

WASTE TO ENERGY FACILITY

Appendices of Compliance Emissions Testing Report February 2022 Survey

Table of Contents

Appendix

- A Quality Assurance / Quality Control Results
- B Laboratory Results
- C Computer Generated Results
- D Field Data Sheets
- E Calibration Sheets and Technician Certificates

APPENDIX - A

QUALITY ASSURANCE / QUALITY CONTROL RESULTS

Quality assurance / quality control (QA/QC) is divided into four categories: administration, preparation, testing, and analysis. The following sections detail results found for the above four categories.

Administration:

- All field, process, and analytical data was reviewed to ensure data integrity and accuracy.
- Duplicate proof of draft and final report, including data entry, conducted.

Preparation:

- All glassware cleaned
- Blank samples of reagents collected.

Testing:

- Stack diameter and absence of cyclonic flow confirmed
- Calibrated magnehelic used for all velocity measurements
- All trains past pre- and post- leak checks.
- Isokinetics all within $100\% \pm 10\%$.

Analysis:

- Trace Metals and Mercury analysis conducted at Element Labs, Surrey, B.C.
- Fluoride (HF) analysis conducted at ALS Environmental in Burnaby, B.C.
- Nitrous Oxide (N₂O) analysis conducted with portable analyzer by A. Lanfranco and Associates.
- Particulate analysis conducted at A. Lanfranco and Associates Inc., Surrey, BC.
- Chain of Custody protocols followed for all samples.
- Excellent blank values for all sample types. All samples blank corrected.

Sample Type		Blank Value	
First Survey 2022	Unit 1	Unit 2	Unit 3
Filter	0.0 mg	0.1 mg	0.1 mg
Front Half Washings	-0.7 mg	-1.4 mg	-0.2 mg
Mercury Front	<0.02 ug	<0.02 ug	<0.02 ug
Mercury Back	<0.17 ug	<0.21 ug	<0.21 ug
Trace Metals Front *	<55.9 ug	<51.3 ug	<58.1 ug
Trace Metals Back*	<34.6 ug	<35.0 ug	<30.4 ug
Fluoride	<5.0 ug	<5.0 ug	<5.0 ug

Sum of all reported elements except Hg*

APPENDIX - B LABORATORY RESULTS

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

Attn: Missy

Sampled By:

Company:

V4N 4W7

Project ID: Metro Vancouver WTE

Filter Reagent Blanks

Project Name: **Project Location:**

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554859

Control Number:

Date Received: Feb 22, 2022 Date Reported: Mar 16, 2022

Report Number: 2722489

Contact (Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email - Merge Reports	PDF	COC / Test Report
Email - Multiple Reports By	Agreement PDF	COA
Email - Single Report	PDF	COR

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Filter Reagent Blanks

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554859

Control Number:

Date Received: Feb 22, 2022
Date Reported: Mar 16, 2022

Report Number: 2722489

Reference Number Sample Date Sample Time 1554859-1 Feb 14, 2022 NA 1554859-2 Feb 14, 2022 NA 1554859-3 Feb 14, 2022 NA

Sample Location

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3 Container 1 (filter) Container 1 (filter) Container 1 (filter)

Stack Samples Stack Samples Stack Samples

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	ction 1A					
Aluminum		μg	<5	7	<5	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	0.3	0.25
Chromium		μg	0.53	<0.2	<0.2	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	0.4	<0.3	<0.3	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	<0.3	0.3	11	0.25
Nickel		μg	<0.5	<0.5	<0.5	0.5
Phosphorus		μg	38	42	41	2.5
Selenium		μg	<2	<2	2.6	1.5
Tellurium		μg	<2	<2	4.4	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	2.5	2	2.6	0.5
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	µg/sample	<0.02	<0.02	<0.02	

Approved by:

Randy Neumann, BSc Division Director

RhDeunson

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7 Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Filter Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554859

Control Number:

Date Received: Feb 22, 2022
Date Reported: Mar 16, 2022
Report Number: 2722489

Method of Analysis

Method Name Method Reference Date Analysis Location Started Mercury in Air (VAN) - 1B **EMC** * Metals Emissions from Stationary Mar 14, 2022 Element Vancouver Sources, 29 Metals in Stack Samples - Front half **EMC** Metals Emissions from Stationary Feb 25, 2022 **Element Vancouver** (VAN) Sources, 29

* Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

	10000	~ T.		Invoice To	-		\$2 KNO 4		Report	То					Ad	ddit	iona	al Re	por	ts t	0	
	elemei	Ω L	Company:	A. Lanfranco & Assoc	iates Inc.		Company:						1) Na	me:							
	www.Element.	com	Address:	101-9488 189 St	reet		Address:						E	E-mail:								
	Project Inform			Surrey BC, V4N 4	4W7		9						2	2) Name:								
Project ID:		/ancouver WTE	Attention:				Attention:						E	E-mail:								
Project ID.		Reagent Blanks	Phone:	604-881-2582	2		Phone:									Sa	mple	e Cu	sto	dy		
Project Loca		toagont Blanto	Cell:	00,00,00			Cell:						S	amn	oled by							
			Fax:	e -			Fax:								oany:							
Legal Location	on		E-mail:	mark.lanfranco@alan	franco	com	E-mail 1:						\dashv				Поп	ont i	·		الدر الد	- h
PO/AFE#:	\				iranco.	COIII	E-mail 2:								uthor							n.
Proj. Acct. C	ode:		Agreement Copy of Rep		NO		Copy of Invo	ico.		YES / NO		_	-		ature:	OIK	iiiuio	atou	OII	110 11	01111.	
Quote #:		The state of	Copy of Rep	Joil. TEST		7	esults		Requirem					_	Time:	_						\dashv
	The state of the s	REAL PROPERTY OF			IXE	אטונות	esuits		Keyullell	iciito				ater	Time.			T				
	Same Day (2009			P" is requested, turn around will	✓ E	mail [QA/QC	П	CDWORG [SPIGEC												
	☐ Next Day/Two D	Pay (100%)		100% RUSH priority, with pricing nd time to match. Please contact	□ c	nline [✓ PDF	☐ AI	B Tier 1 [BCCSR	เร											
	Three or Four D	53	the lab prior	to submitting RUSH samples. If	☐ F	ax [Excel		ther (list b	oolow)	Containers											
	5 to 7 Days (Reg	Jular TAT)		es require RUSH, please indicate he special instructions.				"	Milei (list i	Jelow)	ont											
Date Requ			2003002	Control of the Contro							of C											- 3
	Special Instr	uctions/Comments	(please inclu	de contact information includi	ng phone	numbe	er if different t	from ab	ove).		er (
											Numk	ICAP	£									
				* Please report µg/sample	Dep	oth	1			ī	Z	\subseteq	工			_						Щ
	Site I.D.		Sample De	escription	start		Date/Tir	20000000	Matrix	Sampling								abo				
	Olto I.B.		oumpio B	ocompact.	in cn	n m	sample	ed		method	$ \downarrow$		(√ r	eleva	ant	sam	ples	s be	low	')	
1		Reagent E	Blank Unit 1	Container 1(filter)			14-Feb	-22			1	1	√		11/2							
2														3								
3		Reagent E	Blank Unit 2	2 Container 1 (filter)			14-Feb	-22			1	1	√									
4	L. C.																					
5		Reagent E	Blank Unit 3	3 Container 1 (filter)		•	14-Feb	-22	×		1	1	1				3.2					
6		, todge.ii =		()		,																
7																				+		\Box
8																						
9		 																				
10		 																				
											\vdash					+		-				
11		-			$\vdash \vdash \vdash$						_					+		-		-		
12																+		-		-		\vdash
13										-						-				+		\vdash
14		 									<u> </u>		\vdash	-		+	- 6	\dashv	127	+		
15	DI		Ilos Ibosessella	aug gammlag	├ ─ '		ı								-00	Da	te/Tir	ne sta	amn'			
	Please indicate any potentially hazardous samples Submission of this form acknowledges acceptance of Element's Standard of				ot· 1	554859	COC				Γem _l ceiv		7	4	1 11	EH:	22 1	4.4	痘			
Submiss	sion of this form a	cknowledges ac	t com/torms	/terms-and-conditions)	-'	111111	NIEMIE I BII							d: 174 FEB 22 14:44 Method:							_	
		Ja.//www.eleffleff	L.COM/LEMMS	rterms-and-conditions)		\mathbf{III}					261	1451)	IVICUI	Ju.	_							\dashv
Page of Control #							直接性 [法] 建1%	mia	Wa	ybill	_											
ED	120-005	John of #									Received by:											

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554677

Control Number:

Date Received: Feb 22, 2022 Date Reported: Mar 16, 2022

Report Number: 2722236

Contact	Company	Address
Mark Lanfranco	A. Lanfranco & Associates	#101, 9488 - 189 Street
		Surrey, BC V4N 4W7
		Phone: (604) 881-2582 Fax: (604) 881-2581
		Email: mark.lanfranco@alanfranco.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email - Merge Reports	PDF	COC / Test Report
Email - Multiple Reports By	Agreement PDF	COA
Email - Single Report	PDF	COR

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554677

Control Number:

Date Received: Feb 22, 2022 Date Reported: Mar 16, 2022

Report Number: 2722236

 Reference Number
 1554677-1
 1554677-2
 1554677-3

 Sample Date
 Feb 14, 2022
 Feb 14, 2022
 Feb 14, 2022

 Sample Time
 NA
 NA
 NA

 Sample Location
 NA
 NA
 NA

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Frac	tion 1A					
Aluminum		μg	<5	<5	<5	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1	2	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	<0.2	<0.2	<0.2	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	1	<0.3	0.4	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	0.3	<0.3	<0.3	0.25
Nickel		μg	<0.5	<0.5	<0.5	0.5
Phosphorus		μg	<2	3	<2	2.5
Selenium		μg	<2	<2	2.9	1.5
Tellurium		μg	<2	2	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	2	1	2	0.5
Back Half Metals Frac	tion 2A					
Aluminum		μg	<5	<5	<5	5
Antimony		μg	<3	3	<3	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	< 0.3	0.25
Chromium		μg	0.2	<0.2	0.49	0.2
Cobalt		μg	<0.3	<0.3	< 0.3	0.25
Copper		μg	0.5	0.7	1	0.25
Lead		μg	4.2	2	3.7	1.5
Manganese		μg	0.8	0.7	0.5	0.25
Nickel		μg	0.5	<0.5	1	0.5
Phosphorus		μg	20	20	20	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<2	<2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	1	1	1	0.5
Volume	Sample	mL	230	230	230	
Volume	aliquot volume	mL	180	180	180	
Mercury by CVAA						
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554677

Control Number:

Date Received: Feb 22, 2022
Date Reported: Mar 16, 2022

Report Number: 2722236

 Reference Number
 1554677-1
 1554677-2
 1554677-3

 Sample Date
 Feb 14, 2022
 Feb 14, 2022
 Feb 14, 2022

 Sample Time
 NA
 NA
 NA

 Sample Location
 NA
 NA
 NA

Sample Description Reagent Blank Unit 1 Reagent Blank Unit 2 Reagent Blank Unit 3

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	< 0.02	< 0.02	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	230	230	230	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	50	50	50	
Mercury	Fraction 2B	μg/sample	<0.1	<0.1	<0.1	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	100	98	97	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.008	<0.008	<0.008	
Mercury	As Tested	μg/L	0.08	0.06	0.06	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.03	0.02	0.02	

Approved by:

Randy Neumann, BSc Division Director

RhDeunam

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Reagent Blanks Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554677

