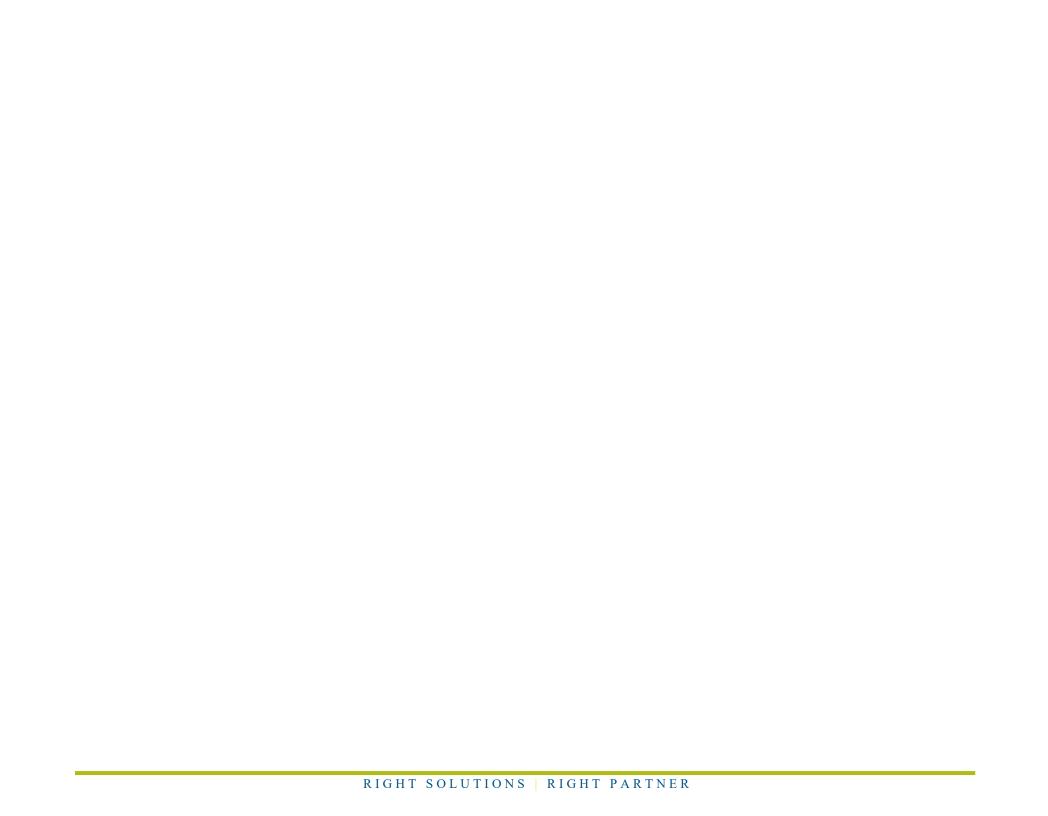
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 5 Work Order : VA22B6982

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Air Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

							i rerairing tilline exteet	,		
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE										
Unit 2 HF Blank	E248.F	19-Jul-2022	24-Jul-2022				24-Jul-2022	28 days	6 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : VA22B6982

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Air Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Analytical Methods Method QC Lot # QC Regular Actual Expected Evaluation Laboratory Duplicates (DUP) Fluoride by IC (Impinger, mg/sample) 575201 4 25.0 5.0 E248.F Laboratory Control Samples (LCS) Fluoride by IC (Impinger, mg/sample) 575201 1 4 25.0 5.0 E248.F Method Blanks (MB) Fluoride by IC (Impinger, mg/sample) 575201 E248.F 1 4 25.0 5.0 Matrix Spikes (MS) Fluoride by IC (Impinger, mg/sample) 575201 1 4 25.0 5.0 E248.F

Page : 5 of 5 Work Order : VA22B6982

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Fluoride by IC (Impinger, mg/sample)	E248.F Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation of Anions for IC (Impinger)	EP248 Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.

QUALITY CONTROL REPORT

Work Order :VA22B6982

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF C-O-C number : ----

Sampler : A. Lanfranco

Site :---

Quote number : Standing Offer

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone :778-370-3279

Date Samples Received :22-Jul-2022 11:20

Date Analysis Commenced :24-Jul-2022

Issue Date : 05-Aug-2022 10:10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Craig Peters Laboratory Analyst Vancouver Inorganics, Burnaby, British Columbia
Ophelia Chiu Department Manager - Organics Vancouver Inorganics, Burnaby, British Columbia

Page : 2 of 3
Work Order : VA22B6982

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Air	b-Matrix: Air						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Anions and Nutrients (QC Lot: 575201)													
VA22B6982-001	Unit 2 HF Blank	fluoride	16984-48-8	E248.F	0.0050	mg/sample	<5.0 μg/sample	<0.0050	0	Diff <2x LOR			
		volume, impinger		EP248	0.1	mL	320	320		Diff <2x LOR			

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Air

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 575201	1)					
fluoride	16984-48-8	E248.F	0.005	mg/sample	<0.0050	
volume, impinger		EP248	0.1	mL	500	

 Page
 : 3 of 3

 Work Order
 : VA22B6982

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Air					Laboratory Control Sample (LCS) Report						
								Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 575201)											
fluoride	16984-48-8	E248.F	0.005	mg/sample	0.5 mg/sample	96.9	90.0	110			

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Air	b-Matrix: Air						Matrix Spike (MS) Report							
							Recovery (%)	Recovery (%) Recovery Limits (%)						
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
Anions and Nutrients (QCLot: 575201)														
VA22B6983-001	Anonymous	fluoride	16984-48-8	E248.F	0.300 mg/sa mple	0.295 mg/sa mple	102	75.0	125					
		volume, impinger		EP248		mL		0	0					

CERTIFICATE OF ANALYSIS

Work Order : VA22C1692

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF C-O-C number · ----

Sampler : A. Lanfranco

Site : ---

Quote number : Standing Offer

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 2

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 12-Sep-2022 11:20

Date Analysis Commenced : 17-Sep-2022

Issue Date : 21-Sep-2022 09:51

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Lindsay Gung Supervisor - Water Chemistry Inorganics, Burnaby, British Columbia

Page : 2 of 2 Work Order : VA22C1692

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

μg/sample micrograms per sample	Unit	Description
mL millilitre		

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Impinger			CI	ient sample ID	Unit 3 HF Blank	 	
(Matrix: Air)							
			Client samp	ling date / time	08-Sep-2022	 	
Analyte	CAS Number	Method	LOR	Unit	VA22C1692-001	 	
					Result	 	
Field Tests							
volume, impinger		EP248	0.1	mL	155	 	
Anions and Nutrients							
fluoride	16984-48-8	E248.F	5.0	μg/sample	<5.0	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : VA22C1692

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF C-O-C number : ----

Sampler : A. Lanfranco

Site : ---

Quote number : Standing Offer

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 5

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279
Date Samples Received : 12-Sep-2022 11:20
Issue Date : 21-Sep-2022 09:51

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

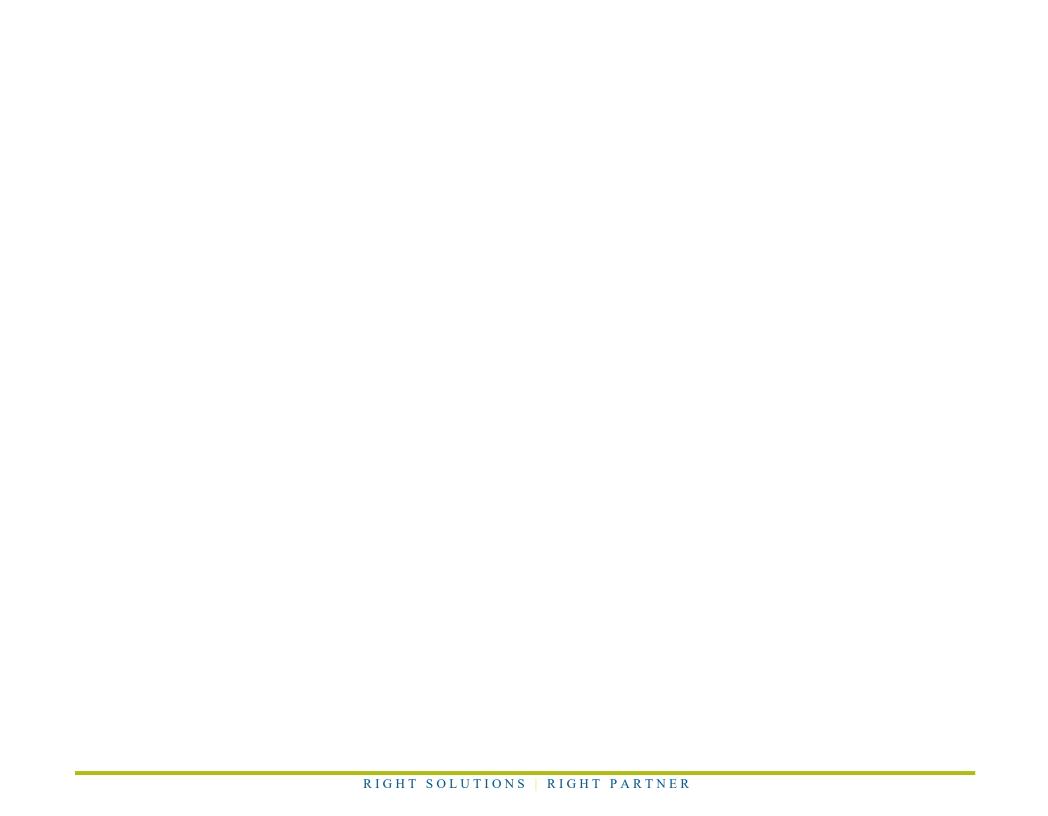
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 5 Work Order : VA22C1692

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Air Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

					diddion.	i rerairing tilline exteet	, ,		riolaning rinin
Method	Sampling Date	Extraction / Preparation				Analysis			
		Preparation	Holding Times		Eval	Analysis Date	Holding Times		Eval
		Date	Rec	Actual			Rec	Actual	
E248.F	08-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	10 days	✓
			Preparation Date	Preparation Holding Date Rec	Method Sampling Date Extraction / Preparation Preparation Holding Times Date Rec Actual	Method Sampling Date Extraction / Preparation Preparation Holding Times Eval Date Rec Actual	Method Sampling Date Extraction / Preparation Preparation Holding Times Eval Analysis Date Date Rec Actual	Method Sampling Date Extraction / Preparation Analysis Date Analysis Date Preparation Date Rec Actual Eval Analysis Date Holding Rec	Method Sampling Date Extraction / Preparation Analysis Preparation Holding Times Eval Analysis Date Holding Times Date Rec Actual Analysis Date Holding Times Rec Actual

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : VA22C1692

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Air Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Analytical Methods Method QC Lot # QC Regular Actual Expected Evaluation Laboratory Duplicates (DUP) Fluoride by IC (Impinger, mg/sample) 652439 4 25.0 5.0 E248.F Laboratory Control Samples (LCS) Fluoride by IC (Impinger, mg/sample) 652439 1 4 25.0 5.0 E248.F Method Blanks (MB) Fluoride by IC (Impinger, mg/sample) 652439 E248.F 1 4 25.0 5.0 Matrix Spikes (MS) Fluoride by IC (Impinger, mg/sample) 652439 1 4 25.0 5.0 E248.F

Page : 5 of 5 Work Order : VA22C1692

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Fluoride by IC (Impinger, mg/sample)	E248.F Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation of Anions for IC (Impinger)	EP248 Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.

QUALITY CONTROL REPORT

Work Order :VA22C1692

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone :604 881 2582

Project : Metro Vancouver WTE

PO :HF C-O-C number

Sampler : A. Lanfranco

Site

Quote number : Standing Offer

No. of samples received No. of samples analysed : 1 Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address :8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone :778-370-3279

Date Samples Received :12-Sep-2022 11:20 **Date Analysis Commenced**

:17-Sep-2022

:21-Sep-2022 09:51 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories **Position** Laboratory Department

Lindsay Gung Supervisor - Water Chemistry Vancouver Inorganics, Burnaby, British Columbia Page : 2 of 3
Work Order : VA22C1692

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Air	b-Matrix: Air						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Anions and Nutrients (QC Lot: 652439)													
VA22C1691-001	Anonymous	fluoride	16984-48-8	E248.F	0.0185	mg/sample	<18.5 µg/sample	<0.0185	0	Diff <2x LOR			
		volume, impinger		EP248	0.1	mL	370	370		Diff <2x LOR			

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Air

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 65243	39)					
fluoride	16984-48-8	E248.F	0.005	mg/sample	<0.0050	
volume, impinger		EP248	0.1	mL	500	

 Page
 : 3 of 3

 Work Order
 : VA22C1692

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Air					Laboratory Control Sample (LCS) Report					
						Recovery (%)	Recovery Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Anions and Nutrients (QCLot: 652439)	nions and Nutrients (QCLot: 652439)									
fluoride	16984-48-8	E248.F	0.005	mg/sample	0.5 mg/sample	97.8	90.0	110		

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Air						Matrix Spike (MS) Report							
						ike	Recovery (%) Recovery Lii		Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
Anions and Nutrie	ents (QCLot: 652439)												
VA22C1691-002	Anonymous	fluoride	16984-48-8	E248.F	1.80 mg/sample	1.75 mg/sample	103	75.0	125				
		volume, impinger		EP248		mL		0	0				

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1592055

Control Number:

Date Received: Aug 12, 2022 Date Reported: Aug 18, 2022 Report Number: 2777443

ContactCompanyAddressMark LanfrancoA. Lanfranco & Associates#101, 9488

#101, 9488 - 189 Street Surrey, BC V4N 4W7

Phone: (604) 881-2582 Fax: (604) 881-2581

Email: mark.lanfranco@alanfranco.com

DeliveryFormatDeliverablesEmail - Merge DeliverablesPDFCOC / Test ReportEmail - Multiple Deliverables ByPDFCOAEmail - Single DeliverablePDFCOR

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1592055

Control Number:

Date Received: Aug 12, 2022 Date Reported: Aug 18, 2022

Report Number: 2777443

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email - Merge Deliverable	s PDF	COC / Test Report
Email - Multiple Deliverab	les By PDF	COA
Email - Single Deliverable	PDF	COR

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1592055

Control Number:

Date Received: Aug 12, 2022
Date Reported: Aug 18, 2022
Report Number: 2777442

Report Number: 2777443

Reference Number Sample Date Sample Time

Sample Location

1592055-1 Jul 29, 2022 NA 1592055-2 Jul 29, 2022 NA 1592055-3 Jul 29, 2022 NA

Sample Description Unit 1 NH3 Run 1

Run 1 Unit 1 NH3 Run 2

Unit 1 NH3 Run 3

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Ammonium - N	As Tested	μg/L	1750	2380	1120	25
Dilution Factor	As Tested		1.00	1.00	1.00	
Sample Volume	Sample volume	mL	358	398	386	
Ammonium - N		µg/sample	627	948	434	

Approved by:

Carol Nam, Dipl. T.

Quality Assurance Coordinator

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location: LSD:

P.O.: Proj. Acct. code: Lot ID: 1592055

Control Number:

Date Received: Aug 12, 2022
Date Reported: Aug 18, 2022
Report Number: 2777443

Method of Analysis

Method Name Reference Method Date Analysis Location Started

Ammonium in Impingers (VAN) APHA * Automated Phenate Method, 4500-NH3 G Aug 17, 2022 Element Edmonton - Roper

Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

• olomont	18 TO AS	Invoice To	10-15-	1 18		3 10	Report	То		19	1		Ad	ddit	iona	l Re	eport	s to)	
elemenť	Company:	A. Lanfranco & Associ	iates Inc.		Company:			SAME			1) Nar	ne:							
www.Element.com	Address:	101-9488 189 St	reet		Address:						E	-mail	l:							
Project Information		Surrey BC, V4N	4W7								2) Nar	ne:							
Project ID: Metro Vancouver WTE	Attention:				Attention:						E	-mail	l:							
Project Name: NH ₃ Samples	Phone:	604-881-2582	2		Phone:									Sa	mple	e Cu	ıstod	y		
Project Location:	Cell:				Cell:						s	ampl	led by	/ :						
Legal Location:	Fax:				Fax:						С	ompa	any:							
PO/AFE#:	E-mail: <u>m</u>	ark.lanfranco@alan	franco.	com	E-mail 1:							Lau	uthor	ize	Elem	ent	to pro	ceec	d with	n
Proj. Acct. Code:	Agreement ID:				E-mail 2:												on th			- 1
Quote #:	Copy of Report:	YES/I	NO		Copy of Invo	ice:		YES / NO			s	ignat	ture:							
			Rep	port R	Results		Requirem	ents			D	ate/T	Γime:							
☐ Same Day (200%) ☐ Next Day/Two Day (100%) ☐ Three or Four Days (50%) ☑ 5 to 7 Days (Regular TAT) Date Required	default to a 100% and turn around tim the lab prior to sub not all samples req in the spo	requested, turn around will RUSH priority, with pricing le to match. Please contact omitting RUSH samples. If uire RUSH, please indicate ecial instructions.	☐ O	Online [ax [Excel	□ AE	Other (list b	BCCSR	of Containers				[want]	A Section Sect	total and the second	22	5:07	planter.		
Special Instructions/Comments	(please include co	ontact information includi	ng phone	e numbe	er if different t	from ab	ove).		ē											
	Please report μ	g/sample and volumes +							Numb	NH3										
Site I.D.	Sample Descrip	tion	Dep start in cm	end	Date/Tir sample		Matrix	Sampling method			(√ re			ests sam		ove s bel	ow)		
1	Unit 1 NH₃ Ru	ın 1		n	29-Jul-	22			1	√		1								
2	Unit 1 NH ₃ Ru	ın 2			29-Jul-	22			1	√		1	0,0							
3	Unit 1 NH₃ Ru	ın 3			29-Jul-	-22			1	V	9						138			
4																				
5							1													
6												3								
7																				
9																				
10																_				
11									_			-				_	100		\vdash	
12									L			-		L		_				
13														-		-			\vdash	
14								-					25/2	-		-			\vdash	
Please indicate any potential Submission of this form acknowledges accterms and conditions (https://www.element	eptance of Elen	nent's Standard of			ot: 1592	2055	COC		re	Temp ceive	o. ed: Q Metho	2.1 od:	°C	Da	te/Tim	ne st	amp:			
Page of Control # ED 120-005					ot: 1597				Wa Re	aybill: ceive	_ d by:			11						\dashv