Control Number:

Date Received: Feb 22, 2022 Date Reported: Mar 16, 2022

Report Number: 2722236

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Mar 14, 2022	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	* Metals Emissions from Stationary Sources, 29	Mar 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	* Metals Emissions from Stationary Sources, 29	Mar 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	* Metals Emissions from Stationary Sources, 29	Mar 14, 2022	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Feb 23, 2022	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Feb 23, 2022	Element Vancouver

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

																	•						
	010	emer	nt'	4 But 1	Invoice To					Report	То						Ac	diti	onal	Rep	orts	s to	
	<u> </u>			Company:	A. Lanfranco & Ass	sociates I	nc.	Company:							1) [Vam	e:						
	-	v.Element.d		Address:	101-9488 189			Address:							E-n	nail:							
		ect Informa			Surrey BC, V	N 4W7									2) N	lam	e:		9				
Project			ancouver WTE	Attention:				Attention:							E-n	nail:							
Project		Reag	gent Blanks	Phone:	604-881-2	582		Phone:											nple	Cus	tody	/	
	Location:			Cell:				Cell:							Sar	nple	d by						
	ocation:			Fax:		_		Fax:							Cor	npai	ny:						
PO/AFE				E-mail:	mark.lanfranco@al	anfranc	o.com	E-mail 1:							- 1					nt to			
	ct. Code:	-		Agreement				E-mail 2:										rk ir	ndica	ted o	n this	s for	n:
Quote #			ALCOHOLD BY	Copy of Re	port: YES	S / NO		Copy of Invo		.	YES / NO					natu							
						II.	eport R	Results		Requiren	ients				Dat	e/Tii	ne:						
	-	me Day (200%			P" is requested, turn around wi 100% RUSH priority, with pricin] Email [QA/QC	□н	CDWORG [SPIGEC												
	-	xt Day/Two Da			nd time to match. Please conta] Online [✓ PDF	□ A	B Tier 1	BCCSR	ည											
		ee or Four Da o 7 Days (Regi			to submitting RUSH samples. es require RUSH, please indica		Fax [Excel		Other (list I	nelow)	aine											
Date F	Required	o i Days (Regi	ular (AT)		he special instructions.	ie				out (iiot i	ociow)	Containers											
Dato 1		Special Instru	ctions/Comments	(nlease inclu	de contact information incl	iding pho	ne numb	er if different	from al	novo)		ğ	AP	AP AP	1	-							
				(prodoc irrola	do contact information mon	ding pric	ne namb	or il dilicicit	iioiii at	ove).		per	Front ICAP	Back ICAP	Front Hg	Back Hg	Hg	Рд			0		
		*Front and	Back ICAP as per	EPA Method	l 29. *Hg analysis as per E	PA Metho	od 29. *Ple	ease report µ	g/samp	ole.		Number	Fro	Bac	Fror	Bacl	5A F	5B F			V 70		
	0.11	1			4.	D	epth	Date/Tir			Sampling						-		ete :	abov	10		
	Site	I.D.		Sample De	escription	10000000	end cm m	sample		Matrix	method	ı			(1					oles		w	
1			F	Reagent Bla	ank Unit 1	+	1	14-Feb	-22			5	√		√			71	- T				
2				toagont Bit	and one i			14-1 60	-22				V	<u> </u>	<u> </u>	<u> </u>	√	*			\vdash		
3	S		F	Reagent Bla	ank Unit 2	+		14-Feb	-22			5	1	7	/	/	1	7			Н		
4				9				11100				H			v	V	_	*			Н		
5			F	Reagent Bla	ank Unit 3			14-Feb-	-22			5	1	1	/	√	1	7			Н		
6														•		H		Ì			Н		
7																					Н		
8																		7			Н		
9															4.0							1	
10								O.									55						
11																							
12																				13%			
13																							
14																							
15	Di				0		1 , 1															2 4	
Cul			any potential				ot· 1	554677	COC				emp		7	11	°C	Date	/Time	stam	p: # #		
					Element's Standard of terms-and-conditions)	'					650		ceive	d: (Meth	1	-4		不仁	T LL	14.	न <u>्</u> यम्		
term	S and com		ZIII TITTI TITI OI OI II I OI II				81111				S1 (8)	uzeli	verv	IVIET	JOU.								
					terms-and-conditions _j	1						D 011	,	Wiet	iou.								
Page _	of ED 120-0		Control #			1							ybill:	-									

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554669

Control Number:

Date Received: Feb 22, 2022
Date Reported: Mar 16, 2022

Report Number: 2722220

Contact	Company		Address
Mark Lanfranco	A. Lanfranco	& Associates	#101, 9488 - 189 Street
			Surrey, BC V4N 4W7
			Phone: (604) 881-2582 Fax: (604) 881-2581
			Email: mark.lanfranco@alanfranco.com
Delivery		Format	<u>Deliverables</u>
Email - Merge Reports		PDF	COC / Test Report
Email - Multiple Reports By	y Agreement	PDF	COA
Email - Single Report		PDF	COR

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE

Field Blanks Project Name:

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554669

Control Number:

Date Received: Feb 22, 2022 Date Reported: Mar 16, 2022

Report Number: 2722220

Reference Number Sample Date Sample Time **Sample Location**

Sample Description

1554669-1 Feb 15, 2022 NA

1554669-2 Feb 16, 2022

1554669-3 Feb 17, 2022

NA

NA

Field Blank Unit 1 (MV Unit 1 BLK + 4 Bottles)

Field Blank Unit 2 (MV Unit 2 BLK + 4 Bottles)