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

NH3 Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1586771

Control Number:

Date Received: Jul 21, 2022 Date Reported: Jul 27, 2022

Report Number: 2769980

Reference Number Sample Date Sample Time

1586771-1 Jul 19, 2022 NA

Stack Samples

1586771-2 Jul 19, 2022 NA

1586771-3 Jul 19, 2022

NA

Sample Location

Sample Description Unit 2 NH3 Run 1/ 25.3 °C

Matrix

Unit 2 NH3 Run 2/ 25.3 °C

Stack Samples

Unit 2 NH3 Run 3 / 25.3 °C Stack Samples

	Units	Results	Results	Results	Nominal Detection Limit
					_
As Tested	μg/L	111	446	298	25
As Tested		1.00	1.00	1.00	
Sample volume	mL	277	288	300	
	μg/sample	30.7	128	89.4	
	As Tested	As Tested μg/L As Tested Sample volume mL	As Tested µg/L 111 As Tested 1.00 Sample volume mL 277	As Tested μg/L 111 446 As Tested 1.00 1.00 Sample volume mL 277 288	As Tested μg/L 111 446 298 As Tested 1.00 1.00 1.00 Sample volume mL 277 288 300

Approved by:

Max Hewitt

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1586771

Control Number:

Date Received: Jul 21, 2022 Date Reported: Jul 27, 2022 Report Number: 2769980

Method of Analysis

Method Name Reference Method Date Analysis Location Started

Ammonium in Impingers (VAN) APHA * Automated Phenate Method, 4500-NH3 G Jul 22, 2022 Element Edmonton - Roper

Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1598454

Control Number:

Date Received: Sep 12, 2022 Date Reported: Sep 16, 2022

Report Number: 2786409

Contact	Company		Address							
Mark Lanfranco	A. Lanfran	co & Associates	#101, 9488 - 189 Street							
			Surrey, BC V4N 4W7							
			Phone: (604) 881-2582 Fax: (604) 881-2581							
			Email: mark.lanfranco@alanfranco.com							
Delivery		<u>Format</u>	<u>Deliverables</u>							
Email - Multiple Deliveral	oles By Lot	PDF	COC / COA							
Email - Multiple Deliveral	oles By Lot	PDF	COC / Test Report							

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

NH3 Samples Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1598454

Control Number:

Date Received: Sep 12, 2022 Date Reported: Sep 16, 2022

Report Number: 2786409

Reference Number Sample Date Sample Time

1598454-1 Sep 08, 2022 NA

1598454-2 Sep 08, 2022 NA

1598454-3 Sep 08, 2022 NA

Sample Location

Sample Description Unit 3 NH3 Run 1/ 23.1 °C

Unit 3 NH3 Run 2 / 23.1 °C

Unit 3 NH3 Run 3 / 23.1 °C

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						_
Ammonium - N	As Tested	μg/L	3280	3480	3200	25
Dilution Factor	As Tested		1.00	1.00	1.00	
Sample Volume	Sample volume	mL	352	346	302	
Ammonium - N		μg/sample	1160	1200	967	

Approved by:

Abhishek Suryawanshi

Operations Manager

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1598454

Road

Control Number:

Date Received: Sep 12, 2022 Date Reported: Sep 16, 2022 Report Number: 2786409

Method of Analysis

Method Name Reference Method Date Analysis Location Started

Ammonium in Impingers (VAN) APHA * Automated Phenate Method, 4500-NH3 G Sep 16, 2022 Element Edmonton - Roper

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1592056

Control Number:

Date Received: Aug 12, 2022
Date Reported: Aug 18, 2022
Report Number: 2777444

Report Number: 2777444

Contact	Company	Address					
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street					
		Surrey, BC V4N 4W7					
		Phone: (604) 881-2582 Fax: (604) 881-2581					
		Email: mark.lanfranco@alanfranco.com					
Delivery	<u>Format</u>	<u>Deliverables</u>					
Email - Merge Deliverables	PDF	COC / Test Report					
Email - Multiple Deliverable	es By PDF	COA					
Email - Single Deliverable	PDF	COR					

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1592056

Control Number:

Date Received: Aug 12, 2022
Date Reported: Aug 18, 2022
Report Number: 2777444

Report Number: 2777444

Reference Number

Sample Date
Sample Time

1592056-1 Jul 29, 2022

NA

Sample Location

Sample Description Unit 1 NH3 Blank

Matrix Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						_
Ammonium - N	As Tested	μg/L	305			25
Dilution Factor	As Tested		1.00			
Sample Volume	Sample volume	mL	266			
Ammonium - N		μg/sample	81.1			

Approved by:

Carol Nam, Dipl. T.

Quality Assurance Coordinator

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By:

Attn: Missy

Company:

Project ID: Metro Vancouver WTE

NH3 Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1592056

Control Number:

Date Received: Aug 12, 2022 Date Reported: Aug 18, 2022

Report Number: 2777444

Method of Analysis

Method Name Method Reference Date Analysis Location Started

Ammonium in Impingers (VAN) **APHA** * Automated Phenate Method, 4500-NH3 G Aug 17, 2022 Element Edmonton - Roper

Road

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1586774

Control Number:

Date Received: Jul 21, 2022 Date Reported: Jul 27, 2022 Report Number: 2769983

Contact Company Address

Mark Lanfranco A. Lanfranco & Associates #101, 9488 - 189 Street

Surrey, BC V4N 4W7

Phone: (604) 881-2582 Fax: (604) 881-2581

Email: mark.lanfranco@alanfranco.com

DeliveryFormatDeliverablesEmail - Merge DeliverablesPDFCOC / Test ReportEmail - Multiple Deliverables ByPDFCOAEmail - Single DeliverablePDFCOR

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1586774

Control Number:

Date Received: Jul 21, 2022 Date Reported: Jul 27, 2022 Report Number: 2769983

Reference Number 1586774-1

Sample Date Jul 19, 2022 **Sample Time** NA

Sample Location

Sample Description Unit 2 NH3 Blank /

25.3 °C

Matrix Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						
Ammonium - N	As Tested	μg/L	27			25
Dilution Factor	As Tested		1.00			
Sample Volume	Sample volume	mL	300			
Ammonium - N		µg/sample	8.1			

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Sampled By: Company:

Attn: Missy

Project ID: Metro Vancouver WTE

Project Name: NH3 Blanks
Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1586774

Control Number:

Date Received: Jul 21, 2022 Date Reported: Jul 27, 2022 Report Number: 2769983

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Ammonium in Impingers (VAN)	АРНА	* Automated Phenate Method, 4500-NH3 G	Jul 22, 2022	Element Edmonton - Roper

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

NH3 Blank Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1598457

Control Number:

Date Received: Sep 12, 2022 Date Reported: Sep 16, 2022

Report Number: 2786412

Contact	Company		Address				
Mark Lanfranco	A. Lanfranco & Associates		#101, 9488 - 189 Street				
			Surrey, BC V4N 4W7				
			Phone: (604) 881-2582 Fax: (604) 881-2581				
			Email: mark.lanfranco@alanfranco.com				
<u>Delivery</u> <u>Format</u>		<u>Format</u>	<u>Deliverables</u>				
Email - Multiple Deliverables By Lot PDF		PDF	COC / COA				
Email - Multiple Deliverables By Lot		PDF	COC / Test Report				

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

NH3 Blank Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1598457

Control Number:

Date Received: Sep 12, 2022 Date Reported: Sep 16, 2022

Report Number: 2786412

Reference Number 1598457-1

Sample Date Sample Time

Sep 08, 2022 NA

Sample Location **Sample Description** Unit 3 NH3 Blank /

23.1 °C

Stack Samples Matrix

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality						_
Ammonium - N	As Tested	μg/L	246			25
Dilution Factor	As Tested		1.00			
Sample Volume	Sample volume	mL	212			
Ammonium - N		μg/sample	52.2			

Approved by:

Abhishek Suryawanshi

Operations Manager

Element #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: NH3 Blank

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1598457

Control Number:

Date Received: Sep 12, 2022
Date Reported: Sep 16, 2022
Report Number: 2786412

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Ammonium in Impingers (VAN)	APHA	* Automated Phenate Method, 4500-NH3 G	Sep 16, 2022	Element Edmonton - Roper

* Reference Method Modified

References

APHA Standard Methods for the Examination of Water and Wastewater

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

APPENDIX - C COMPUTER GENERATED RESULTS

Client: Metro Vancouver Date: 28-Jul-22

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time:** 09:26 - 11:28

Concentrations:

Particulate 0.24 mg/dscm 0.00010 gr/dscf

0.13 mg/Acm 0.00006 gr/Acf

Emission Rates:

Particulate 0.017 Kg/hr 0.038 lb/hr

Flue Gas Characteristics:

Flow 1215 dscm/min 42899 dscf/min

 20.25 dscm/sec
 715 dscf/sec

 2145 Acm/min
 75766 Acf/min

Velocity 14.039 m/sec 46.06 f/sec

Temperature 154.1 oC 309.4 oF

Moisture 13.7 %

Gas Analysis 10.3 % O2

9.8 % CO2

29.970 Mol. Wt (g/gmole) Dry 28.333 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7592 dscm 97.443 dscf

Sample Time 120.0 minutes Isokineticity 102.1 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client:Metro VancouverDate:28-Jul-22

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

 Source:
 Unit 1
 Run Time:
 11:10 - 13:15

Control Unit (Y)	1.0555	Collection:		Gas Analys	sis (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.3053	Filter (grams) 0.00005		CO2	02	Impinger 1	164.0
Pitot Factor	0.8511	Washings (grams) 0.00060	Traverse 1	9.75	10.25	Impinger 2	110.0
Baro. Press. (in. Hg)	30.00		Traverse 2	9.75	10.25	Impinger 3	24.0
Static Press. (in. H20)	-19.00	Total (grams) 0.00065				Impinger 4	8.0
Stack Height (ft)	30					Impinger 5	3.0
Stack Diameter (in.)	70.90					Impinger 6	2.0
Stack Area (sq.ft.)	27.417			9.75	10.25	Gel	17.0
Minutes Per Reading	5.0						
Minutes Per Point	5.0					Gain (grams)	328.0

					Dry Gas	Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Traverse 1	0.0	234.350								
1	5.0	238.060	0.36	1.93	93	93	5	310	1.5	102.6
2	10.0	241.880	0.38	2.03	94	94	5	308	4.7	102.5
3	15.0	245.690	0.38	2.03	92	92	5	310	8.4	102.8
4	20.0	249.390	0.36	1.93	93	93	5	310	12.5	102.3
5	25.0	253.300	0.40	2.14	92	92	6	310	17.7	102.8
6	30.0	257.270	0.42	2.25	93	93	6	308	25.2	101.6
7	35.0	261.290	0.42	2.25	93	93	6	310	45.6	103.0
8	40.0	265.380	0.44	2.35	94	94	6	310	53.2	102.2
9	45.0	269.390	0.42	2.25	94	94	7	310	58.3	102.6
10	50.0	273.260	0.40	2.14	95	95	7	311	62.5	101.3
11	55.0	277.410	0.45	2.41	95	95	7	308	66.1	102.3
12	60.0	281.460	0.43	2.30	96	96	7	305	69.4	101.7
Traverse 2	0.0	281.460								
1	5.0	284.950	0.32	1.71	96	96	7	310	1.5	101.8
2	10.0	288.570	0.34	1.82	97	97	7	312	4.7	102.4
3	15.0	292.060	0.32	1.71	97	97	7	312	8.4	101.7
4	20.0	295.550	0.32	1.71	97	97	7	312	12.5	101.7
5	25.0	299.360	0.38	2.03	98	98	7	312	17.7	101.8
6	30.0	303.280	0.40	2.14	98	98	7	310	25.2	102.0
7	35.0	307.700	0.50	2.78	98	98	7	310	45.6	103.0
8	40.0	312.260	0.54	2.89	99	99	7	310	53.2	102.1
9	45.0	316.840	0.55	2.94	98	98	8	308	58.3	101.7
10	50.0	321.420	0.55	2.94	99	99	8	308	62.5	101.5
11	55.0	326.080	0.57	3.05	99	99	8	307	66.1	101.4
12	60.0	330.740	0.57	3.05	100	100	8	305	69.4	101.1
	1		l							

Client: Metro Vancouver Date: 28-Jul-22

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 1 **Run Time:** 12:22 - 14:24

Concentrations:

Particulate 0.31 mg/dscm 0.00013 gr/dscf

0.17 mg/Acm 0.00008 gr/Acf

0.28 mg/dscm (@ 11% O2) 0.00012 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.023 Kg/hr 0.050 lb/hr

Flue Gas Characteristics:

Flow 1220 dscm/min 43095 dscf/min

 20.34 dscm/sec
 718 dscf/sec

 2154 Acm/min
 76074 Acf/min

Velocity 14.096 m/sec 46.24 f/sec

Temperature 153.6 oC 308.5 oF

Moisture 13.7 %

Gas Analysis 10.1 % O2

9.6 % CO2

29.945 Mol. Wt (g/gmole) Dry 28.305 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7539 dscm 97.253 dscf

Sample Time 120.0 minutes Isokineticity 101.4 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 28-Jul-22 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 1 Run Time: 12:22 - 14:24 Control Unit (Y) 1.0555 Collection Gas Analysis (Vol. %): Condensate Collection: 0.3053 Filter (grams) 0.00005 9.75 O2 10.00 Impinger 1 Impinger 2 194.0 Nozzle Diameter (in.) Pitot Factor 0.8511 Washings (grams) 0.00080 Baro. Press. (in. Hg) 30.00 Traverse 2 9.50 10.25 Impinger 3 18.0 Total (grams) 0.00085 Static Press. (in. H20) -19.00 Impinger 4 6.0 Stack Height (ft) 30 3.0 Impinger 5 70.90 Stack Diameter (in.) 2.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 15.0 9.63 10 13 Gain (grams) 329 0 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 5.0 331.400 102.1 0.32 1.71 94 94 309 1.5 334.890 10.0 338.540 0.35 1.87 94 94 310 102.2 3 15.0 342,460 0.40 2.14 95 95 310 8.4 102.5 20.0 25.0 4 346.460 0.42 2.25 96 96 309 12.5 101.9 2.14 17.7 350.380 0.40 95 309 95 102.5 30.0 354.290 0.40 2.14 309 102.0 35.0 358.320).42 2.25 308 45.6 102.6 40.0 362.300 0.42 308 53.2 101.1 45.0 50.0 55.0 9 366.440 0.45 2.41 307 58.3 101.6 10 370.670 0.47 2.51 98 307 62.5 101.4 374.590 2.14 98 11 0.40 98 306 66.1 101.7 6 12 60.0 378.400 0.38 2.03 99 99 6 306 69.4 101.2 Traverse 2 0.0 5.0 378.400 382.380 0.42 308 100.8 2.25 2.14 10.0 386.360 0.42 99 99 308 4.7 100.8 100 100 15.0 310 390.270 0.40 8.4 101.4 3 20.0 394.050 0.38 2.03 100 100 310 100.5 5 25.0 397.720 0.35 1.87 100 100 309 17.7 101.6 6 30.0 401.220 0.32 1.71 101 101 310 25.2 101.2 35.0 405.590 0.50 2.68 101 45.6 101.3 101 310 8 40.0 410.210 0.56 3.00 102 102 310 101.1 45.0 9 414.920 0.58 3.10 102 102 309 58.3 101.2 50.0 419.740 0.61 103 309 103 62.5 100.9 10 3.26 55.0 60.0 424.100 0.50 2.68 103 103 308 66.1 100.6 428.090 2.25 305 12 0.42 103 103 69.4 100.1 Average: 0.429 2.294 98.7 98.7 6.0 308.5 101.4

Client: Metro Vancouver Date: 29-Jul-22

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 1 **Run Time:** 08:50 - 10:53

Concentrations:

Particulate0.2 mg/dscm0.0001 gr/dscf

0.1 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.013 Kg/hr 0.029 lb/hr

Flue Gas Characteristics:

Flow 1247 dscm/min 44025 dscf/min

 20.78 dscm/sec
 734 dscf/sec

 2235 Acm/min
 78934 Acf/min

Velocity 14.626 m/sec 47.98 f/sec

Temperature 155.9 oC 312.7 oF

Moisture 14.5 %

Gas Analysis 10.0 % O2

9.8 % CO2

29.960 Mol. Wt (g/gmole) Dry 28.220 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.8577 dscm 100.919 dscf

Sample Time 120.0 minutes Isokineticity 103.0 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 29-Jul-22 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 1 Run Time: 08:50 - 10:53 Control Unit (Y) 1.0555 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3053 Filter (grams) 0.00000 9.50 O2 10.25 Impinger 1 Impinger 2 186.0 Pitot Factor 0.8511 Washings (grams) 0.00050 120.0 Baro. Press. (in. Hg) 30.00 Traverse 2 10.00 9.75 Impinger 3 26.0 Total (grams) 0.00050 Static Press. (in. H20) -19.25 Impinger 4 6.0 4.0 Stack Height (ft) 30 Impinger 5 2.0 Stack Diameter (in.) 70.90 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 21.0 9 75 10 00 Gain (grams) 365.0 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Time Dry Gas Meter Pitot ^P Traverse / Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 0.0 428.900 103.9 0.34 1.30 90 90 312 1.5 5.0 432,500 310 10.0 436.320 0.38 2.03 92 4.7 103.9 92 3 15.0 439.940 0.34 1.82 92 92 8.4 104.0 311 310 4 20.0 443,660 0.36 1.93 93 12.5 103.8 447.370 93 17.7 25.0 0.36 1.30 93 103.3 30.0 451.190 0.38 2.03 94 310 25.2 103.5 35.0 456.060 0.62 3.32 95 45.6 103.6 40.0 460.990 0.64 3.42 53.2 103.1 45.0 466.000 0.66 3.53 96 313 58.3 103.2 10 50.0 55.0 470,940 0.64 3.42 96 96 313 62.5 103.3 475.660 3.10 0.58 96 314 66.1 103.7 11 96 6 12 60.0 479.890 0.47 2.51 97 97 6 314 69.4 102.9 Traverse 2 479.890 0.0 484.120 0.47 2.51 97 102.9 315 315 10.0 488.440 0.49 2.62 98 98 98 4.7 102.9 98 15.0 492.620 0.46 2.46 8.4 102.7 20.0 496.790 0.44 2.35 12.5 104.7 5 25.0 500.800 0.44 2.35 98 98 315 17.7 100.7 6 30.0 504.890 0.44 2.35 99 99 6 315 25.2 102.5 509.260 0.50 2.68 45.6 102.8 35.0 40.0 513.770 0.53 2.84 100 100 314 53.2 102.9 313 312 9 45.0 517,790 0.42 2.25 100 100 58.3 102.8 101 10 50.0 521.580 0.38 2.03 101 101.6 62.5 55.0 525.290 0.36 1.93 100 100 312 66.1 102.3 60.0 528.840 1.77 310 101.9 12 0.33 101 101 69.4

96.6

96.6

5.7

0.460

2.410

312.7

103.0

Average:

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 1

Sample Type: HF

Sample Type: Parameter	HF	Test 1	Test 2	Test 3	
Test Date		29-Jul-22	29-Jul-22	29-Jul-22	
Test Time		09:24 - 10:24	10:42 - 11:42	11:54 - 12:54	
Test Duration	(min.)	60	60	60	
Baro. Press.	(in. Hg)	29.84	29.84	29.84	
DGM Factor	(Y)	1.0167	1.0167	1.0167	
Initial Reading	(m ³)	65.139	66.459	67.775	
Final Reading	(m ³)	66.447	67.767	69.209	
Temp. Outlet	(Avg. oF)	94.0	108.0	116.0	
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50	
Gas Volume	(Sm³)	1.27	1.23	1.33	
HF	(mg)	0.012	0.003	0.003	
Oxygen	(Vol. %)	10.1	10.1	10.0	
HF	(mg/Sm³)	0.009	0.002	0.002	
HF	(mg/Sm ³ @ 11% O2)	0.008	0.002	0.002	
Moisture	(Vol. %)	13.7	13.7	14.5	

29.92

Tstd. (oF) 68 Pstd. (in. Hg)

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 1

Sample Type: NH₃

Sample Type: Parameter	NH ₃	Test 1	Test 2	Test 3
Test Date Test Time		29-Jul-22 09:24 - 10:24	29-Jul-22 10:42 - 11:42	29-Jul-22 11:54 - 12:54
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	29.84	29.84	29.84
DGM Factor	(Y)	1.0275	1.0275 275	1.0275
Initial Reading	(m ³)	216.954	217.297	217.780
Final Reading	(m ³)	217.292	217.775	218.248
Temp. Outlet	(Avg. oF)	91.0	105.0	113.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.33	0.46	0.44
NH ₃	(mg)	0.8	1.2	0.5
Oxygen	(Vol. %)	10.1	10.1	10.0
NH ₃	(mg/Sm³)	2.3	2.5	1.2
NH ₃	(mg/Sm ³ @ 11% O2)	2.1	2.3	1.1
Moisture	(Vol. %)	13.7	13.7	14.5

Tstd. (oF) 68 Pstd. (in. Hg) 29.92

Client: Metro Vancouver Date: 18-Jul-22

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 2 **Run Time:** 12:25 - 14:28

Concentrations:

Particulate0.0 mg/dscm0.0000 gr/dscf

0.0 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.003 Kg/hr 0.006 lb/hr

Flue Gas Characteristics:

Flow 1202 dscm/min 42445 dscf/min

 20.03 dscm/sec
 707 dscf/sec

 2088 Acm/min
 73724 Acf/min

Velocity 13.660 m/sec 44.82 f/sec

Temperature 145.7 oC 294.3 oF

Moisture 14.1 %

Gas Analysis 10.4 % O2

9.9 % CO2

29.999 Mol. Wt (g/gmole) Dry 28.303 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.6892 dscm 94.970 dscf

Sample Time 120.0 minutes Isokineticity 100.6 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 18-Jul-22 Run: 1 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) 12:25 - 14:28 Source: Unit 2 Run Time: Control Unit (Y) 0.9883 0.3053 Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) Filter (grams) 0.00005 CO2 10.00 O2 10.25 140.0 Impinger 1 Pitot Factor 0.8511 Washings (grams) 0.00005 Traverse 1 Impinger 2 115.0 Baro. Press. (in. Hg) 30.10 Traverse 2 9.80 10.50 Impinger 3 30.0 Total (grams) 0.00010 Static Press. (in. H20) -19.50 Impinger 4 16.0 Stack Height (ft) 30 Impinger 5 6.0 Stack Diameter (in.) 70.90 4.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 21.3 Minutes Per Reading 9.90 10.38 Gain (grams) 3323 5.0 Minutes Per Point 5.0 Wall Dry Gas Temperature Stack Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 393.332 298 102.0 0.45 2.40 70 1.5 5.0 397.550 401.910 0.48 10.0 2.56 299 102.0 3 15.0 406.090 0.44 2.35 72 300 8.4 101.9 4 20.0 409.920 0.37 1.98 300 12.5 101.8 5 0.34 1.82 17.7 101.5 25.0 413.590 298 30.0 417.260 0.34 1.82 298 25.2 101.3 35.0 421.240 0.40 2.14 295 45.6 101.0 40.0 425.120 0.38 2.03 100.8 45.0 428.990 0.38 2.03 294 58.3 100.5 10 50.0 432.970 0.40 2.14 293 62.5 100.5 0.38 293 11 55.0 436.850 2.03 66.1 100.3 12 60.0 440.620 0.36 1.92 78 290 69.4 99.7 Traverse 2 0.0 440.620 444.500 0.38 290 100.1 5.0 2.03 2 10.0 448.230 0.35 1.87 78 78 292 4.7 100.2 291 15.0 451.840 0.33 1.76 78 8.4 99.8 20.0 455.290 0.30 1.60 290 12.5 99.9 5 25.0 458,750 0.30 1.60 78 78 294 17.7 100.5 6 30.0 462.080 0.28 1.49 79 79 294 25.2 99.9 35.0 466.300 0.45 2.40 45.6 100.0 40.0 471.060 0.57 3.04 79 79 295 100.5 295 9 45.0 475,940 0.60 3.20 80 80 58.3 100.3 50.0 480.600 0.55 2.94 294 62.5 10 80 99.9 55.0 485.260 2.94 2.83 80 80 292 66.1 99.7 60.0 489.840 0.53 290 99.5 12 81 69.4 Average: 0.413 2.205 76.3 76.3 4.0 294.3 100.6

Client: Metro Vancouver Date: 19-Jul-22

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 2 **Run Time:** 09:15 - 11:18

Concentrations:

Particulate 0.34 mg/dscm 0.00015 gr/dscf

0.20 mg/Acm 0.00009 gr/Acf

Emission Rates:

Particulate 0.024 Kg/hr 0.054 lb/hr

Flue Gas Characteristics:

Flow 1204 dscm/min 42504 dscf/min

 20.06 dscm/sec
 708 dscf/sec

 2063 Acm/min
 72849 Acf/min

Velocity 13.498 m/sec 44.28 f/sec

Temperature 137.5 oC 279.6 oF

Moisture 14.9 %

Gas Analysis 10.6 % O2

9.0 % CO2

29.865 Mol. Wt (g/gmole) Dry 28.102 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5144 dscm 88.795 dscf

Sample Time 120.0 minutes Isokineticity 99.7 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 19-Jul-22 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 2 Run Time: 09:15 - 11:18 Control Unit (Y) 0.9883 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3053 Filter (grams) 0.00005 9.25 O2 10.25 194.0 Impinger 1 Pitot Factor 0.8511 Washings (grams) 0.00080 Traverse 1 Impinger 2 Baro. Press. (in. Hg) 30.12 Traverse 2 8.75 11.00 Impinger 3 22.0 -19.00 Total (grams) 0.00085 Static Press. (in. H20) Impinger 4 8.0 Stack Height (ft) 30.16 3.0 Impinger 5 Stack Diameter (in.) 70.90 Impinger 6 2.0 27.417 Stack Area (sq.ft.) Gel 16.2 9.00 10.63 Gain (grams) 329 2 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 490.489 1.56 72 99.7 0.30 72 285 1.5 5.0 493.890 72 10.0 0.35 1.82 72 287 99.8 3 15.0 501.010 0.31 1.61 72 287 8.4 99.6 20.0 504.170 0.26 1.35 72 72 72 287 12.5 99.6 17.7 507.390 0.27 1.40 99.7 25.0 288 30.0 510.610 0.27 1.40 289 99.5 35.0 514.630 0.42 2.18 73 289 45.6 99.8 40.0 518.800 53.2 99.9 45.0 523.280 0.52 290 58.3 99.8 10 50.0 527.980 0.57 2.96 76 76 292 62.5 100.0 532.590 292 11 55.0 0.55 2.86 76 76 66.1 99.8 12 60.0 536.780 0.45 2.35 78 78 8 292 69.4 99.8 Traverse 2 0.0 536.780 540.920 2.29 79 80 81 80 81 300 299 10.0 545.330 0.50 2.59 4.7 99.9 15.0 549.570 0.46 2.39 8.4 99.8 20.0 553.480 0.39 2.03 297 99.8 5 25.0 557,140 0.34 1.78 82 82 296 17.7 99.7 6 30.0 560.800 0.34 1.78 82 82 294 25.2 99.6 564.470 0.34 1.79 45.6 99.6 35.0 291 8 40.0 568.620 0.44 2.32 83 83 291 53.2 99.0 83 9 45.0 572.910 0.46 2.43 83 290 58.3 100.0 577.050 83 290 290 290 0.43 83 10 50.0 2.27 62.5 99.8 11 55.0 581.280 0.45 2.38 83 83 66.1 99.7 60.0 585.070 1.90 83 83 12 0.36 69.4 99.8 0.403 99.7 Average: 2.103 77.8 77.8 6.3 279.6

Client: Metro Vancouver Date: 19-Jul-22

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 2 **Run Time:** 11:55 - 13:57

Concentrations:

Particulate 0.3 mg/dscm 0.0001 gr/dscf

0.2 mg/Acm 0.0001 gr/Acf

Emission Rates:

Particulate 0.02 Kg/hr 0.051 lb/hr

Flue Gas Characteristics:

Flow 1175 dscm/min 41495 dscf/min

 19.58 dscm/sec
 692 dscf/sec

 2011 Acm/min
 71034 Acf/min

Velocity 13.162 m/sec 43.18 f/sec

Temperature 144.4 oC 292.0 oF

Moisture 13.3 %

Gas Analysis 11.0 % O2

8.8 % CO2

29.840 Mol. Wt (g/gmole) Dry 28.263 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.5679 dscm 90.686 dscf

Sample Time 120.0 minutes Isokineticity 98.2 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 19-Jul-22 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: 11:55 - 13:57 Unit 2 Run Time: Source: Control Unit (Y) 0.9883 Collection Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3053 Filter (grams) 0.00005 CO2 8.75 O2 11.25 Impinger 1 Impinger 2 186.0 Pitot Factor 0.8511 Washings (grams) 0.00080 Traverse 1 70.0 Baro. Press. (in. Hg) 30.12 Traverse 2 8.75 10.75 Impinger 3 16.0 Total (grams) 0.0008 Static Press. (in. H20) -19.00 Impinger 4 5.0 Stack Height (ft) 30 2.0 Impinger 5 70.90 Stack Diameter (in.) 1.0 Impinger 6 27.417 16.2 Stack Area (sq.ft.) Gel Minutes Per Reading 8.75 11 00 Gain (grams) 296.2 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Traverse / Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 585.935 79 79 98.1 0.29 1.53 285 1.5 5.0 589.320 10.0 592.860 0.32 2.13 79 79 291 98.2 3 15.0 596.510 0.34 1.67 79 79 293 8.4 98.3 4 20.0 600.320 0.37 1.77 79 79 292 12.5 98.3 80 17.7 604.030 0.35 1.93 80 292 98.3 25.0 30.0 607.790 0.36 1.83 80 80 293 98.2 35.0 611.760 0.40 1.88 291 45.6 98.1 40.0 616.020 0.46 2.10 291 53.2 98.2 45.0 620.640 0.54 2.42 82 82 292 58.3 98.3 10 50.0 625.280 0.54 2.84 83 83 293 62.5 98.7 55.0 629.950 0.55 294 11 2.89 83 83 66.1 98.5 8 12 60.0 634.310 0.48 2.52 83 83 8 294 69.4 98.3 Traverse 2 0.0 634.310 5.0 637.470 1.32 290 98.0 0.25 84 84 296 297 10.0 641.090 0.33 1.73 84 4.7 98.2 84 644.590 15.0 0.31 1.62 8.4 98.0 3 20.0 647.800 0.26 84 84 296 98.0 5 25.0 650.820 0.23 1.21 84 84 295 17.7 98.0 6 30.0 653.710 0.21 1.10 84 84 295 25.2 98.1 35.0 657.440 0.35 1.84 294 45.6 98.2 40.0 661.440 0.40 84 84 290 98.3 9 45.0 665,640 0.44 2.32 85 85 292 58.3 98.4 670.030 0.49 2.61 85 85 287 50.0 10 62.5 11 55.0 674.610 0.52 2.77 2.71 85 85 287 66.1 98.5 60.0 679.140 85 85 287 98.3 12 0.51 69.4 82.5

82.5

3.0

292.0

98.2

0.388

2.009

Average:

Client: Metro Vancouver Jobsite: WTE (Burnaby,B.C)

Source: Unit 2

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date		19-Jul-22	19-Jul-22	19-Jul-22
Test Time		10:23 - 11:23	11:45 - 12:45	13:02 - 14:02
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	30.00	30.00	30.00
DGM Factor	(Y)	1.0305	1.0305	1.0305
Initial Reading	(m ³)	96.213	96.687	97.253
Final Reading	(m ³)	96.683	97.248	97.724
Temp. Outlet	(Avg. oF)	75.0	83.0	86.0
Orifice Press.	(∆H in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.48057	0.56473	0.47199
HF	(mg)	0.003	0.003	0.003
Oxygen	(Vol. %)	10.6	11.0	11.0
HF	(mg/Sm³)	0.005	0.005	0.006
HF	(mg/Sm ³ @ 11% O2)	0.005	0.005	0.006
Moisture (isokinetic)	(Vol. %)	14.9	14.9	13.3

*Wet Basis Calculated on moisture from isokinetic tests 68

Tstd. (oF)

Metro Vancouver

WTE (Burnaby,B.C)

Source: Unit 2

Client:

Jobsite:

Sample Type: NH_3

Parameter	14113	Test 1	Test 2	Test 3	
Test Date		19-Jul-22	19-Jul-22	19-Jul-22	
Test Time		10:23 - 11:23	11:45 - 12:45	13:02 - 14:02	
Test Duration	(min.)	60	60	60	
Baro. Press.	(in. Hg)	30.00	30.00	30.00	
DGM Factor	(Y)	1.0275	1.0275	1.0275	
Initial Reading	(m ³)	215.527	216.019	216.513	
Final Reading	(m ³)	216.015	216.509	216.928	
Temp. Outlet	(Avg. oF)	74.0	83.0	87.0	
Orifice Press.	(∆H in.H2O)	0.50	0.50	0.50	
Gas Volume	(Sm ³)	0.49721	0.49167	0.41360	
NH ₃	(mg)	0.0	0.2	0.1	
Oxygen	(Vol. %)	10.6	11.0	11.0	
NH ₃	(mg/Sm³)	0.1	0.3	0.3	
NH ₃	(mg/Sm ³ @ 11% O2)	0.1	0.3	0.3	
Moisture (isokinetic)	(Vol. %)	14.9	14.9	13.3	

Pstd. (in. Hg)

29.92

Client: Metro Vancouver Date: 7-Sep-22

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 3 **Run Time:** 11:34 - 13:37

Concentrations:

Particulate 4.66 mg/dscm 0.00204 gr/dscf

2.59 mg/Acm 0.00113 gr/Acf

4.08 mg/dscm (@ 11% O2) 0.00178 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.300 Kg/hr 0.662 lb/hr

Flue Gas Characteristics:

Flow 1073 dscm/min 37883 dscf/min

 17.88 dscm/sec
 631 dscf/sec

 1932 Acm/min
 68212 Acf/min

Velocity 12.639 m/sec 41.47 f/sec

Temperature 150.9 oC 303.7 oF

Moisture 16.2 %

Gas Analysis 9.6 % O2

9.4 % CO2

29.883 Mol. Wt (g/gmole) Dry 27.958 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 1.9578 dscm 69.140 dscf

Sample Time 120.0 minutes Isokineticity 91.7 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

 Client:
 Metro Vancouver
 Date:
 7-Sep-22

 Jobsite:
 WTE (Burnaby, B.C)
 Run:
 1 - Particulate / Metals

 Source:
 Unit 3
 Run Time:
 11:34 - 13:37

Control Unit (Y)	0.9962	Collection:		Gas Analys	sis (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.2887	Filter (grams) 0.00803		CO2	O2	Impinger 1	182.0
Pitot Factor	0.8511	Washings (grams) 0.00110	Traverse 1	9.40	9.60	Impinger 2	56.0
Baro. Press. (in. Hg)	30.01		Traverse 2	9.35	9.55	Impinger 3	24.0
Static Press. (in. H20)	-18.00	Total (grams) 0.00913				Impinger 4	6.0
Stack Height (ft)	30					Impinger 5	2.0
Stack Diameter (in.)	70.90					Impinger 6	1.0
Stack Area (sq.ft.)	27.417					Gel	13.0
Minutes Per Reading	5.0			9.38	9.58	Gain (grams)	284.0
Minutes Per Point	5.0						

					Dry Gas	Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Traverse 1	0.0	534.660								
1	5.0	538.170	0.48	2.39	77	77	7	301	1.5	93.0
2	10.0	541.710	0.49	2.44	77	77	7	302	4.7	92.9
3	15.0	545.180	0.47	2.34	77	77	6	302	8.4	92.9
4	20.0	548.690	0.48	2.39	78	78	6	303	12.5	92.9
5	25.0	552.090	0.45	2.24	78	78	6	302	17.7	92.8
6	30.0	555.370	0.42	2.09	78	78	6	303	25.2	92.7
7	35.0	558.100	0.29	1.44	78	78	6	304	45.6	92.8
8	40.0	560.580	0.24	1.19	78	78	6	304	53.2	92.6
9	45.0	562.910	0.21	1.05	79	79	5	303	58.3	92.8
10	50.0	565.290	0.22	1.10	79	79	5	302	62.5	92.5
11	55.0	567.500	0.19	0.95	79	79	5	303	66.1	92.5
12	60.0	569.590	0.17	0.85	79	79	5	303	69.4	92.4
	•	*	•		•		•		•	•
Traverse 2	0.0	569.590								
1	5.0	572.180	0.26	1.30	80	80	5	304	1.5	92.6
2	10.0	574.720	0.25	1.25	80	80	5	305	4.7	92.7
3	15.0	577.360	0.27	1.31	80	80	5	306	8.4	92.8
4	20.0	579.850	0.24	1.19	80	80	5	306	12.5	92.8
5	25.0	582.340	0.24	1.20	81	81	5	307	17.7	92.7
6	30.0	584.980	0.27	1.34	81	81	5	307	25.2	92.7
7	35.0	588.510	0.48	2.40	82	82	6	305	45.6	92.9
8	40.0	592.320	0.56	2.80	82	82	6	305	53.2	92.9
9	45.0	595.820	0.47	2.35	82	82	6	304	58.3	93.0
10	50.0	599.430	0.50	2.51	83	83	6	304	62.5	92.8
11	55.0	602.820	0.44	2.21	83	83	6	302	66.1	92.7
12	60.0	605.093	0.36	1.81	83	83	6	302	69.4	68.7
Average:	l		0.352	1.756	79.8	79.8	5.7	303.7		91.7

Client: Metro Vancouver Date: 8-Sep-22

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 3 **Run Time:** 08:20 - 10:23

Concentrations:

Particulate 5.66 mg/dscm 0.00247 gr/dscf

3.04 mg/Acm 0.00133 gr/Acf

5.23 mg/dscm (@ 11% O2) 0.00228 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.350 Kg/hr 0.771 lb/hr

Flue Gas Characteristics:

Flow 1029 dscm/min 36347 dscf/min

 17.15 dscm/sec
 606 dscf/sec

 1920 Acm/min
 67800 Acf/min

Velocity 12.563 m/sec 41.22 f/sec

Temperature 151.1 oC 304.0 oF

Moisture 19.6 %

Gas Analysis 10.2 % O2

9.5 % CO2

29.923 Mol. Wt (g/gmole) Dry 27.592 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 1.9670 dscm 69.463 dscf

Sample Time 120.0 minutes Isokineticity 96.2 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 8-Sep-22 Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals Source: Unit 3 Run Time: 08:20 - 10:23 Control Unit (Y) 0.9962 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.2887 Filter (grams) 0.01084 9.45 Impinger 1 Impinger 2 192.0 Nozzle Diameter (in.) Pitot Factor 0.8511 Washings (grams) 0.00030 122.0 Baro. Press. (in. Hg) 30.18 Traverse 2 9.50 10.10 Impinger 3 24.0 Total (grams) 0.01114 Static Press. (in. H20) -18.00 Impinger 4 6.0 Stack Height (ft) 30 3.0 Impinger 5 70.90 Stack Diameter (in.) 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 10.7 9.48 10 18 Gain (grams) 358 7 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 605.721 0.26 1.26 64 64 305 1.5 99.8 5.0 608.330 10.0 4.7 610.790 0.27 1.31 65 65 306 92.2 3 15.0 613.620 0.33 1.59 65 65 9.5 307 8.4 96.1 4 20.0 616.540 0.35 1.69 65 9.5 307 12.5 96.3 25.0 0.34 17.7 96.1 619.420 1.65 66 66 306 30.0 622.430 0.37 1.80 306 96.2 35.0 626.180 0.57 2.77 68 68 306 45.6 96.6 40.0 629.960 0.58 2.82 308 53.2 45.0 50.0 55.0 9 633.890 0.62 3.03 307 58.3 96.6 10 637.350 0.48 2.35 72 306 62.5 96.3 2.18 303 96.3 11 640.690 0.44 75 75 5.5 66.1 12 60.0 643.620 0.34 1.68 75 75 5.5 304 69.4 96.0 Traverse 2 0.0 5.0 643.620 646.470 0.32 1.59 301 96.1 10.0 649.370 1.64 75 75 6.5 302 4.7 96.3 15.0 75 303 8.4 652.630 0.42 2.08 6.5 96.2 3 20.0 655.780 0.39 1.93 6.5 305 96.2 5 25.0 658.900 0.38 1.88 78 78 306 17.7 96.4 6 30.0 662.100 0.40 1.99 79 79 6 305 25.2 96.1 96.2 35.0 664.590 0.24 302 45.6 1.20 8 40.0 666.870 0.20 1.00 80 80 301 53.2 45.0 9 669.030 0.18 0.90 80 80 301 58.3 96.0 50.0 96.1 671.070 0.16 10 0.80 80 300 62.5 80 55.0 60.0 673.170 0.17 0.85 81 9.5 300 66.1 95.8 675.270 0.17 9.5 95.8 12 0.85 81 81 300 69.4

73.4

73.4

7.5

304.0

96.2

0.346

1.702

Average:

Client: Metro Vancouver Date: 8-Sep-22

Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals

Source: Unit 3 **Run Time:** 10:45 - 12:48

Concentrations:

Particulate 5.52 mg/dscm 0.00241 gr/dscf

2.93 mg/Acm 0.00128 gr/Acf

4.86 mg/dscm (@ 11% O2) 0.00212 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.338 Kg/hr 0.744 lb/hr

Flue Gas Characteristics:

Flow 1019 dscm/min 35998 dscf/min

 16.99 dscm/sec
 600 dscf/sec

 1919 Acm/min
 67761 Acf/min

Velocity 12.555 m/sec 41.19 f/sec

Temperature 154.2 oC 309.5 oF

Moisture 19.7 %

Gas Analysis 9.7 % O2

10.1 % CO2

30.002 Mol. Wt (g/gmole) Dry 27.637 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 1.9562 dscm 69.084 dscf

Sample Time 120.0 minutes Isokineticity 96.4 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 8-Sep-22 Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals Source: Unit 3 **Run Time:** 10:45 - 12:48 Control Unit (Y) 0.9962 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.2887 Filter (grams) 0.01020 262.0 Impinger 1 Pitot Factor 0.8511 Washings (grams) 0.00060 Impinger 2 Baro. Press. (in. Hg) 30.18 Traverse 2 10.75 9.10 Impinger 3 16.0 Total (grams) 0.01080 Static Press. (in. H20) -18.00 Impinger 4 5.0 Stack Height (ft) 30 3.0 Impinger 5 70.90 Stack Diameter (in.) Impinger 6 2.0 27.417 Gel Stack Area (sq.ft.) 10.2 10.10 9 65 Gain (grams) 360.2 Minutes Per Reading 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 0.0 678.770 1.60 81 81 303 1.5 96.3 5.0 0.32 10.0 681.720 0.34 1.69 80 80 308 96.3 3 15.0 684.590 0.32 1.59 81 81 310 8.4 96.5 687.800 4 20.0 0.40 1.98 81 81 310 12.5 96.6 5 81 81 310 17.7 96.7 0.38 1.88 25.0 690.930 30.0 694.140 0.40 1.99 310 96.6 35.0 696.680 0.25 1.24 82 82 7.5 310 45.6 96.4 40.0 698.950 0.20 0.99 82 7.5 310 53.2 96.2 45.0 701.170 0.19 0.95 83 83 310 58.3 96.4 10 50.0 703.260 0.17 0.84 82 82 311 311 62.5 96.1 0.17 96.1 11 55.0 705.350 0.84 82 82 66.1 12 60.0 707.380 0.16 0.80 82 82 8 310 69.4 96.2 707.380 Traverse 2 0.0 709.920 0.25 1.24 82 310 96.4 82 83 10.0 712.510 0.26 1.29 82 309 4.7 96.3 15.0 715.390 96.4 0.32 1.60 83 309 8.4 718.400 0.35 1.74 309 12.5 96.4 5 25.0 721,410 0.35 1 74 83 83 309 17.7 96.4 6 30.0 724.460 0.36 1.79 83 83 309 25.2 96.3 728.340 0.58 309 45.6 96.8 35.0 2.89 40.0 732.220 0.58 2.89 84 84 4.5 53.2 96.7

84

84

84

84

82.4

84

84

84

82.4

310 310

311

311

309.5

4.5

4.5

5.7

58.3

62.5

66.1

69.4

96.7

96.5

96.6

96.5

96.4

9

10

11

12

Average:

45.0

50.0

55.0

60.0

736.230

739.830

743.210

746.224

0.62

0.50

0.44

0.35

0.344

3.09

2.49

2.19

1.74

1.712

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 3

Sample Type:

HF

Parameter		Test 1	Test 2	Test 3
Test Date		8-Sep-22	8-Sep-22	8-Sep-22
Test Time		09:07-10:07	10:31-11:31	11:42-12:42
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	30.18	30.18	30.18
DGM Factor	(Y)	1.0013	1.0013	1.0013
Initial Reading	(m ³)	535.437	536.002	536.615
Final Reading	(m ³)	535.993	536.610	537.147
Temp. Outlet	(Avg. oF)	76.0	84.7	84.7
Orifice Press.	(∆H in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.55345	0.59636	0.52186
HF	(mg)	0.010	0.009	0.009
Oxygen	(Vol. %)	10.2	10.2	9.7
HF	(mg/Sm³)	0.017	0.015	0.017
HF	(mg/Sm ³ @ 11% O2)	0.016	0.014	0.015
Moisture (isokinetic)	(Vol. %)	19.6	19.6	19.7

*Wet Basis Calculated on moisture from isokinetic tests

Tstd. (oF)

68

Pstd. (in. Hg)

29.92

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 3

Sample Type:

 NH_3

Parameter	INIT3	Test 1	Test 2	Test 3	
Test Date		8-Sep-22	8-Sep-22	8-Sep-22	
Test Time		09:07-10:07	10:31-11:31	11:42-12:42	
Test Duration	(min.)	60	60	60	
Baro. Press.	(in. Hg)	30.13	30.13	30.13	
DGM Factor	(Y)	1.0275	1.0275	1.0275	
Initial Reading	(m ³)	221.273	221.747	222.249	
Final Reading	(m ³)	221.742	222.245	222.742	
Temp. Outlet	(Avg. oF)	76.3	84.0	85.3	
Orifice Press.	(∆H in.H2O)	0.50	0.50	0.50	
Gas Volume	(Sm ³)	0.47781	0.50070	0.49449	
NH ₃	(mg)	1.4	1.5	1.2	
Oxygen	(Vol. %)	10.2	10.2	9.7	
NH ₃	(mg/Sm³)	3.0	2.9	2.4	
NH ₃	(mg/Sm ³ @ 11% O2)	2.7	2.7	2.1	
Moisture (isokinetic)	(Vol. %)	19.6	19.6	19.7	

*Wet Basis Calculated on moisture from isokinetic tests

Tstd. (oF)

68

Pstd. (in. Hg)

29.92

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Parameter: N₂O

Molecular Weight: 44.00 grams/mol Reportable Detection

Lab Detection Limit: 0.1 ppm Limit: 0.18 mg/Sm³

Sample ID	Date	Time	N₂O ppm	N₂O mg/Sm³	N₂O mg/Sm³ @ 11% O₂
			ррпп	mg/Sm	111g/0111 @ 1170 02
Unit 1 - Run 1	2022/07/19	09:20-10:20	0.9	1.6	1.6
Unit 1 - Run 2	2022/07/19	10:30-11:30	0.6	1.1	1.1
Unit 1 - Run 3	2022/07/19	11:35-12:35	1.5	2.7	2.7
Average					1.8
Unit 1 - Run 1	2022/07/28	09:40-10:40	1.4	2.6	2.7
Unit 2 - Run 2	2022/07/28	10:42-11:42	0.8	1.5	1.4
Unit 2 - Run 3	2022/07/28	11:45-12:45	1.0	1.8	1.6
Average					1.9
Unit 3 - Run 1	2022/09/08	09:00-10:00	1.3	2.4	2.5
Unit 3 - Run 2	2022/09/08	10:05-11:05	1.2	2.2	2.1
Unit 3 - Run 3	2022/09/08	11:10-12:10	1.2	2.2	2.3
Average					2.3

Appendix B - Particulate Analysis

	•	
HIII Dr	('AI	lection:
1 1116	OUI	i c ction.

Filter Collection: Test #	Initial	Final	Net Diference	Blank
	(grams)	(grams)	(grams)	Adjusted (grams)
Unit 1 Blank	0.4414	0.4417	0.0003	
Unit 1 Run 1	0.4508	0.4506	-0.0003	ND
Unit 1 Run 2	0.4436	0.4434	-0.0002	ND
Unit 1 Run 3	0.4470	0.4473	0.0003	0.0000
Unit 2 Blank	0.4475	0.4476	0.0001	
Unit 2 Run 1	0.4429	0.4425	-0.0004	ND
Unit 2 Run 2	0.4524	0.4518	-0.0006	ND
Unit 2 Run 3	0.4497	0.4491	-0.0006	ND
Unit 3 Blank	0.4407	0.4411	0.0004	
Unit 3 Run 1	0.4451	0.4536	0.0084	0.0080
Unit 3 Run 2	0.4430	0.4542	0.0112	0.0108
Unit 3 Run 3	0.4453	0.4559	0.0106	0.0102
Front Half Washings	:			
Front Half Washings Test #	: Initial	Final	Net	Blank
•		Final	Net Diference	Adjusted
•		Final (grams)		
•	Initial		Diference	Adjusted
Test #	Initial (grams)	(grams)	Diference (grams)	Adjusted
Test # Unit 1 Blank	Initial (grams) 121.3324	(grams) 121.3315	Diference (grams) -0.0009	Adjusted (grams)
Test # Unit 1 Blank Unit 1 Run 1	Initial (grams) 121.3324 102.5393	(grams) 121.3315 102.5390	Diference (grams) -0.0009 -0.0003	Adjusted (grams)
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2	Initial (grams) 121.3324 102.5393 119.7641	(grams) 121.3315 102.5390 119.7640	Diference (grams) -0.0009 -0.0003 -0.0001	Adjusted (grams) 0.0006 0.0008
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3	Initial (grams) 121.3324 102.5393 119.7641 97.5825	(grams) 121.3315 102.5390 119.7640 97.5821	-0.0009 -0.0003 -0.0001 -0.0004	Adjusted (grams) 0.0006 0.0008
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1 Unit 2 Run 1	Initial (grams) 121.3324 102.5393 119.7641 97.5825 115.3448 119.9510 92.7527	(grams) 121.3315 102.5390 119.7640 97.5821 115.3442 119.9500 92.7529	Diference (grams) -0.0009 -0.0003 -0.0001 -0.0004 -0.0006 -0.0010 0.0002	Adjusted (grams) 0.0006 0.0008 0.0005 ND 0.0008
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1	Initial (grams) 121.3324 102.5393 119.7641 97.5825 115.3448 119.9510	(grams) 121.3315 102.5390 119.7640 97.5821 115.3442 119.9500	Diference (grams) -0.0009 -0.0003 -0.0001 -0.0004 -0.0006 -0.0010	Adjusted (grams) 0.0006 0.0008 0.0005
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1 Unit 2 Run 1	Initial (grams) 121.3324 102.5393 119.7641 97.5825 115.3448 119.9510 92.7527	(grams) 121.3315 102.5390 119.7640 97.5821 115.3442 119.9500 92.7529	Diference (grams) -0.0009 -0.0003 -0.0001 -0.0004 -0.0006 -0.0010 0.0002	Adjusted (grams) 0.0006 0.0008 0.0005 ND 0.0008
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1 Unit 2 Run 2 Unit 2 Run 3	Initial (grams) 121.3324 102.5393 119.7641 97.5825 115.3448 119.9510 92.7527 117.7450 110.2556 102.6495	(grams) 121.3315 102.5390 119.7640 97.5821 115.3442 119.9500 92.7529 117.7452 110.2560 102.6510	Diference (grams) -0.0009 -0.0003 -0.0001 -0.0004 -0.0006 -0.0010 0.0002 0.0002 0.0004 0.0015	Adjusted (grams) 0.0006 0.0008 0.0005 ND 0.0008 0.0008 0.0008
Test # Unit 1 Blank Unit 1 Run 1 Unit 1 Run 2 Unit 1 Run 3 Unit 2 Blank Unit 2 Run 1 Unit 2 Run 2 Unit 2 Run 3 Unit 3 Blank	Initial (grams) 121.3324 102.5393 119.7641 97.5825 115.3448 119.9510 92.7527 117.7450 110.2556	(grams) 121.3315 102.5390 119.7640 97.5821 115.3442 119.9500 92.7529 117.7452 110.2560	Diference (grams) -0.0009 -0.0003 -0.0001 -0.0004 -0.0006 -0.0010 0.0002 0.0002	Adjusted (grams) 0.0006 0.0008 0.0005 ND 0.0008 0.0008

APPENDIX - D FIELD DATA SHEETS

V6.17 5.352H

SPH.