Field Blank Unit 3 (MV Unit 3 BLK + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fraction 1	A					
Aluminum		μg	5	7	6	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	<0.3	<0.3	<0.3	0.25
Chromium		μg	<0.2	<0.2	<0.2	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	1	<0.3	0.7	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	<0.3	0.7	0.3	0.25
Nickel		μg	<0.5	<0.5	<0.5	0.5
Phosphorus		μg	45	40	44	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<2	<2	2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	4.9	3.6	5.1	0.5
Back Half Metals Fraction 2	A					
Aluminum		μg	<5	<5	<5	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<0.9	<0.9	<0.9	1
Cadmium		μg	<0.2	<0.2	<0.2	0.25
Chromium		μg	0.65	<0.2	<0.2	0.2
Cobalt		μg	<0.2	<0.2	<0.2	0.25
Copper		μg	2	1	0.6	0.25
Lead		μg	3.0	2	3.3	1.5
Manganese		μg	0.8	0.3	0.6	0.25
Nickel		μg	1	1	0.9	0.5
Phosphorus		μg	20	25	20	2.5
Selenium		μg	5.1	3.7	<1	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<1	<1	3.0	1.5
Vanadium		μg	<0.9	<0.9	<0.9	1
Zinc		μg	2	2	2	0.5
Volume	Sample	mL	325	325	325	
Volume	aliquot volume	mL	275	275	275	
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05	< 0.05	<0.05	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Field Blanks

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554669

Control Number:

Date Received: Feb 22, 2022
Date Reported: Mar 16, 2022
Report Number: 2722220

Report Number: 2722220

 Reference Number
 1554669-1
 1554669-2
 1554669-3

 Sample Date
 Feb 15, 2022
 Feb 16, 2022
 Feb 17, 2022

 Sample Time
 NA
 NA
 NA

Sample Location

Sample Description Field Blank Unit 1 (MV Unit 1 BLK + 4

Bottles)

Field Blank Unit 2 (MV Unit 2 BLK + 4 Bottles) Field Blank Unit 3 (MV Unit 3 BLK + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - C	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	<0.02	<0.02	<0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	325	325	325	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	µg/sample	<0.1	<0.1	<0.1	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	165	170	155	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	µg/sample	<0.01	<0.01	<0.01	
Mercury	As Tested	μg/L	<0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	500	1000	1000	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	µg/sample	< 0.04	<0.08	<0.08	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	<0.02	<0.02	<0.02	

Approved by:

Randy Neumann, BSc Division Director

RhDeunson

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Field Blanks

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554669

Control Number:

Date Received: Feb 22, 2022 Date Reported: Mar 16, 2022

Report Number: 2722220

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Mar 14, 2022	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	* Metals Emissions from Stationary Sources, 29	Mar 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	* Metals Emissions from Stationary Sources, 29	Mar 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	* Metals Emissions from Stationary Sources, 29	Mar 9, 2022	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	* Metals Emissions from Stationary Sources, 29	Mar 14, 2022	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Feb 23, 2022	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	* Metals Emissions from Stationary Sources, 29	Feb 23, 2022	Element Vancouver
		* Deference Method Modified		

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

> Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

ele	emenť	WEST TO	Invoice To	Sec.		12 11 21	N 195	Repor	t To				1		Ada	litio	m al l			
		Company:	A. Lanfranco & Asso	ciates Ir	nc.	Company:		1					4) 1			IIIIO	naii	Repo	rts t	Ю.
	w.Element.com	Address:	101-9488 189 \$	Street		Address:								lame) :					
100	ect Information		Surrey BC, V4N	1 4W7							_		E-m	_						
Project ID:	Metro Vancouver WTE	Attention:				Attention:							2) N	-): 					
Project Name:	Field Blanks	Phone:	604-881-258	32		Phone:					_		E-m	ail:						
Project Location:		Cell:				Cell:		_								amp	ole C	Custo	dy	
Legal Location:		Fax:				Fax:					_	_	1	0.50	by:	_				
PO/AFE#:		E-mail:	mark.lanfranco@alar	ofranco	com	E-mail 1;							Con	ipan	y: _					
Proj. Acct. Code:		Agreement ID:		THE COLUMN	7.00111	E-mail 2:							. 1	auth	orize	Ele	men	t to p	rocee	ed with
Quote #:		Copy of Report	: YES /	NO		Copy of Inve	nico:		VEO / N					the	work	indi	cate	d on	this fo	orm:
			THE RESERVE ASSESSMENT		eport F	Results		Poquiron	YES / No	0			Sign	_						
☐ Sar	ne Day (200%)	When "ASAD" is	romantal I					Requiren	nents				Date	/Tim	e:					
The second second	kt Day/Two Day (100%)	default to a 100%	requested, turn around will RUSH priority, with pricing			QA/QC		HCDWORG	SPIGEC											T
	ee or Four Days (50%)	and turn around til	me to match. Please contact		Online [✓ PDF			BCCSR	1										
✓ 5 to	7 Days (Regular TAT)	not all samples re	ubmitting RUSH samples. If quire RUSH, please indicate	✓ F	Fax [Excel				Containers										
Date Required		in the s	pecial instructions.					Other (list I	below)	onta										
	Special Instructions/Commen	its (please include c	ontact information includi	ng nhan		16 1166				₩	۵						1 1			1 1
		1	omaci information includi	ng phon	e numbe	er if different f	rom at	oove).		e e	SA	S	P.	P			1 1			
	*Front and Back ICAP as p	per EPA Method 29.	*Hg analysis as per EPA	Method	20 *DI					Number	Front ICAP	Back ICAP	Front Hg	Back Hg	만 모	?	11		100	
011				Dep	oth			ole.		Ĭ	正	Ba	F (g i	5B					
Site	I.D.	Sample Descrip	otion	start		Date/Tin		Matrix	Sampling					Er	iter i	test	s ab	ove		N
1	Field Disast	11. 24. 4. 40.00 4.14.		in cn	n m	sample	d	Matrix	method				(√ r					s be	low)	
2	Field Blank	Unit 1 (MV Unit	1 BLK + 4 Bottles)			15-Feb-	22			5	1		/ _/	, T	/ /	7.0	Ė	T		
3	Field Dlawle	11 " 0 / 0 0 / 1 0 / 1 0										_	, ,	-	+		\vdash	-		
4	Fleid Blank	Unit 2 (MV Unit	2 BLK + 4 Bottles)			16-Feb-	22			5	/	1	//	/	//		\vdash	+	+	
5	FillDi									Ť	Ť	1	* *	- -	\ <u>\</u>		\vdash	-	_	
6	Field Blank	Unit 3 (MV Unit	3 BLK + 4 Bottles)			17-Feb-	22			5	/	7	//	/ /	1		\vdash	+		
7											V	<u> </u>	V V	\ <u>'</u>	\ <u>'</u>	\vdash		-		
7										\vdash		-		+						
8										\vdash		-			-		-	-		
9												+			-		\dashv	-		
10										\vdash	-	+		-			_			
11										H				-			_	V.		
12										\vdash			-	-	-		_	4		
13							-			H		-	-					-		
14							\dashv			\dashv			-							
15							+			\dashv		-	-							
Please	indicate any potentia	lly hazardous s	samples									2,								
Submission of the	nis form acknowledges ac	centance of Flom	ont's Ctonderd - 5	Lot:	155	4669 co	С				emp.	. ,–	11.	°C			e star			
terms and condi	tions (https://www.elemen	t.com/terms/term	s-and-conditions)					7 m. n.			eived		1.4		10 H	:62	710	1:43		
ige of _										Deliv	ery N	/iethc	od:							
ED 120-00	Control #									Wayl	oill:									
20 00										Rece		— hv:								