CLIENT M	0-			NOZZLE /\	WOI	DIAME	ETER, IN. 🎺	3053	IMPINGER	INITIAL	FINAL	TOTAL GAIN
1,00	RO			PROBE	70		Cp ,8=	511	VOLUMES	(mL)	(mL)	(mL)
OURCE U	117 #	-10	1 - 12						Imp. #1	0	164	164
ARAMETER / RUN I	No I Meter	O/Ta	HIC	PORT LENGTH					Imp. #2	100	210	110
ATE	04.28/3	22			ESSURE, IN.	H2O -	1.00		Imp. #3	100	124	24
PERATOR:	100			STACK DIA		70.9	10		lmp. #4	0	1 8	P
ONTROL UNIT	3099	YLOF	55	STACK HE	GHT	30	, ,		lmp. #5	100	103	3
	0, 1,	ΔH@						-11	Imp. #6	100	102	7
AROMETRIC PRES		00		INITIAL LEA		0 00	SOF	2 1	Upstream D	iameters		
SSUMED MOISTUR	RE, Bw	15%		FINAL LEA	K TEST	0 00	201	5"	Downstream	n Diameters		
						10						
Mth Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice AH			Temperature '	°F		Pump Vac.	Fy	rites	
Point and	124 25m	IN. H₂O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
09:26	234.350			Outlet				Exit		Vol. %	Vol. %	
	238.06	36	11.93	93	310	250	250	68	5			
2	241,88	.38	203	94	300				1	10.0	10.0	
3	245.69	138	203	92	310	250	250	68	5	10.0		
4	249 39	:36	1.93	93	310							
5	253.30	40	ZIA	92	30	250	250	68	6			
	257 27	142	225	93	308		1	-00	10			
7	261 29	42	2.25	93		250	250	4	_			
8	36 39	144	235	QZ.	310	1000	100			95	105	
9	269 39	142	2.25	au	310	250	250	66	7	1.0	10.0	
0	273.26	40	DIA	QE	311	20	100	100	7		-	
	277 41	45	241	an	200	250	250	66	7			
10	281 46	43	230	96	200		an	00	1			
			acc	10		 	1	520 556	-			
1	294 95	:32	1771	96	310	250	250	17	7			
2	208,57	3	182	97	32			01	17		-	_
3	292 00	30	1.4	91	20	250	250	68	-	9.5	10.5	
4	205,55	32	127	QI	30	~~	20	100	T	10	10.0	
5	200 25	38	2.03	(10)	310	250	The	16	7			
6	202 25	,40	214	95	30		100	-00	-			
7	201 75	150	278	98	36	350	250	at	7			
3	312.22	LA .	929	00	310	Die	SU	01	-/-		-	
4	216 89	155	391	100	300	250	250	11	93	100	100	
6	32, 20	, Em	294	96	3083		100	600	0	10.0	10.0	
Ĭ -	326 00	157	3.05	aq	307	20	250	11	8			
2 11:28	300 14	157	3.05	100	305	$\sim \nu$	20	66	0			
W 11 (VO	10.4	101	100	100	(1)	+	+					
			1	 		1						
			1	1		1						
			 	 			_					
			-									
			1	<u> </u>			1		1			

A. Lanfranco and Associates Inc.

16.17 5.35AH CH

CLIEN	UM T	e -				MVOL	DIAME	TER, IN.	3053	IMPINGER	INITIAL	FINAL	TOTAL GAIN
COLID					PROBE	te		Cp SF	X	VOLUMES	(mL)	(mL)	(mL)
SOUR		V+ #1	//			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Imp. #1	0	194.	194
	METER/RUNNO 2 METAS/PARTIC			PORT LEN			IN		Imp. #2	100	190	90	
DATE	<u></u>	14, 28/20			STATIC PRESSURE, IN. H2O						100	118	12
OPER		36			STACK DIA	METER	10	90		Imp. #3	0	6	6
CONTI	ROL UNIT	3099	Y 1,05	55	STACK HE	IGHT	3	2/		Imp. #5	100	103	3
			ΔHØ						- 1/	Imp. #6	100	107	7
	METRIC PRES		2,00		INITIAL LE		2.00	30 K) ,	Upstream D	iameters	102	
ASSU	MED MOISTUR	E, Bw	156		FINAL LEA	K TEST 2	500	2015	5"	Downstream	Diameters		
							+1						
5mir	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature '	'F		Pump Vac.	Fy	rites	
Point	12:22	221 1200	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	1
	8.90	331.400			Outlet				Exit		Vol. %	Vol. %	
		334.89	132	1.7	gr.	304	200	250	68	6		t	
2		338.54	.35	187	924	30	1000				10.0	10.0	
3		342 HB	140	254	95	30	10	250	68	/-	,0,0	10.0	
4		346 46	142	225	96	309				0		1	
2		350 38	140	I Q IA	95	209	250	250	67	6			
6		264 29	140	2.14	196	309		100				 	
7		358.31	142	9225	95	308	250	250	66	6		 	
8		362:30	12	225	97	200		100	-00	0	95	10,0	
9		366 44	145	122	97	307	250	250	64	6	1.0	10.0	
10		310,65	47	351	98	307	O.C.						
16		37451	.40		98	306	200	050	62	6			
12		378.40	138	2.03	99	306		000	4			 	
		0.	,	00								-	
h		382.38	.42	225	99	300	250	250	62	I		 	
2		366 36	142	2.25	99	208	~~	122		-/-		-	
3		390,25	.40	274	100	310	250	250	64	7			
4		394.05	138	203	100	310			1	-/-	9.5	10.5	
5		3477	35	1.87	100	309	250	250	BH	7	110	10.0	
6		40122	132	171	101	310			6	- /			
7		405.59	.50	2 138	101	310	250	260	10	6		-	
8		40 21	156	3,00	102	310	CX		60	K			
9		HH 90.	58	3.10	101	2001	050	250	E9	0		-	
6		419 77	61	3,26	163	300	CX	00	21	8	9.5	100	
Th	11 01	424.10	50	268	103	308	250	20	CH	8		10.0	
12	1429	428.00	.72	220	103	200	00	~~	01	0			
6	1101		1600		100								

6.17 535 AH

J.H

CLIENT MUR	The state of the s			NOZZLE	(NNO)	DIAMI	ETER, IN.	3053	IMPINGER	INITIAL	FINAL	TOTAL GAIN	
SOURCE 17	1# +1			PROBE	70		Cp 8	551	VOLUMES		(mL)	(mL)	
PARAMETER / RUN N		15/0	dic	PORT LEN	CTU				Imp. #1	0	186	186	
DATE (2)	710					1100	N 1			Imp. #2 (00 1220)			
PERATOR:					RESSURE, IN		1,25		Imp. #3	100	126	26	
CONTROL UNIT	500	YIME	75	STACK DIA		to.90			Imp. #4	0	1 6 1	6	
	204-1	ΔH@		STACK HE	IGHT	- 50	,		Imp. #5	100	104	4	
AROMETRIC PRESS	SURE, IN. Ha	100		INITIAL LE	AV TECT		7/ 75	174	Imp. #6	100	102	2	
SSUMED MOISTURI		153		FINAL LEA		0,00)4 (0	D	Upstream D				
	,	100		FINAL LEA	V IE91	0,00	201	5	Downstream	n Diameters			
Mir Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH	-		T	NE.						
	75 (42)	IN. H ₂ O	IN. H ₂ O	Dry Gas	Ct. 1	Temperature			Pump Vac.		rites		
Point 08:50	428.900	111, 1120	111, 1120	Outlet	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂		
	420 ha	24	100	90	200		1	Exit		Vol. %	Vol. %		
2	127 30	34	283	90	32	250	250	60	5				
3	439'90	132	783	00	310	250	100	1		0-			
Й	44366	36	163	de	311	150	250	68	5	4.5	105		
5	HA7 27	36	193	d3		100	-	-					
6	45119	138	har s	94	30	250	250	60	5				
7	456 06	162	32	95	310	000	VV	199	-				
8	45009	182	318	dr	33	250	250	68	5				
9	466	166	353	96		0/56	200	18	-				
0	470 94	184	342	95	3/3	250	600	60	6	00			
11.	HANGE	E	310	96	207	250	77	10		9.5	00		
12	479.69	HI	251	07	121	000	250	68	6				
	11101	V 1-7	200		101-1			1					
i	484.12.	47	256	97	314	250	850	68	-				
2	488 HH	1219	10.62	98	314	000	000	60	6		-		
3	49262	146	246	98	35	250	250	11		100	00		
4	49671	1214	335		35	000	200	66	6	100	9.5		
>	500.80	44	225	88	315	250	250	64					
6	GOH 89	LAL	235	99	35	200	200	101	6				
7	509.26	.50	27.72	99	22	250	DED	10	/				
3	51377	153	287	100	34	00	QU.	100	6				
9	517.79	12	225	100	313	200	250	62	/-	100	100		
0	521.50	38	203	101	30	000	200	100	6	10.0	10.0		
	525.29		1.93	100	32	250	250	62	1				
2 10 55	528.81	133	177	101	30	O. C.	200	0	6				
1000			1 1 1	10/	-40			1					
								-					

DH

0,000

Client Source Parameter Date	VWTE 41 4.29,2072	Y Cp Pbar Q	LM - 0 1.0/67 1.0/67 1.0/67 1.0/67 1.0/67 1.0/67	Client Source Parameter Date	MINTE VIA 1 NH2 Jul. 29,2022	Y Cp Pbar Operator	1	1027 tatic CLM3
Leak Check	Run 1	Run 2	Run 3	Leak Check	Run 1	Ru		Run 3

Leak Check	Run 1	Run 2	Run 3	Leak Check	Run 1	Run 2
Initial	0.000	6.0001	0.0001	Initial	0.0001	0.0001
Final	0.000)	0.000	0.000	Final	0.0001	0.0001

Test	Time	DGM Volume	Tempera	ture (°F)	Imp.	^	∆P IN. H₂	0
No.	(hhmm)	(cu ft) / (m³)	DGM Outlet	Stack	Vol. (mL)	R1	R2	R3
	924	65,1385	40			- 11	112	110
1								
•								
	1024	66,4473	108					
	10/17	111100						
	109 F	66.4588	101					
2								
	1140	177170	1150					
	1177	67,7673	115					
	1154	67. WM 774	1112					
	1152 1	V 11 4010 1 / S						
3								
		7)						
	1254	69,2067	120					
		10						
					-			
					-			

Test	Time	DGM Volume		ature (°F)	lmp.	_	P IN. H₂¹	0
No.	(hhmm)	(cu ft) / (m ³)	DGM Outlet	Stack	Vol. (mL)	R1	R2	
	924	216.9539	80	BO		KI	R2	R3
						1		
1								
	1024	217,2915	102					
	1042	217.2469	100					
2								
2								
	1142	217,7748	110					
	1154	217.7797	108					
3								
	1254	118.1483	118					

CLIENT AA	RD			NOZZLE /	mol	DIAM	ETER, IN.	3053	IMPINGER	INITIAL	FINAL	TOTAL GAIN
SOURCE /				PROBE	7c		Cp 85	51	VOLUMES		(mL)	(mL)
PARAMETER / R	2/14/2	10							Imp. #1 0 /40		140	
				PORT LEN			1		lmp. #2	100	2/3	113.
OPERATOR:	RATOR:				RESSURE, IN	. H2O ~_/	1.50		Imp. #3	100	130	3.0
CONTROL UNIT		v Green	2	STACK DIA		13	.90"		Imp. #4	0	16	76
OOM TROE DIMIT	ALI	Υ 988 ΔH@	\supset	STACK HE	IGHT		50		Imp. #5	100	100	6
BAROMETRIC PI	RESSURE, IN. Hg 🌏	_		INUTIAL LE	ALC TEOP				Imp. #6	100	104	4
ASSUMED MOIS		23		FINAL LEA		0.00%	015"		Upstream D			
NOCONIED MOIO	TORE, BW	56		FINAL LEA	K IEST	2 002	015		Downstream	n Diameters		
Clock Ti	ne Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature	о <u>г</u>		Down Voc	Г.		
Point O. O.		IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Touringen	Pump Vac.		rites	
12.2	393,232		1 1120	Outlet	Black	11006	Box	Impinger Exit	IN. Hg	CO ₂	O ₂	1
1	297 Lh	145	240	70	298	250	1		11	Vol. %	Vol. %	
2.5	401 91	148	256	70	399	20	50	64	4			
3.10	406.09	124	336	72	300	250	200	66	1	100	10.5	
4.5	409 90	37	11.98	爱	300		20	60	7	10.0	10.0	
52	412 49	-34	1.82	72	298	250	100	65	4			
6	47.26	124	1.82	73	398	250	~ v	60	17			
7	42/24	140	214	421	395	250	250	64	1			
8	435 12	700	2.03	15	2011	de	000	61	1			
9	428 99	138	203	75	394	250	250	66	4	100	10.0	
10	432 97	.40	214	76	293	00	20	0	1	10.0	100	
11	43685	138	313	77	393	250	250	43	4			
12	440 62	136	1.92	78	290	00	000	les .	1	-		
			1110	10	0.0		 					
1	1444.50	.38	2.00	77	290	250	250	64	4		-	
2	448 23	135	187	78	292	20	PU-	0				
23	451.84	133	1.76	78	291	250	250	66	14	95	10.5	
4	445,29	30	160	78	290		PAN .			_(.)_	10.0	
5	458.75	.30	160	783	294	20	20	64	12			
6	462 08	28	149	78	204							
7	466 30	1.45	240	70	294	250	250	65	4	0.0	10.5	
8	471.06	157	3.04	79	205		5		1	10.0	10.	
9	475.94	60	3.20	80	294 295	250	250	66	14			
10	480 60	155	1294	80	294				,			
a lu di	1485.26	.55	2.94	80	292	250	350	AH	4			
147	8 489 84	.53	283	81	290				- (10.0	10.5	
		2 2										

CLIENT	a Ma 1./TE			NOZZLE /	10-01	DIAME	TER, IN. ,	3053	IMPINGER	INITIAL	FINAL	TOTAL GAIN		
COV	sulta WTE			PROBE 7	C		Cp . 851		VOLUMES	(mL)	(mL)	(mL)		
SOURCE UA									Imp. #1	0	194	194.		
	RUN No Metals PM	R-2		PORT LENGTH					lmp. #2	100	184	1 24		
DATE JUL-	19-22				STATIC PRESSURE, IN. H2O - 19"					100	122	77		
OPERATOR:	46			STACK DIA	METER 7/	2.9		Imp. #4	Ô	. 8	P			
CONTROL UNIT	CAE ALI	Y .9883		STACK HEI	GHT 30				Imp. #5	100	103	. 2		
		ΔH@ \ 889							Imp. #6					
3AROMETRIC F	PRESSURE, IN. Hg 30.1			INITIAL LEA	K TEST O.	002015	in.		Upstream Di					
ASSUMED MOIS	STURE, BW 18%			FINAL LEAF	TEST 10	2001511			Downstream	Diameters				
					- D (2)					4				
Clock T	ime Dry Gas Meter ft	Pitot ΔP	Orifice AH			Temperature '	°F		Pump Vac.	Fv	rites			
Point		IN. H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂			
0915	490,489	"	1	Outlet				Exit	1	Vol. %	Vol. %			
	493.89	23	137	72	285	252	251	57	8	9.5	10			
2	497.56	30 35	1.56	72	287	1	431	+3/	8	1.3	10			
3	501-01	31	181	72	287	253	251	57	8		\vdash			
Ĩ.	504-17	.26	135		287	1	201	137	۵		\vdash			
3	507.39	27	1.4	72	288	252	251	57	7		 			
6	510.61	27	1.4		289	222	271	5/	 ' 		-			
7	314.63	1.42	2.18	73 73	289	254	252	59	5		-			
8	518.8	45	2.34	74	289	234	212	31	3	9	100			
å l	523.28		27	75	290	0.60	0/1		7		10.5			
10	527.98	52	2.96	76	292	252	251	57	/					
11	532.59		2.76		201	053	0.00		97					
12		.55	2.86	76	292	253	252	57	7.5					
12	536.78	.45	2.35	78	292	+								
	212.00	1 1	0.00	70	443	100	0.44							
2	540 92	.44	2.29	79	294	253	252	59	5					
	345.38 549.37	.50	2.59	80	300	0.45					<u> </u>			
3	547.57	46	2.39	81	299	253	252	58	6	9	11			
4	553.48	39	2.03	81	297	-								
5	557.14	.34	178	82	296	254	252	59	5					
6	560 8	34	1.78	82	294									
7	564.47	34	1.79	82	291	253	251	59	5					
8	568.62	.44	2.32	83	291									
9	572.91	.46	2.43	83	290	253	25	58	6	8.5	11			
16	577.05	.43	2.27	83	290									
1)	581-28	.45	2.38	83	290	253	257	58	6					
12 1118	585.07	36	1.9	83	290									
									1					