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Metro Vancouver WTE

Metals and Hg Samples

Project Name: Project Location:

LSD: P.O.:

Project ID:

Proj. Acct. code:

Lot ID: 1554687

Control Number:

Date Received: Feb 22, 2022 Date Reported: Mar 16, 2022

Report Number: 2722282

Contact	Company		Address
Mark Lanfranco	A. Lanfranco	& Associates	#101, 9488 - 189 Street
			Surrey, BC V4N 4W7
			Phone: (604) 881-2582 Fax: (604) 881-2581
			Email: mark.lanfranco@alanfranco.com
Delivery		Format	<u>Deliverables</u>
Email - Merge Reports		PDF	COC / Test Report
Email - Multiple Reports By	y Agreement	PDF	COA
Email - Single Report		PDF	COR

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554687

Control Number:

Date Received: Feb 22, 2022 Date Reported: Mar 16, 2022

Report Number: 2722282

Reference Number Sample Date Sample Time

Sample Location

1554687-1 Feb 14, 2022 NA

1554687-2 Feb 15, 2022

1554687-3 Feb 15, 2022

NA

NA

Sample Description Unit 1 Run 1 (Unit 1

R-1 + 4 Bottles)

Unit 1 Run 2 (MV Unit 1 R-2 + 4 Bottles)

Unit 1 Run 3 (MV Unit 1 R-3 + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Front Half Metals Fra	ction 1A					
Aluminum		μg	27	20	20	5
Antimony		μg	<2	<2	3	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	22	2.6	2	0.25
Chromium		μg	2.2	0.56	0.47	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	5.9	4.7	5.5	0.25
Lead		μg	6.7	4.5	8.5	1.5
Manganese		μg	2	2	2	0.25
Nickel		μg	3.3	2	0.9	0.5
Phosphorus		μg	51	50	46	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	4.4	<2	<2	2
Thallium		μg	<2	2	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	86.7	74.5	99.7	0.5
Back Half Metals Fra	ction 2A	, ,				
Aluminum		μg	41	49	45	5
Antimony		μg	2	<2	<2	2.5
Arsenic		μg	<0.8	1	<0.8	1
Cadmium		μg	5.0	<0.2	<0.2	0.25
Chromium		μg	0.90	0.91	0.36	0.2
Cobalt		μg	<0.2	0.5	0.2	0.25
Copper		μg	2	2	1	0.25
Lead		μg	5.8	4.1	<1	1.5
Manganese		μg	10.0	2	2	0.25
Nickel		μg	2	2	2	0.5
Phosphorus		μg	22	28	22	2.5
Selenium		μg	<1	<1	1	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	<1	<1	<1	1.5
Vanadium		μg	<0.8	<0.9	<0.8	1
Zinc		μg	18	10	5.0	0.5
Volume	Sample	mL	940	825	940	
Volume	aliquot volume	mL	890	775	890	
Mercury by CVAA	•					
Mercury	As Tested	μg/L	0.11	0.06	0.07	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554687

Control Number:

Date Received: Feb 22, 2022
Date Reported: Mar 16, 2022
Report Number: 2722222

Report Number: 2722282

 Reference Number
 1554687-1
 1554687-2
 1554687-3

 Sample Date
 Feb 14, 2022
 Feb 15, 2022
 Feb 15, 2022

 Sample Time
 NA
 NA
 NA

Sample Location

Sample Description Uni

Unit 1 Run 1 (Unit 1 R-1 + 4 Bottles)

Unit 1 Run 2 (MV Unit 1 R-2 + 4 Bottles) Unit 1 Run 3 (MV Unit 1 R-3 + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - Co	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	0.044	0.03	0.03	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	940	825	940	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.4	<0.3	<0.4	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	165	155	167	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.01	<0.01	<0.01	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	1000	500	1000	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.08	< 0.04	<0.08	
Mercury	As Tested	μg/L	0.18	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.056	<0.02	<0.02	

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy Sampled By:

Company:

Project ID: Metro Vancouver WTE
Project Name: Metals and Hg Samples

Project Name: Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554687

Control Number:

Date Received: Feb 22, 2022
Date Reported: Mar 16, 2022
Report Number: 2722282

Report Number: 2722282

Reference Number Sample Date Sample Time Sample Location

Sample Description

1554687-4 Feb 15, 2022 NA

-4 1554687-5 022 Feb 16, 2022 NA 1554687-6 Feb 16, 2022 NA

A NA

Unit 2 Run 1 (MV Unit 2 R-1 + 4 Bottles) Unit 2 Run 2 (Unit 2 R-2 + 4 Bottles) Unit 2 Run 3 (MV Unit 2 R-3 + 4 Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detectio Limit
Front Half Metals Fr	action 1A					
Aluminum		μg	20	10	20	5
Antimony		μg	<2	<2	<2	2.5
Arsenic		μg	<1	<1	<1	1
Cadmium		μg	0.3	<0.3	<0.3	0.25
Chromium		μg	1.1	2.53	0.53	0.2
Cobalt		μg	<0.3	<0.3	<0.3	0.25
Copper		μg	0.9	1	2	0.25
Lead		μg	<2	<2	<2	1.5
Manganese		μg	1	1	1	0.25
Nickel		μg	<0.5	2	2	0.5
Phosphorus		μg	43	41	43	2.5
Selenium		μg	<2	<2	<2	1.5
Tellurium		μg	<2	<2	<2	2
Thallium		μg	2.5	3.9	<2	1.5
Vanadium		μg	<1	<1	<1	1
Zinc		μg	11	5.6	7.7	0.5
Back Half Metals Fra	action 2A					
Aluminum		μg	<40	<40	<40	5
Antimony		μg	<20	<20	<20	2.5
Arsenic		μg	<8	<8	<9	1
Cadmium		μg	<2	<2	<2	0.25
Chromium		μg	3.8	3.2	<2	0.2
Cobalt		μg	<2	4	<2	0.25
Copper		μg	<2	8	<2	0.25
Lead		μg	<10	20	<10	1.5
Manganese		μg	2	2	<2	0.25
Nickel		μg	<4	<4	<4	0.5
Phosphorus		μg	<20	40	<20	2.5
Selenium		μg	<10	<10	<10	1.5
Tellurium		μg	<20	<20	<20	2
Thallium		μg	<10	24	<10	1.5
Vanadium		μg	<8	<8	<9	1
Zinc		μg	<4	7	<4	0.5
Volume	Sample	mL	910	910	800	
Volume	aliquot volume	mL	860	860	750	
Mercury by CVAA						
Mercury	As Tested	μg/L	<0.05	< 0.05	< 0.05	0.05

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID: Metro Vancouver WTE Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554687

Control Number:

Date Received: Feb 22, 2022 Date Reported: Mar 16, 2022

Report Number: 2722282

Reference Number 1554687-4 1554687-5 1554687-6 Sample Date Feb 15, 2022 Feb 16, 2022 Feb 16, 2022 Sample Time NA NA NA

Bottles)

Sample Location

Sample Description Unit 2 Run 1 (MV Unit 2 R-1 + 4

Unit 2 Run 2 (Unit 2 R-2 + 4 Bottles)

Unit 2 Run 3 (MV Unit 2 R-3 + 4 Bottles)

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Analyte Units Results Results Results Limit Mercury by CVAA - Continued Dilution Factor As Tested 1 1 1 Volume Sample mL 250 250 250 25 Volume aliquot volume mL 25 25 Volume Final 40 40 40 mL Mercury Fraction 1B µg/sample < 0.02 < 0.02 < 0.02 Mercury As Tested μg/L < 0.05 < 0.05 < 0.05 0.05 As Tested **Dilution Factor** 1 1 910 910 Volume Sample mL 800 Volume aliquot volume mL 5.0 5.0 5.0 Volume Final mL 40 40 40 Mercury Fraction 2B µg/sample < 0.4 < 0.4 < 0.3 < 0.05 < 0.05 0.05 Mercury As Tested μg/L < 0.05 **Dilution Factor** As Tested 1 1 1 Volume Sample 198 150 mL 135 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Mercury Fraction 3A µg/sample < 0.02 < 0.01 < 0.01 0.05 As Tested < 0.05 < 0.05 < 0.05 Mercury μg/L **Dilution Factor** As Tested 1 1 1 Volume Sample mL 1000 500 500 Volume aliquot volume mL 25 25 25 Volume Final mL 40 40 40 Fraction 3B < 0.08 < 0.04 < 0.04 Mercury µg/sample Mercury As Tested μg/L < 0.05 < 0.05 < 0.05 0.05 **Dilution Factor** As Tested 1 1 1 Volume Sample 200 200 200 mL aliquot volume 25 25 25 Volume mL Volume Final mL 40 40 40 Fraction 3C < 0.02 < 0.02 < 0.02 Mercury µg/sample

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554687

Control Number:

Date Received: Feb 22, 2022 Mar 16, 2022 Date Reported:

Report Number: 2722282

Reference Number Sample Date Sample Time Sample Location

Sample Description

1554687-7 Feb 16, 2022 NA

1554687-8 Feb 17, 2022 NA

1554687-9 Feb 17, 2022

NA

Unit 3 Run 1 (MV Unit 3 R-1 + 4 Bottles)

Unit 3 Run 2 (MV Unit 3 R-2 + 4 Bottles)

Unit 3 Run 3 (Unit 3 R-3 + 4 Bottles)