A. Lanfranco and Associates Inc.

P.	4
O,	1.1

CLIEN	Capa	ta CUTE			NOZZLE 2	110-0		ETER, IN. , 🧐		IMPINGER	INITIAL	FINAL	TOTAL GAIN	
COUR	COOCA	0010			PROBE 76 CP 85M					VOLUMES		(mL)	(mL)	
	CE Unit									Imp. #1	0	186.	186	
PARAM	METER / RUN N	o Metas 1 P.	11 23		PORT LEN					lmp. #2	100	170	70	
DATE JUI-19-22					STATIC PR	ESSURE, IN	I. H2O -19			Imp. #3	100	17/61	16	
OPERATOR: AGC CONTROL UNIT CAE ALI Y .9883				STACK DIA	METER 7	0.9			Imp. #4	0	. 3	- /		
CONTR	ROL UNIT	E 461	Y .9883		STACK HEI	GHT 30				Imp. #5	100	102		
			ΔH@ 1.889	/							100	107	7	
BARON	METRIC PRESS	URE, IN. Hg 30.	12		INITIAL LEA	AK TEST 🧷	0930n13	241		Upstream Di		101	-	
ASSUN	MED MOISTURE	, Bw			FINAL LEAF	K TEST I.a	130,180			Downstream				
Clock Time Dry Gas Meter ft Pitot ΔP Orifice ΔΗ						.,	Temperature	°F		Pump Vac.	Fv	rites		
Point	11.00		IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂		
	1155	585.935			Outlet				Exit		Vol. %	Vol. %	- 1	
1		589.32	29	1.53	79	285	250	251	10	5	8.5	11.5	$\overline{}$	
2		592.86	-32	1.53	79	285	62		00	-3	3.3	11.5		
3		596.51	34	1.77	79	293	251	251	60	5.5		 		
4		600.32	.37	193	79	292	1	1	00	7.0		 		
6		604.03	.35	183	80	292	251	251	60	6				
6		107.79	36	1.88	80	293	1	122	00					
7		64.76	1.40	2.1	81	291	251	252	58	6				
8		616.02	.46	2.42	81	291	631	6-6	30	0		 		
9		620.64	.54	2.84	82	292	25e	252	58	7	9	11		
10		625.28	54	284	83	293	1200	630	20	-		11		
11		629.95	.55	2.89	83	294	251	252	58	8				
1		69431	.48	2.52	83	294	621	12/	05	2				
		MAIL -	1.40	20	0.5	210	<u> </u>	1				 		
1		637.47	.25	1.32	84	290	250	251	60	5				
2		641.09	.83	173	84	296	2-30	221	60	>				
3		644.59	31	162	84	297	251	251	59					
L		647.8	.26	1.36	84	296	231	451	37	5.5	000			
7		150.82	23	1.21	84	295	251	250	10		8.5	11		
7		83.71	.21	1.1	84	295	231	630	60	5				
7		657.44	.35	1.84	84	294	150	100	71					
×		661.44	40	2.12	84	290	250	250	61	5.5				
9		665-64	·ht	232	85	292	011	101	70	7				
10		670.03	.49	2.61	85	287	251	251	60	6	0			
1		674.61		2.77	85	287	250	100	10	— , —	9	10.5		
1/2	1357	679.14	. \$2 . \$1	271	85	287	1-70	252	60	6				
		4/1-17		D'11	02	L01								
$\overline{}$														
$\overline{}$							-							
\rightarrow														

A. i	Lanfrance	and Associates	Inc.						_								
So Pa Da	urce rameter te	MUNTE Unit 2 WH, July 19,2	022	Y Cp Pbar Operator	30,0	10-10 00 si	,	017	Clier Sour Para Date	rce U	1/W/FE 10/4 2 H/F July 17,2	02	Y Cp Pbar Operator	30	A Osi	tatic	
Lea	ak Check ial	0:000	1	Rur	12	0	Run S	3		k Check	0,000	1	Rui	2		Run 3	3
Fin	al	0,000		0.000	-	0,	000	4	Initia Fina		0.000		0,000			000	
Tes		DGM Volume (cu ft) / (m³)	Tempe DGM Outlet	Stack	Imp. Vol. (mL)		.P IN. H₂		Test No.	Time (hhmm)	DGM Volume (cu ft) / (m³)	DGM	rature (°F)	imp.	Ĺ	∆P IN. H₂(0
	1023	215,527	66			R1	R2	R3		1673	96,2127	Outlet	Olack	(mL)	R1	R2	R3
1									1		70 62 10						
		216.0147	82							1123	96.6834	82					
	1145	216.0 85	78							1145	96.6869	79					
2									2								
	245	2K.5087	88							1245	97.2483	87					
	1307	1218,5128	86							1302	97.2525	84					
3									3								
	1402	216,9282	38							1402	97,7243	88					
											er save at Maria						

A. Lanfranco and Associates Inc.

METRO V	ANCOUVER WTE	- BURNAR	VBC	NOZZLE (7-282	DIAME	TER, IN.	2887	IMPINGER	INITIAL	FINAL	TOTAL GAIN
		DOMINAD	1 D.O.	PROBE	7c		Cp 185	71	VOLUMES	(mL)	(mL)	(mL)
SOURCE JATES									Imp. #1	1 0	140	140
PARAMETER / RUN		retale R	2	PORT LENG	3TH				Imp. #2	100	1786	86
DATE 9-8-2					ESSURE, IN.	H2O —	18,00		Imp. #3	100	122	12
OPERATOR: 56	tle + 5c			STACK DIA		<	70,90		Imp. #4	9	. 10.	70
CONTROL UNIT	E 6010	Y,9962	<u>-</u>	STACK HEI	GHT	2.0	30,0		Imp. #5	100	104	4
		ΔH@ 1, 73.	3						Imp. #6	100	1021	7
BAROMETRIC PRES	SURE, IN. Hg 30	.18		INITIAL LEA	K TEST	10000	159		Imp. #7	1001	1	
ASSUMED MOISTUR	E, Bw / =	0/0		FINAL LEAP	TEST	10006			Imp. #8		1	
									testo	1 #2		
Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice AH	1		Temperature '	°F		Pump Vac.		rites	
Point OVA	Accon	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN, Hg	CO ₂	O ₂	
Point 8'20	805.721			Outlet				Exit		Vol. %	Vol. %	
1	408.73	,76	1.26	64	305	756	283	59	4.5			
2 10	\$10,79	127	1,31	65	306				100		 	
3	913.62	133	1089	65	307	250	282	59	4/00	9,4	10.2	
4 20	816,54		1,69	105	307		-	-	1	// /	10,0	
5	89,42	:34	1,65	66	306	257	253	59	35			
6 30	1802,43	1.37	1,80	67	306				1243			
7	826:18	157	7.77	68	306	753	755	39	4/23		1	
8 40	18791,96	158	2.82	69	308			1	1.6			
9	833189	162	3,63	7	307	255	284	59	50			
10 50	B37,35	148	2.35	72	300		1			9,5	10,3	
11	10000	1.44	2.18	75	303	252	251	89	5,0		10,3	
12 60	1043,62	134	1,68	75	304			7	7, 0			
	0 - 41 -	101										
1	1,46,47	,32	1059	75	301	250	253	59	35	95	16,	
2 10	7.49.37	133	1.64	75	302			1-	1	1.0	101	
3	757.63	42	2.08	75	303	283	751	59	3,5			
4 20	655.74	139	1,930	77	305			,	217			
5	155,90	138	1.44	78	306	255	150	58	4			
6 30	1667.10	10.40	1 99	79	305					95	10,1	
7	164.59	10 29	120	79	302	254	257	58	4	1	1-4	-
8 40	666.87	0.20	1,00	90	30		7 7		T-'			
9	669.03	0.13	0.90	80	301	255	252	59	3,5			
10 50	67 07	10/16	0.80	40	300	The state of the s	0					
11	673,17	10,17	0.85	81	300	255	249	58	34			
12	675.27		0.85	81	300			36.				
10:23	ENDICH											
100												

CLIEN	IT Metro	(24)			NOZZLE	2-282	DIAM	ETER, IN.	2887	IMPINGER	R. INITIAL	, FINAL !	TOTAL GAI
SOLID:	RCE 17	HONO			PROBE	K		Cp 185	11	VOLUMES		(mL)	(mL)
ARA	METER / RUN I	No Obella I M	aheda De	>						Imp. #1		11361	136
	9-8-2		ethis ic	<u> </u>	PORT LEN					Imp. #2	100	174	74
DED	ATOR: 7/2 /	-11-1-1				RESSURE, IN	I. H2O	78,00	2	Imp. #3	120	1 37	38
ONT	ROL UNIT	AC 310	V 00/	~	STACK DIA			70,90		Imp. #4	0	7	2
0111	KOL OIAIT	PE 010	Y ,996		STACK HE	IGHT		30,0		Imp. #5	100	102	7
ARO	METRIC PRES	SLIPE IN Ha 70	ΔH@ 1/7	35	100000000000000000000000000000000000000					Imp. #6	100	1021	2
SUI	MED MOISTUR				INITIAL LE		10000			Upstream D			
		RE, Bw 152	10		FINAL LEA	KIEST	10000	4/500		Downstream	n Diameters		
	Clock Time	Dry Gas Meter ft	I Divide	T 0.00						testo	H2		
oint	Clock Time	Diy Gus Meter II	Pitot ΔP	Orifice ΔH			Temperature	°F		Pump Vac.	F	yrites	
omi	10.45	675.894	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	1
-	10.05	- Indiana	-		Outlet			1	Exit		Vol. %	Vol. %	
_	1.0	678,77	132	1,60	81	303	250	755	87	5.0		1 -	
_	10	681,72	134	1.69	40	30%	200					1	
7	20	654,50	132	1,59	91	1310					9.4	193	
-	W	187.88	140	198	81	3/1)	1255	253	38	30		10	
			38	1.88	61	310						+ +	
	30	696 68	140	1.98	81	310	255	751	58	4			
-	40	696.68	125	124	82	310							
1	00	701.19	,20	0.99	82	310	255	252	57	4	9.5	10/1	
0	50		119	0.95	83	310				'		1,0-1	
7	20	703.26	117	0,44	82	311	254	1252	57	4			
2	60	705.35	47	0.84	82	1311							
	- 60	707.50	10	0,80	47	310	255	1250	58	4			
\dashv		70000	AND	1 0 . /									
\dashv	10	709,92	0.15	1.24	82	310	25%	252	58	4			
-	10	[[(())]	0.30	1.29	82	309				-	10.5	10.92	
7	20	713.39	0,32	1.60	83	309	255	249	57	5	10.7	10.12	
\vdash		718 40	0.35	174	83	309				4			
-	30	721.41	0.35	1.74	93	309	155	250	57	5		gron	
2	30	724.46	0.36	179	83	309						12.00	
2	40	728.34	0.58	2.89	83	309	235	250	57	7			_
	70	732,22	0.58	2.89	84	310					11.0	9.0	_
\dashv	50	736.23	0.62	3.09	84	310	255	251	57	7	11.0	1,0	
+		739.83	0.50	249	84	310							
	60	743.21	0.44	2.19	84	311	255	25	57	6			
_	12.48	746.224	0.35	1714	84	311							
-	16.70	EWD Test			7.1								
-													
+													
\dashv													

A. Lanfranco and Associates Inc.

METRO VA	ANCOUVER WTE	- BURNAB	Y B.C.	NOZZLE	732		TER, IN.	387	IMPINGER		FINAL	TOTAL GAIN
4 3 /	#3			PROBE	AC_		Cp , 852		VOLUMES		(mb)	(mL)
ARAMETER / RUN		11 21		Or y	2711				lmp. #1	1	182	182
ATE 9-3	No PASTIC/M	THIS KI		PORT LEN					Imp. #2	100	1756	56
	LIPLE	V Vectors in			ESSURE, IN.	H2O '	-18,0	9	Imp. #3	1010		29
ONTROL UNIT	ALF 13C	V 500	7.0	STACK DIA			70.90		Imp. #4	100	6	6
ON TROL UNIT	AE GIOS	Υ ,99 ΔH@ 73	ph_	STACK HE	GHT		30.0		Imp. #5	100	102	2
AROMETRIC PRES	QUIDE IN Ua	A # 2 #	33	IAUTIAL LE	UZ TEOT A		- 4			Veet	D /0/	
SSUMED MOISTUR		20		INITIAL LEA		1000	915		Imp. #7	G01		
DOGINIED MICIGION	CL, DVV	5%		FINAL LEA	CIESI	,000	3154		Imp. #8	1,	1 1	
Clock Time	Dry Gas Meter ft ^s	Pitot ΔP	I O.:C. ATT						the state of the s	#2		
oint Clock Thile	Dry Gas Metel II		Orifice AH			Temperature °	T		Pump Vac.		rites	
	534.660	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
470	500	1111	5 70	Outlet	-			Exit		Vol. %	Vol. %	
2 10	538, 17	198	2,39	11	301	255	250	58	7.0			
3		149	2,44	77	302							
4 20	545.18	147	2.34	LI	302	250	253	58	6.0	9.6	9,1	
5	232.09	148	2,39	78	303					, -	- 1	
6 30		,45	2,24	75	302	257	253	58	6.0			
7		129	2.09	78	303							
8 40		174	449	78	309	250	252	58	5,5			
9	560.58	1161	1,19	78	304				G 125			•
10 50	565.99	121	1,05	79	303	251	2321	58	403	9,2	10,1	
11	267 179	122	1.10		302							
12 60	567.50	119	1 6 2	79	303	250	287	28	9/28			
12 00	569,59	17	185	79	303							
1	520 10	21	10+	1000	17.77	0.55		-				
2 10	2696	.26	1,30	30	304	250	257	SX	500			
3	S\$7:36	127		80	305	0.0	773					
4 20		124	1,34	80	300	257	252	826	900			
5	572.85	1,24	1,20	80	366	70-	0 00-	0 -		1/4 27		
6 30	584 98	127		81	307	252	253	88	5,0	9,5	9.3	
7	588,51	1418	234	32	307	000	7					
8 40	2007:32	()		82	305	250	254	57	6,0			
9	305.82	147	7.80		365	1000	0015	7-	, -			
10 50	599,43	,50	2:37	82	304	253	285	57	600	~		
11	602 82	, 4/4		83	30	2-1	000	~	,	9,2	9.8	
12	605.093	136	3:37	83	201	251	252	57	6,0			
13137	END for Y	120	6101	83	302							
100	1 (S) (D)											
					L	- ;						

A. Lanfranco and Associates Inc.

Client COI Source Uni Parameter No Date Se	VANTA + 3 + 3 0+ 8, 2022	Y LMU- Cp Pbar 30./3	B(1.0275) 8 Static N/Justin	Client Course Co	COVANTA Unit 3 HF Sept 8,2022	Y LM Cp Pbar 30. Operator	18 Static
Leak Check	Run 1	Run 2	Run 3	Leak Check	Run 1		
Initial	0.0002	0,000	0.0001	Initial	0.0001	Run 2	Run 3
Final	0.0001	9.0001	0.0001	Final	0.0001	0.0001	0.0001

Leak Check	Run 1	Run 2	D 0				
	^ -	Ruitz	Run 3	Leak Check	Run 1	Run 2	
Initial	0.0002	10,0001	0.0001	Initial	0.0001	0,000	1
Final	0 0001	0.0001		ICHICIAL	0.0001		
TITO	0.0001	9.000	0.000	Final	0.0001	0.0001	1
						10.0007	

Test	Time	DGM Volume	Temper	ature (°F)	Imp.	,	∆P IN. H₂	
No.	(hhmm)	(cu ft) / (m³)	DGM Outlet	Stack	Vol. (mL)			
	0907	221,2730	64	304	200	R1	R2	R3
1			80	300				
	10.07	221.7415	85	300	269			
	1031	221.7465	82	305	200			
2			84	310				
	1131	222.2445	86	310	258			
	1142	222.2488	83	310	200			
3			86	311				
	1242	222.7418	87	310	256			

Time	DGM Volume		rature (°F)	Imp.	Z	∆P IN. H₂	0
		Outlet	Stack	(mL)	R1	R2	R3
0907	535,4372	64	304	200			INO
		80	300				
1007	535.9928	84	300				
1031	536.0018	83	305				
		85	310				
1131	536.6102	86	310				
1142	536.6148	82	310				
		85	3/1				
1242	537.1472	87	310				
	(hhmm) 0907 1007 1031 1131	(hhmm) (cu ff) / (m³) 0907 535 4372 1007 535.9928 1031 536.0018 1131 536.6102 1142 536.6148	DGM Volume (cu ft) / (m³) DGM Outlet O907 535.4372 G4 1007 535.9928 84 103 536.0018 83 113 536.6 02 86 1142 536.6 02 86	(nhmm) (cu ft) / (m²) DGM Outlet Stack 0907 535-4372 64 304 80 300 800 8	DGM Outlet Stack Outlet Stack Outlet Stack Outlet OPO	DGM Volume (cu ff) / (m³) DGM Outlet Stack (mL) R1	DGM Outlet Stack Outlet Stack Outlet Stack Outlet Stack Outlet Stack Outlet R1 R2

CEM	FIELD	DATA	SHEE
<u>CEM</u>	FIELD	<u>DATA</u>	SHE

Client Source Date

Me	tro V	an		<u>CE</u>
U	1115	122	13	5
	my	del	10	

Technician Ambient Temp (°C) Barometric Pressure (in. Hg)

	N ₂ D	M ₂ O	1 Gas	2 Gas	3 Gas	4 Gas	5 Gas	O ₂	Comb Air	Low Meth	Mid Meth	High Meth
Cylinder#	284	315								1110011	IVICER	Metin
Pressure (psi)												
Expiry Date												
O ₂ (%)												
CO ₂ (%)												
CO (ppm)												
THC (ppm)												
SO ₂ (ppm)		24.4										
NÔx (ppm)	922	411										

Analyzer	O ₂	CO ₂	CO	ТНС	SO ₂	NOx
Range						

CEM READINGS Time O_2 Source CO₂ CO THC SO₂ NOx Response Time (sec) analyzed O₂ Up O₂ Dn CO₂ Up CO₂ Dn CO Up CO Dn THC Up THC Dn SO₂ Up SO₂ Dn NOx Up NOx Dn

	CEM	FIELD	DATA	SHEET
--	------------	--------------	-------------	-------

Client Source Date

$\Lambda\Lambda$	L. 1/2	CEN
1410	TAO AO	u1
Ser	of 81	W

Technician Ambient Temp (°C) Barometric Pressure (in. Hg)