Matrix Stack Samples Stack Samples Stack Samples Nominal Detection Analyte Units Results Results Results Limit Front Half Metals Fraction 1A Aluminum 20 20 20 5 μg Antimony 4 <2 <2 2.5 μg 2 Arsenic 1 <1 1 μg Cadmium 2 2 0.25 μg Chromium μg 0.65 0.88 0.56 0.2 Cobalt < 0.3 < 0.3 < 0.3 0.25 μg 5.1 5.1 0.25 Copper 4.7 μg Lead 6.9 20 14 1.5 μg Manganese μg 1 1 1 0.25 Nickel 1 2 0.9 0.5 μg Phosphorus 50 47 47 2.5 μg <2 1.5 Selenium <2 <2 μg Tellurium <2 <2 <2 2 μg <2 Thallium <2 <2 1.5 μg Vanadium <1 <1 <1 1 μg Zinc μg 71.8 79.8 101 0.5 **Back Half Metals Fraction 2A** 5 <40 100 10 Aluminum μg Antimony <20 <20 <2 2.5 μg Arsenic <9 <9 < 0.9 1 μg Cadmium <2 <2 < 0.2 0.25 μg Chromium 2 4.3 0.62 0.2 μg <2 0.25 Cobalt <2 < 0.2 μg Copper <2 <2 2 0.25 μg Lead 24 20 4.9 1.5 μg <2 0.25 Manganese <2 μg Nickel μg <4 <4 8.0 0.5 Phosphorus 40 30 20 2.5 μg Selenium 1.5 μg <10 <10 <1 Tellurium <20 <20 <2 2 μg Thallium <10 <10 <1 1.5 μg Vanadium <9 <9 < 0.9 1 μg Zinc <4 6 6.0 0.5 μg Sample 760 800 765 Volume mL Volume aliquot volume mL 710 750 715 Mercury by CVAA As Tested 0.08 0.17 0.05 Mercury µg/L 0.11

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com

W: www.element.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE

Project Name: Metals and Hg Samples

Project Location: LSD:

P.O.: Proj. Acct. code: Lot ID: 1554687

Control Number:

Date Received: Feb 22, 2022 Date Reported: Mar 16, 2022

Report Number: 2722282

Reference Number 1554687-7 1554687-8 1554687-9 Sample Date Feb 16, 2022 Feb 17, 2022 Feb 17, 2022 Sample Time NA NA NA

Sample Location

Sample Description Unit 3 Run 1 (MV Unit 3 R-1 + 4

Unit 3 Run 2 (MV Unit 3 R-2 + 4

Unit 3 Run 3 (Unit 3 R-3 + 4 Bottles)

Bottles) Bottles)

		Matrix	Stack Samples	Stack Samples	Stack Samples	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mercury by CVAA - Co	ontinued					
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	250	250	250	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 1B	μg/sample	0.03	0.044	0.068	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	760	800	765	
Volume	aliquot volume	mL	5.0	5.0	5.0	
Volume	Final	mL	40	40	40	
Mercury	Fraction 2B	μg/sample	<0.3	<0.3	<0.3	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	161	145	192	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3A	μg/sample	<0.01	<0.01	< 0.02	
Mercury	As Tested	μg/L	< 0.05	< 0.05	< 0.05	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	1000	1000	500	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3B	μg/sample	<0.08	<0.08	<0.04	
Mercury	As Tested	μg/L	0.12	0.10	0.06	0.05
Dilution Factor	As Tested		1	1	1	
Volume	Sample	mL	200	200	200	
Volume	aliquot volume	mL	25	25	25	
Volume	Final	mL	40	40	40	
Mercury	Fraction 3C	μg/sample	0.037	0.033	0.02	

Approved by:

Randy Neumann, BSc **Division Director**

RhDeunam

T: +1 (604) 514-3322 F: +1 (604) 514-3323

E: info.vancouver@element.com W: www.element.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street Surrey, BC, Canada

V4N 4W7

Attn: Missy

Sampled By: Company: Project ID: Metro Vancouver WTE
Project Name: Metals and Hg Samples

Project Location:

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1554687

Control Number:

Date Received: Feb 22, 2022
Date Reported: Mar 16, 2022
Report Number: 2722282

Method of Analysis

mounda of Amaryolo				
Method Name	Reference	Method	Date Analysis Started	Location
Mercury in Air (VAN) - 1B	EMC	* Metals Emissions from Stationary Sources, 29	Mar 14, 2022	Element Vancouver
Mercury in Air (VAN) - 2B	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3A	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 14, 2022	Element Vancouver
Mercury in Air (VAN) - 3B	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 9, 2022	Element Vancouver
Mercury in Air (VAN) - 3C	EMC	 Metals Emissions from Stationary Sources, 29 	Mar 14, 2022	Element Vancouver
Metals in Stack Samples - Back half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Feb 23, 2022	Element Vancouver
Metals in Stack Samples - Front half (VAN)	EMC	 Metals Emissions from Stationary Sources, 29 	Feb 23, 2022	Element Vancouver
		+ Defense A Method Medicinal		