	N ₂	H ₂	1 Gas	2 Gas	3 Gas	4 Gas	5 Gas	O ₂	Comb Air	Low Meth	Mid Meth	High Meth
Cylinder #												
Pressure (psi)												
Expiry Date												
O ₂ (%)												
CO ₂ (%)												
CO (ppm)												
THC (ppm)												
SO ₂ (ppm)												
NOx (ppm)												

Analyzer	O ₂	CO ₂	СО	THC	SO ₂	NOx
Range						

CEM READINGS

Time	Source	O ₂	CO ₂	СО	ТНС	SO ₂	NOx	Response Time (sec)
	N2						0	O ₂ Up
	mid						42	O ₂ Dn
	high						93	CO ₂ Up
0 10	0,		~					CO ₂ Dn
Sept 8	Reur 1	44	10-1	000			13	CO Up
	2	100		1102			12	CO Dn
		-111	0-0	216			12	THC Up
				- 31			- (THC Dn
	N2							SO ₂ Up
	mid						427	SO ₂ Dn
								NOx Up
								NOx Dn

APPENDIX – E CALIBRATION SHEETS and TECHNICIAN CERTIFICATES

	BAROMETER CALIBRATION FORM							
		Pbar E	nv Canada	Device (inc	hes of Hg)	Difference		
					Elevation			
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)		
LA	1-Jul-22	102.1	30.16	30.06	30.13	0.02		
DS	1-Jul-22	102.1	30.16	30.04	30.11	0.04		
CL	1-Jul-22	102.1	30.16	30.03	30.10	0.05		
ML	1-Jul-22	102.1	30.16	30.14	30.21	-0.06		
SB	1-Jul-22	102.1	30.16	30.15	30.22	-0.07		
SH	1-Jul-22	102.1	30.16	30.15	30.22	-0.07		
MG	1-Jul-22	102.1	30.16	30.15	30.22	-0.07		
SF	1-Jul-22	102.1	30.16	30.16	30.23	-0.08		
JG	1-Jul-22	102.1	30.16	30.12	30.19	-0.04		
JC	1-Jul-22	102.1	30.16	30.15	30.22	-0.07		
LF	1-Jul-22	102.1	30.16	30.15	30.22	-0.07		

Jeremy Gibbs

Calibrated by:

Signature: <u>Jeremy Gibbs</u>

Date:

01-Jul-22

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74 metric e.html

A.Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: CAE G10J 05-Jul-22

Serial #: 0028-1X1310-1 Barometric Pressure: 29.88 (in. Hg) Theoretical Critical Vacuum: 14.09 (in. Hg)

111111111

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

			DRY GA	S METER READIN	NGS	-				-CI	RITICAL ORIF	ICE READING	S-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial T Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Tempera Final (deg F)	Ature Average (deg F)
3.50	15.00	356.655	372.859	16.204	79.0	79.0	82.0	82.0	73	0.8185	15.5	79.0	72.0	75.5
1.80	18.00	342.552	356.565	14.013	75.0	75.0	78.0	78.0	63	0.5956	18.5	75.0	80.0	77.5
1.10	18.00	331.600	342.499	10.899	73.0	73.0	75.0	75.0	55	0.4606	20.0	76.0	78.0	77.0
0.64	22.00	321.430	331.548	10.118	71.0	71.0	72.0	72.0	48	0.3560	21.5	75.0	77.0	76.0
0.32	17.00	316.000	321.395	5.395	71.0	71.0	71.0	71.0	40	0.2408	22.5	70.0	72.0	71.0
DRY GA	AS METER			ORIFICE		****** RES	DRY GA		*****	*****		ORIFICE		
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED			ON FACTOR Y		CAL	CALIBRATION FACTOR dH@				
Vm(std) (cu ft)	Vm(std) (liters)		Vcr(std) (cu ft)	Vcr(std) (liters)	Vcr (cu ft)		Value (number)	Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		Ko (value)
15.938	451.4		15.853	449.0	16.106		0.995	-0.002		1.719	43.68	-0.014		0.731
13.828	391.6		13.817	391.3	14.090		0.999	0.003		1.689	42.90	-0.044		0.736
10.787	305.5		10.690	302.7	10.891		0.991	-0.005		1.732	44.00	-0.001		0.733
10.050	284.6		10.108	286.3	10.279		1.006	0.010		1.692	42.97	-0.041		0.731
5.359	151.8		5.308	150.3	5.348		0.990	-0.006		1.833	46.57	0.100		0.714

Average Y-----> 0.9962

т	EMPERATURE CALIBRAT	ION	
Calibration Standard>	Omega Model CL23A S/N:T-2	18768	
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Re Variation (degF)	sults Percent of Absolute
32	32	0	0.00%
100	100	0	0.00%
300	300	0	0.00%
500	500	0	0.00%
1000	1000	0	0.00%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02. For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +0.2. For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

> Signature: Date: July 5, 2022

Calibrated by: Scott Ferguson

44.0

Average Ko---> 0.729

Average dH@----> 1.733

MOUNT ROYAL COLLEGE

Faculty of Continuing Education and Extension

Carter Lanfranco

has successfully completed

Stack Sampling

May 2009

Date

Door

Faculty of Continuing Education and Extension

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Doclaration

	Deciaration
1_ Carter Lanfranco	, as a member of _Air and Waste Management Association
declare	
Select one of the following:	
Absence from conflict of interest	
Other than the standard fee I will receiv	ve for my professional services, I have no financial or
other interest in the outcome of this	project . I further declare that should a
conflict of interest arise in the future du	uring the course of this work, I will fully disclose the
circumstances in writing and without de Mr. Sajid Barlas	elay to, erring on the side of caution.

Real or perceived conflict of interest
Description and nature of conflict(s):
I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.
In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:
Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.
onflict of interest disclosure statement is collected under section 26(c) of the Freedom of nation and Protection of Privacy Act for the purposes of increasing government

This of . Info transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name: Conter

Witnessed by:

Mark Lanfranco Print name:

Date: Dec. 16, 2020

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

1. Name of Qualified Professional

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

Michael Goods

	Titlo Envir	onmental Technician	
	Title <u>Elivir</u>	onnental rechinician	
2.	Are you a registered member of a profes	sional association in B.C.?	□ Yes □ No
	Name of Association:	Registration #	
3.	Brief description of professional services:		
	Environmental Technician - specialising i	n air and atmospheric sciences	
		•	
Propured to the propured to th	is declaration of competency is collected untection of Privacy Act for the purposes of ofessional ethics and accountability. By signification and its disclosure outside of Cananato be revoked. If you have any question resonal information please contact the Minadquarters Office at 1-800-663-7867.	increasing government transpare ining and submitting this statement ada. This consent is valid from the his about the collection, use or disc	ency and ensuring ont you consent to its date submitted and closure of your
	<u>D</u>	<u>Declaration</u>	
	m a qualified professional with the knowled		•
Się	nature:	Witnessed by:	
<u>X</u>	Mgoods	_ x /// //	1/
Pr	nt Name: <u>Michael Goods</u>	Print Name: Scott Fergu	uson
Da	te signed:		
10	ualified Professional in relation to a duty or function (under ministry legislation, means an individu	ual who

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

		·
1.	Name of Qualified Professional	Shawn Harrington
	Title	Senior Environmental Technician /Project manager
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☑No
	Name of Association:	Registration #
3.	Brief description of professional se Environmental consulting ,spe	ervices: ecializing in air and atmospheric sciences
Pro pro pu car pe	otection of Privacy Act for the purpo ofessional ethics and accountability blication and its disclosure outside nnot be revoked. If you have any q	ected under section 26(c) of the <i>Freedom of Information and</i> oses of increasing government transparency and ensuring r. By signing and submitting this statement you consent to its of Canada. This consent is valid from the date submitted and uestions about the collection, use or disclosure of your the Ministry of Environment and Climate Change Strategy 67.
		<u>Declaration</u>
	·	knowledge, skills and experience to provide expert ndations in relation to the specific work described above.
<u>X</u> Pri	int Name: Shawn Harrington te signed: November 26, 2020	Witnessed by: X Print Name: Mark anfranco

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional <u>Carter Lankano</u>
	Title Chief operations officer (au
2.	Are you a registered member of a professional association in B.C.?
	Name of Association:Registration #
3.	Brief description of professional services:
pro pu ca pe	ofessional ethics and accountability. By signing and submitting this statement you consent to its blication and its disclosure outside of Canada. This consent is valid from the date submitted and mnot be revoked. If you have any questions about the collection, use or disclosure of your resonal information please contact the Ministry of Environment and Climate Change Strategy adquarters Office at 1-800-663-7867.
	<u>Declaration</u>
	m a qualified professional with the knowledge, skills and experience to provide expert formation, advice and/or recommendations in relation to the specific work described above.
X	witnessed by: x Must faithful
	int Name: <u>Carter Lastrance</u> Pribt Name: // Jhalin Harrington
Da	ite signed: Dec. T/2020

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

knowledge, experience and objectivity necessary to fulfill this role.
1. Name of Qualified Professional Jeverny Obles
Title Environmental technician
2. Are you a registered member of a professional association in B.C.? ☐ Yes ☐ No
Name of Association:Registration #
3. Brief description of professional services: Environmental Consultant Specialize in Gir and atmospheric Sciences
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.
<u>Declaration</u>
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above. Signature: Witnessed by:
* home All
Print Name: Deremy 6.45 Print Name: Connoc Jaan
Date signed: Nav 1 2020

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{}f 1}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

GLASS NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Scott Ferguson
Date: July 5, 2022

Signature:

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
Α	0.1260	0.1260	0.1270	0.0010	0.1263	0.0000870
G-165	0.1200	0.1200	0.1270	0.0010	0.1203	0.0001473
G-170	0.1700	0.1720	0.1690	0.0030	0.1703	0.0001473
G-178	0.1700	0.1720	0.1820	0.0030	0.1703	0.0001302
J	0.1790	0.1000	0.1820	0.0030	0.1893	0.0001774
E	0.1690	0.1900	0.1890	0.0010	0.1993	0.0001983
Q	0.1910	0.1910	0.1900	0.0010	0.1907	0.0001963
L	0.2000	0.2030	0.2020	0.0040	0.2043	0.0002277
G-215	0.2090	0.2100	0.2120	0.0030	0.2103	0.0002413
G-218	0.2170	0.2140	0.2140	0.0010	0.2143	0.0002508
G-216 G-221	0.2170	0.2190	0.2200	0.0030	0.2197	0.0002608
G-2231	0.2310	0.2280	0.2300	0.0030	0.2297	0.0002877
G-2232	0.2240	0.2220	0.2220	0.0020	0.2227	0.0002704
G-225	0.2220	0.2190	0.2200	0.0030	0.2203	0.0002648
G-2501	0.2490	0.2500	0.2510	0.0020	0.2500	0.0003409
Р	0.2590	0.2570	0.2580	0.0020	0.2580	0.0003631
G-282	0.2910	0.2870	0.2880	0.0040	0.2887	0.0004545
G-2871	0.2860	0.2870	0.2870	0.0010	0.2867	0.0004482
G-292	0.2905	0.2890	0.2875	0.0030	0.2890	0.0004555
MV-01	0.3060	0.3040	0.3060	0.0020	0.3053	0.0005085
G-3072	0.3080	0.3080	0.3090	0.0010	0.3083	0.0005185
G-309	0.3060	0.3070	0.3070	0.0010	0.3067	0.0005129
G-3121	0.3080	0.3100	0.3110	0.0030	0.3097	0.0005230
G-345	0.3460	0.3440	0.3460	0.0020	0.3453	0.0006504
G-433	0.4320	0.4320	0.4340	0.0020	0.4327	0.0010210
P-29	0.4680	0.4680	0.4690	0.0010	0.4683	0.0011963
P-7	0.4000	0.4890	0.4920	0.0010	0.4910	0.0011303
В ,	0.5010	0.5020	0.5030	0.0020	0.5020	0.0013745
G-540	0.5390	0.5390	0.5390	0.0000	0.5390	0.0015745

Where:

- (a) D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.
- (b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.
- (c) Average = average of D1, D2 and D3

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

their common sense, conscience and sense of personal in	tegrity.
<u>Declaration</u>	
Jeremy Globs as a me	mber of _Air and Waste Management Association
declare	
Select one of the following:	
Absence from conflict of interest	
Other than the standard fee I will receive for my p	rofessional services, I have no financial or
other interest in the outcome of this project	. I further declare that should a
conflict of interest arise in the future during the co	ourse of this work, I will fully disclose the
circumstances in writing and without delay to Mr. Sajid Barlas	, erring on the side of caution.

☐ Real or perceived co	onflict of interest
Description and nat	ure of conflict(s):
I will maintain my o and standards of pr	bjectivity, conducting my work in accordance with my Code of Ethics actice.
	ke the following steps to mitigate the real or perceived conflict(s) I nsure the public interest remains paramount:
	dge that this disclosure may be interpreted as a threat to my will be considered by the statutory decision maker accordingly.

This conflict of interest disclosure statement is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name

Date: Dec.16, 2020

Witnessed by:

151

Mark Lanfranco
Print name:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

MOUNT ROYAL UNIVERSITY

Faculty of Continuing Education and Extension

Jeremy Shawn Gibbs

has successfully completed

Stack Sampling

35 Hours / 2019

May 22, 2019

Date

A.Lanfranco & Associates inc.

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: CAE JO99

4-Jul-22

0028-022210-1 Serial #:

Barometric Pressure: 29.87 (in. Hg) Theoretical Critical Vacuum: 14.09 (in. Hg)

111111111

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

			DRY GA		-CRITICAL ORIFICE READINGS-									
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Te Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Temperat Final (deg F)	ure Averagi (deg F)
3.50	15.00	361.225	376.500	15.275	92.0	90.0	94.0	92.0	73	0.8185	16.5	92.0	80.0	86.0
1.90	15.00	406.610	417.990	11.380	92.0	90.0	88.0	86.0	63	0.5956	19.5	86.0	87.0	86.5
1.10	15.00	394.160	402.750	8.590	84.0	83.0	85.0	84.0	55	0.4606	21.5	85.0	86.0	85.5
0.68	15.00	404.235	411.000	6.765	85.0	85.0	86.0	85.0	48	0.3560	23.0	86.0	86.0	86.0
0.33	15.00	377.740	382.300	4.560	88.0	92.0	95.0	98.0	40	0.2408	24.5	82.0	78.0	82.5
DRY GA	AS METER			ORIFICE		****** RES	ULTS ******* DRY GAS					ORIFICE		
DRY GA	AS METER VOLUME					****** RES		S METER						
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr	******* RES	DRY GAS CALIBRATIO	S METER ON FACTOR Y Variation		CAL Value	 LIBRATION FA dH@ Value	CTOR Variation		Ko (value
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)	******* RES	DRY GAS CALIBRATIO Value (number)	DN FACTOR Y Variation (number)		CAL Value (in H2O)	 JIBRATION FA dH@ Value (mm H2O)	CTOR Variation (in H2O)		(value)
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr	******* RES	DRY GAS CALIBRATIO	S METER ON FACTOR Y Variation		CAL Value	 LIBRATION FA dH@ Value	CTOR Variation		
VOLUME CORRECTED Vm(std) (cu ft) 14.706	VOLUME CORRECTED Vm(std) (liters) 416.5		VOLUME CORRECTED Vcr(std) (cu ft) 15.695	VOLUME CORRECTED Vcr(std) (liters) 444.5	VOLUME NOMINAL Vcr (cu ft) 16.263	······RES	DRY GAS CALIBRATIO Value (number) 1.0672	ON FACTOR Y Variation (number) 0.012		CAL Value (in H2O) 1.720	 dH@ Value (mm H2O) 43.70	Variation (in H2O) -0.050		(value 0.723
VOLUME CORRECTED Vm(std) (cu ft) 14.706 10.973	VOLUME CORRECTED Vm(std) (liters) 416.5 310.8		VOLUME CORRECTED Vcr(std) (cu ft) 15.695 11.415	VOLUME CORRECTED Vcr(std) (liters) 444.5 323.3	VOLUME NOMINAL Vcr (cu ft) 16.263 11.840	······RES	DRY GAS CALIBRATIO Value (number) 1.0672 1.0403	N FACTOR Y Variation (number) 0.012 -0.015		CAL Value (in H2O) 1.720 1.775	 LIBRATION FA dH@ Value (mm H2O) 43.70 45.09	Variation (in H2O) -0.050 0.005		(value) 0.723 0.731
VOLUME CORRECTED Vm(std) (cu ft) 14.706 10.973 8.343	VOLUME CORRECTED Vm(std) (liters) 416.5 310.8 236.3		VOLUME CORRECTED Vor(std) (cu ft) 15.695 11.415 8.836	VOLUME CORRECTED Vcr(std) (liters) 444.5 323.3 250.2	VOLUME NOMINAL Vcr (cu ft) 16.263 11.840 9.148	······RES	DRY GAS CALIBRATIO Value (number) 1.0672 1.0403 1.0591	ON FACTOR Y Variation (number) 0.012 -0.015 0.004		CAL Value (in H2O) 1.720 1.775 1.729	LIBRATION FA dH@ Value (mm H2O) 43.70 45.09 43.93	Variation (in H2O) -0.050 0.005 -0.041		0.723 0.731 0.728

т	EMPERATURE CALIBRAT	ION	
Calibration Standard>	Omega Model CL23A S/N:T-2	18768	
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Res Variation (degF)	sults Percent of Absolute
32	32	0	0.00%
100	100	0	0.00%
300	300	0	0.00%
500	500	0	0.00%
1000	1000	0	0.00%

Calibrated by: Liam Forrer

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02. For Orlifice Calibration Factor dHig, the orlifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +0.2. For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Signature: Carter Lanfranco

Date: July 4, 2022

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-A Date: 15-Jul-22

Serial #: Kimmon 186 Barometric Pressure: 30.02 (in. Hg)

Theoretical Critical Vacuum: 14.16 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)\(^3\)*(deg R)\(^0.5\)/((in.Hg)\(^min)\).

!!!!!!!!!!

	DRY GAS METER READINGS									-CRITICAL ORIFICE READINGS-					
		Volume	Volume	Volume		Initial Temps.		Final Temps.		K' Orifice	Actual	Ambient Temper			
dH (in H2O)	Time (min)	Initial (m³)	Final (m³)	Total (cu ft)	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	Serial# (number)	Coefficient (see above)	Vacuum (in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)	
0.00	21.00	528.2222	528.5012	9.853	75.0	75.0	77.0	77.0	48	0.3560	20.0	58.0	58.0	58.0	
0.00	118.00	528.5012	530.0773	55.659	77.0	77.0	83.0	83.0	48	0.3560	20.0	77.0	80.0	78.5	
0.00	15.00	530.0773	530.2783	7.098	83.0	83.0	83.0	83.0	48	0.3560	20.0	80.0	83.0	81.5	
			*****	******	******	****** RES	SULTS *****	******	*****	******	***				
DRY GA	S METER			ORIFICE			DRY GAS	S METER				ORIFICE			
				\/OLLINE	VOLUME			NI FACTOR		0.41					
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	NOMINAL		CALIBRATIO	Y Y		CAL	.IBRATION FA dH@.	ACTOR			
							Value (number)			Value (in H2O)	.IBRATION FA dH@ Value (mm H2O)	Variation (in H2O)			
CORRECTED Vm(std)	CORRECTED Vm(std)		CORRECTED Vcr(std)	CORRECTED Vcr(std)	NOMINAL Vcr		Value	Y Variation		Value	dH@ Value	Variation			
CORRECTED Vm(std) (cu ft)	CORRECTED Vm(std) (liters)		CORRECTED Vcr(std) (cu ft)	CORRECTED Vcr(std) (liters)	NOMINAL Vcr (cu ft)		Value (number)	Y Variation (number)		Value (in H2O)	dH@ Value (mm H2O)	Variation (in H2O)			
CORRECTED Vm(std) (cu ft) 9.734	CORRECTED Vm(std) (liters) 275.7		CORRECTED Vcr(std) (cu ft) 9.861	CORRECTED Vcr(std) (liters) 279.3	NOMINAL Vcr (cu ft) 9.646		Value (number) 1.013	Y Variation (number) 0.012		Value (in H2O) 0.000	dH@ Value (mm H2O) 0.00	Variation (in H2O) 0.000			
CORRECTED Vm(std) (cu ft) 9.734 54.583	CORRECTED Vm(std) (liters) 275.7 1545.8		CORRECTED Vcr(std) (cu ft) 9.861 54.344	CORRECTED Vcr(std) (liters) 279.3 1539.0	NOMINAL Vcr (cu ft) 9.646 55.262		Value (number) 1.013 0.996	Y Variation (number) 0.012 -0.006		Value (in H2O) 0.000 0.000	dH@ Value (mm H2O) 0.00 0.00	Variation (in H2O) 0.000 0.000			

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2. For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Justin Ching Signature: <u>Justin Ching</u> Date: July 15, 2022

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-B Date: 12-Jul-22

Serial #: Wizit 6276 Barometric Pressure: 29.95 (in. Hg)

Theoretical Critical Vacuum: 14.13 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

!!!!!!!!!!

	DRY GAS METER READINGS									-CRITICAL ORIFICE READINGS-					
-11.1	Time	Volume	Volume Volume			Initial Temps.		Final Temps.		K' Orifice	Actual Vacuum	Ambient Temperat			
dH (in H2O)	Time (min)	Initial (m³)	Final (m³)	Total (cu ft)	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	Serial# (number)	Coefficient (see above)	vacuum (in Hg)	(deg F)	(deg F)	Average (deg F)	
0.00	24.00	211.5322	211.9365	14.278	79.0	79.0	81.0	81.0	55	0.4606	20.0	80.0	82.0	81.0	
0.00	17.00	211.9365	212.2240	10.153	81.0	81.0	94.0	94.0	55	0.4606	20.0	82.0	83.0	82.5	
0.00	15.00	212.2240	212.4787	8.995	94.0	94.0	95.0	95.0	55	0.4606	20.0	83.0	84.0	83.5	
DRY GA	**************************************														
										0.41					
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	Y FACTOR		CAI	LIBRATION FA dH@	CTOR			
Vm(std)	Vm(std)		Vcr(std)	Vcr(std)	Vcr		Value	Variation		Value	Value	Variation			
(cu ft) 13.969	(liters) 395.6		(cu ft) 14.234	(liters) 403.1	(cu ft) 14.576		(number) 1.019	(number) -0.008		(in H2O) 0.000	(mm H2O) 0.00	(in H2O) 0.000			
9.797	277.5		10.069	285.1	10.339		1.019	0.000		0.000	0.00	0.000			
8.570	242.7		8.876	251.4	9.131		1.026	0.008		0.000	0.00	0.000			
0.07.0			0.0.0	20	0.101			0.000		0.000	0.00	0.000			
					Aver	age Y>	1.0275	Avera	age dH@>	0.0000	0.00				

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Justin Ching

Signature:

Date: July 12, 2022

A. Lanfranco & Associates Inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-C Date: 05-Jul-22

Serial #: Wizit 4615 Barometric Pressure: 29.88 (in. Hg)

Theoretical Critical Vacuum: 14.09 (in. Hg)

!!!!!!!!!

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

	DRY GAS METER READINGS									-CRITICAL ORIFICE READINGS-					
dH (in H2O)	Time	Volume Initial (m³)	Volume Final	Volume Total	Initial T Inlet	Outlet	Inlet	Temps. Outlet	Orifice Serial#	K' Orifice Coefficient	Actual Vacuum	Initial	bient Tempera Final	Average	
,	(min)		(m ³)	(cu ft)	(deg F)	(deg F)	(deg F)	(deg F)	(number)	(see above)	(in Hg)	(deg F)	(deg F)	(deg F)	
0.00	16.00	93.590	93.795	7.232	69.0	69.0	71.0	71.0	48	0.3560	20.0	70.0	71.0	70.5	
0.00	23.00	93.796	94.090	10.397	71.0	71.0	73.0	73.0	48	0.3560	20.0	70.0	74.0	72.0	
0.00	18.00	94.092	94.323	8.158	74.0	74.0	78.0	78.0	48	0.3560	20.0	72.0	73.0	72.5	

-- DRY GAS METER -- -- ORIFICE ------- -- DRY GAS METER -- -- ORIFICE ------- ORIFICE ------- VOLUME VOLUME VOLUME VOLUME CALIBRATION FACTOR CALIBRATION FACTOR

VOLUME	VOLUME	VOLUME	VOLUME	VOLUME	CALIBRATION FACTO	DR C	ALIBRATION FA	CTOR	
CORRECTED	CORRECTED	CORRECTED	CORRECTED	NOMINAL	Υ		dH@		
Vm(std)	Vm(std)	Vcr(std)	Vcr(std)	Vcr	Value Variatio	n Value	Value	Variation	
(cu ft)	(liters)	(cu ft)	(liters)	(cu ft)	(number) (numbe	r) (in H2O)	(mm H2O)	(in H2O)	
7.193	203.7	7.389	209.3	7.437	1.027 -0.003	0.000	0.00	0.000	
10.301	291.7	10.607	300.4	10.706	1.030 -0.001	0.000	0.00	0.000	
8.022	227.2	8.297	235.0	8.383	1.034 0.004	0.000	0.00	0.000	

Average Y-----> 1.0305 Average dH@----> 0.0000 0.00

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer Signature: Date: July 5, 2022

A. Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-D Date: 5-Jul-22

Serial #: Wizit 4618 Barometric Pressure: 29.88 (in. Hg)

Theoretical Critical Vacuum: 14.09 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above. IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

IMPORTANT

			DRY GA			-CI	RITICAL ORIF	ICE READING	GS-					
		Volume				Initial Temps. Final Temps.			Orifice	K' Orifice	Actual	Ambient Temperatu		
dH (in H2O)	Time (min)	Initial (m³)	Final (m³)	Total (cu ft)	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	Serial# (number)	Coefficient (see above)	Vacuum (in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)
0.00	27.00	63.825	64.175	12.353	73.0	73.0	74.0	74.0	48	0.3560	20.0	75.0	74.0	74.5
0.00	18.00	64.176	64.410	8.267	74.0	74.0	76.0	76.0	48	0.3560	20.0	74.0	78.0	76.0
0.00	25.00	64.412	64.737	11.477	75.0	75.0	78.0	78.0	48	0.3560	20.0	76.0	80.0	78.0
VOLUME	VOLUME		VOLUME	VOLUME	VOLUME			S METER ON FACTOR		CAL	IBRATION FA	ORIFICE CTOR		
CORRECTED Vm(std)	CORRECTED Vm(std)		CORRECTED Vcr(std)	CORRECTED Vcr(std)	NOMINAL Vcr		Value	Y Variation		Value	dH@ Value	Variation		
(cu ft)	(liters)		(cu ft)	(liters)	(cu ft)		(number)	(number)		(in H2O)	(mm H2O)	(in H2O)		
12.205	345.6		12.423	351.8	12.598		1.018	0.001		0.000	0.00	0.000		
8.145	230.7		8.270	234.2	8.410		1.015	-0.001		0.000	0.00	0.000		
11.276	319.3		11.465	324.7	11.703		1.017	0.000		0.000	0.00	0.000		
					Aver	age Y>	1.0167	Avera	nge dH@>	0.0000	0.00			

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer Signature: _____ Date: July 5, 2022

MOUNT ROYAL UNIVERSITY

Faculty of Continuing Education and Extension

Michael Eugene Goods

has successfully completed

Stack Sampling

35 Hours / 2019

May 22, 2019

Date

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

Confidentiality and Impartiality Agreement

Confidentiality is legally enforceable in our client contracts for all projects and ensures that our firm, its personnel, and any outsourced bodies treat all information obtained or created during our scope of work as confidential. Our firm does not disclose information that is not public regarding a client or responsible party to a third party without express consent of that party. Our firm informs the client and responsible party before placing any information in the public domain and will use equipment and facilities to ensure the secure handling of confidential information.

Impartiality Our firm's policies and procedures regarding conflict of interest (COI) and safeguarding impartiality reflects the commitment to act impartially in all activities. Our firm understands that the principles of COI and impartiality are essential to providing independent services. Our team is required to personally declare any potential threat to impartiality or potential COI. Should a potential COI or threat to impartiality be identified, our team will work to determine mitigation measures, if applicable.

This agreement is made by and between	
Muhuel Goods Milliff	(1st Party)
AND	
A. Lanfranco and Associates Inc.	(2 nd Party)
As of <u>24 Nov</u> ,20 <u>20</u>	

Pitot Tube Calibration

 Date:
 5-Jul-22
 Temp (R): 539

 Pbar (in.Hg):
 29.91
 Dn (in.): 0.25

Pitot ID:	7A-1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.035	0.050	12.5	0.8283	0.0098
0.130	0.180	24.1	0.8413	0.0032
0.250	0.350	33.4	0.8367	0.0014
0.480	0.660	46.3	0.8443	0.0061
0.720	1.000	56.7	0.8400	0.0019
		Average :	0.8381	0.0045

	Pitot ID:	ST 8A			
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
	0.035	0.050	12.5	0.8283	0.0044
	0.140	0.200	25.0	0.8283	0.0044
	0.250	0.350	33.4	0.8367	0.0040
	0.600	0.850	51.7	0.8318	0.0009
	0.710	0.990	56.3	0.8384	0.0057
			Average :	0.8327	0.0039

Pitot ID:	7B			
Reference	S-Type	Air	Pitot	Deviation
Pitot Pitot		Velocity	Coeff.	(absolute)
(in H2O)	(in H2O) (in H2O)		Ср	
0.035	0.050	12.5	0.8283	0.0046
0.100	0.140	21.1	0.8367	0.0038
0.230	0.320	32.0	0.8393	0.0064
0.430	0.610	43.8	0.8312	0.0017
0.680	0.970	55.1	0.8289	0.0040
-		Average:	0.8329	0.0041

Pitot ID:	ST 8B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.040	0.055	13.4	0.8443	0.0032
0.140	0.190	25.0	0.8498	0.0087
0.270	0.380	34.7	0.8345	0.0066
0.500	0.700	47.2	0.8367	0.0044
0.720	1.000	56.7	0.8400	0.0010
		Average :	0.8411	0.0048

	Pitot ID:	7 AL GVRD-	1		
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
	0.040	0.055	16.3	0.8443	0.0063
	0.120	0.160	19.9	0.8574	0.0067
	0.200	0.270	25.3	0.8521	0.0014
	0.430	0.580	35.8	0.8524	0.0018
	0.710	0.970	48.4	0.8470	0.0036
,			Average:	0.8506	0.0040

Pitot ID:	ST 8C			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	14.9	0.8478	0.0021
0.105	0.145	19.4	0.8425	0.0033
0.210	0.290	29.0	0.8425	0.0033
0.500	0.680	43.1	0.8489	0.0032
0.710	0.970	52.8	0.8470	0.0013
		Average:	0.8457	0.0026

Pitot ID:	7C			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.040	0.055	13.4	0.8443	0.0068
0.130	0.180	16.3	0.8413	0.0098
0.250	0.335	33.4	0.8552	0.0041
0.630	0.840	30.5	0.8574	0.0063
0.690	0.920	47.0	0.8574	0.0063
		Average :	0.8511	0.0066

Pitot ID:				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average :		

Calibrated by: Justin Ching Signature: Date: July 5, 2022

^{*} Average absolute deviation must not exceed 0.01.

Shawn Harrington

has met the requirements of

Stack Testing for Pollutants (CHSC 7760)

School of Process, Energy and Natural Resources Chemical Sciences Program

Endorsed by:

Environment Canada

Environnement

British Columbia Ministry of

JUNE 21, 2001

School of Process, Energy and Natural Resources

Marsh Hemekey, Dean

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;

1/

- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

I <u>Shawn Harrington</u> , as a m declare	ember of Air and Waste Management Association
Select one of the following:	
☑ Absence from conflict of interest	
Other than the standard fee I will receive for my	professional services, I have no financial or
other interest in the outcome of this project	. I further declare that should a
conflict of interest arise in the future during the o	course of this work, I will fully disclose the
circumstances in writing and without delay to Mr. Sajid Barlas	, erring on the side of caution.

Date: Dec.16, 2020

Descripti	on and nature of conflic	t(s):	
		.(0).	
and the second			
	ntain my objectivity, cood dards of practice.	nducting my work	in accordance with my Code of Ethics
	on, I will take the followi losed, to ensure the pul	• .	ite the real or perceived conflict(s) I ins paramount:
•		•	interpreted as a threat to my tory decision maker accordingly.
			under section 26(c) of the Freedom of the section 26(c) of the Freedom of the fre
•			untability. By signing and submitting t
•	·		re outside of Canada. This consent is
			f you have any questions about the new please contact the Ministry of
	•		s Office at 1-800-663-7867.
ignature:	// · A	Wi	itnessed by:
Manya	Home alon		(A)

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Print name:

Mark Lanfranco

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Calibrated by: Daryl Sampson 30-Jun-22 Date:

Signature:

TEMPERATURE DEVICE CALIBRATIONS

Daryl Sampson

Reference Device						Temp	erature Set	ttings (degre	es F)									
Model CL23A Calib	rator		3	32	10	00	20	00	3(00	50	00	80	00	1700			
Device	ALA#	Serial #	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation		
Omega HH11A	3	300132	33	0.20%	99.5	-0.09%	201	0.15%	301.5	0.20%	498	-0.21%	798.2	-0.14%	1696	-0.19%		
Omega HH11A	4	200167	32	0.00%	98.5	-0.27%	200.5	0.08%	301	0.13%	499	-0.10%	799	-0.08%	1695	-0.23%		
Omega HH11A	6	600059	32	0.00%	99.8	-0.04%	201.5	0.23%	301.5	0.20%	498.4	-0.17%	799.5	-0.04%	1696	-0.19%		
TPI 341K	7	2.0315E+10	31	-0.20%	99.2	-0.14%	199.6	-0.06%	299.8	-0.03%	499.6	-0.04%	796.4	-0.29%	1695	-0.23%		
TPI 341K	8	2.0313E+10	32	0.00%	99.2	-0.14%	200.3	0.05%	300.5	0.07%	490.2	-1.02%	797.6	-0.19%	1695	-0.23%		
Cont Cmpny	10	102008464	30.5	-0.31%	98	-0.36%	199.3	-0.11%	298.5	-0.20%	498	-0.21%	796.8	-0.25%	1697	-0.14%		
Omega HH11	14	409426	31.5	-0.10%	99.5	-0.09%	199	-0.15%	299	-0.13%	499	-0.10%	797	-0.24%	1698	-0.09%		
TPI 341K	16	400120029	31	-0.20%	99	-0.18%	199.1	-0.14%	298.4	-0.21%	501	0.10%	799.8	-0.02%	1700	0.00%		
TPI 341K	18	2.0329E+10	31.4	-0.12%	99.4	-0.11%	198.5	-0.23%	299.3	-0.09%	499.5	-0.05%	799.2	-0.06%	1698	-0.09%		
TPI 341K	20	2.0329E+10	30.6	-0.28%	98.5	-0.27%	198.2	-0.27%	299.1	-0.12%	498.2	-0.19%	798	-0.16%	1697	-0.14%		
TPI 341K	22	2.0329E+10	31.2	-0.16%	99.2	-0.14%	198.5	-0.23%	299	-0.13%	498.4	-0.17%	798	-0.16%	1698	-0.09%		
Reference device is	a NIST ce	rtified digital th	ermocouple	calibrator														

Variation expressed as a percentage of the absolute temperature must be within 1.5 %