^{*} Reference Method Modified

References

EMC Emission Measurement Center of EPA

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

						,											W						
	ele.	mei	nt'		Invoice To					Report	То						Ad	diti	ona	l Re	ports	s to	
				Company:	A. Lanfranco & Associ		c.	Company:							1) [lame	э:						
CONTRACT OF THE PARTY.		Element.		Address:	101-9488 189 S			Address:							E-n	nail:							
		t Informa			Surrey BC, V4N	4W7									2) N	lame	э:						
Projec	_		ancouver WTE	Attention: .				Attention:							E-m	ail:							
	t Name:	Metals a	nd Hg Samples	Phone:	604-881-258	2		Phone:										Sam	ıple	Cus	stody	y	
II .	t Location:			Cell:				Cell:							Sar	nple	d by	_					
	Location:			Fax:				Fax:							Cor	npar	ıy:						
PO/AF	_			E-mail:	mark.lanfranco@alar	nfranco	o.com	E-mail 1:							I	aut	hori	ze E	leme	ent to	proc	eed v	vith
	Acct. Code:			Agreement I				E-mail 2:														s form	
Quote	#:		100 200 15 19 15 1	Copy of Rep	oort: YES /			Copy of Invoi			YES / NO	100	-		Sigi	natur	e:						
No. of Street, or other Persons					and the second of the	I Re	eport R	Results		Requirem	ents				Dat	e/Tin	ne:						
		e Day (200%		When "ASAF	" is requested, turn around will	✓	Email [QA/QC	Пн	CDWORG [SPIGEC							.					
		Day/Two Day			00% RUSH priority, with pricing and time to match. Please contact		Online [✓ PDF			BCCSR	ဖြ											
		or Four Da		the lab prior t	to submitting RUSH samples. If		Fax [Excel		ther (list b		ine											
Date	Required	7 Days (Regi	ular IAI)		s require RUSH, please indicate ne special instructions.				C	mei (iist i	Jelow)	Containers											
Date		necial Instru	ections/Comments	/please inclus	de contact information includ							ofC	4	d.									
	O,	ocolai motta	ottoris/comments	(piease includ	de contact information includ	ing phor	ie numbe	er ir different fr	om ab	ove).			t C	2	t Hg	Б	Hg	운					
		*Front and	Back ICAP as per	EPA Method	29. *Hg analysis as per EPA	Method	d 29. *Ple	ease report ud	/samp	le		Number	Front ICAP	Back ICAP	Front Hg	Back	5A H	5B H				9.18	
							pth	Date/Tim			0	_	-	ш	ш.			-	-4-	- ls - s			
	Site I.I	D.		Sample Des	scription	160	end	sampled	000	Matrix	Sampling method	ı			11					abov	re belo		
1			Unit 1 Ru	ın 1 /l Init 1	R-1 + 4 Bottles)	III C	m m	14 Feb (20			→	/	/	('	/ [/ I	/ 1	ann	163	Jeio	· vv)	
2					t 1 R-2 + 4 Bottles)			14-Feb-					/	√ /	√ /	√	√	√	-		\square		
3				the second second second second	t 1 R-3 + 4 Bottles)			15-Feb-				_	/	<u> </u>	/	√	/	/			\square		
4			Office Frederic	o (IVIV OIII)	t 11t-5 + 4 Dotties)			15-Feb-	22			_5	√	$\stackrel{\checkmark}{\vdash}$	<u> </u>	√	<u> </u>	✓			\square		
5			Unit 2 Run 1	(MV unit 2	Run- 1 + 4 Bottles)			15-Feb-2	22			- 5	/	7	/	$\sqrt{}$		/	-		\vdash		
6					Run-2 + 4 Bottles)			16-Feb-2				5		' /	/	'	/	/	+		\vdash		
7					2 Run-3 + 4 Bottles)			16-Feb-2				5		× ./	v /	·/	v /	/			\vdash		-
8					,			101001				Ŭ	•	Ť	<u>`</u>	*+	<u> </u>	+	+		\vdash		
9			Unit 3 R - 1	1 (MV Unit	3 R-1 + 4 Bottles)			16-Feb-2	22			5	1	1	/	7	7	7			H		
10					t 3 R-2 + 4 Bottles)			17-Feb-2				5		<u>, </u>	7	7	/	/			H		
11			Unit 3 Rui	n 3 (Unit 3	- R-3 + 4 Bottles)			17-Feb-2				_		7	7	7	7	7			\vdash		
12					, , , , , , , , , , , , , , , , , , ,							Ť		H		-		`					
13									$\neg \uparrow$					\dashv		\dashv					H		
14														\dashv		\neg					\vdash		
15							-							\neg		\dashv					H		
	Please		any potentiall						_			Т	emp	7	_	()	C	Date/	Time	stam	p:		
	Submission of this form acknowledges acceptance of Element's Standard of				Lot: 1554687 ^{COC}						received: 7 FEG 22 14:45												
							. 100	74001							0					the same of			
ter	ns and condit				terms-and-conditions)						, ,		very		iod:					du not s			
	ns and condit	tions (https										Deli			nod:					the sort o			

CERTIFICATE OF ANALYSIS

Work Order : VA22A3408

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF

C-O-C number : --Sampler : ---

Site : ---

Quote number : Standing Offer

No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 3

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 18-Feb-2022 13:30

Date Analysis Commenced : 02-Mar-2022

Issue Date : 03-Mar-2022 10:33

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Lindsay Gung Supervisor - Water Chemistry Inorganics, Burnaby, British Columbia

Page : 2 of 3

Work Order : VA22A3408

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

μg/sample micrograms per sample	Unit	Description
mL millilitre		

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.

Page : 3 of 3 Work Order : VA22A3408

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Analytical Results

Sub-Matrix: Impinger			CI	ient sample ID	Unit 1 HF Run 1	Unit 1 HF Run 2	Unit 1 HF Run 3	Unit 2 HF Run 1	Unit 2 HF Run 2
(Matrix: Air)									
			Client samp	ling date / time	15-Feb-2022	15-Feb-2022	15-Feb-2022	16-Feb-2022	16-Feb-2022
Analyte	CAS Number	Method	LOR	Unit	VA22A3408-001	VA22A3408-002	VA22A3408-003	VA22A3408-004	VA22A3408-005
					Result	Result	Result	Result	Result
Field Tests									
volume, impinger		EP248	0.1	mL	290	340	340	295	365
Anions and Nutrients									
fluoride	16984-48-8	E248.F	5.0	µg/sample	<5.0	<34.0 DLDS	<17.0 DLDS	<14.8 DLDS	<18.2 DLDS

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

Sub-Matrix: Impinger			CI	ient sample ID	Unit 2 HF Run 3	Unit 3 HF Run 1	Unit 3 HF Run 2	Unit 3 HF Run 3	
(Matrix: Air)									
Client sampling date / time				16-Feb-2022	17-Feb-2022	17-Feb-2022	17-Feb-2022		
Analyte	CAS Number	Method	LOR	Unit	VA22A3408-006	VA22A3408-007	VA22A3408-008	VA22A3408-009	
					Result	Result	Result	Result	
Field Tests									
volume, impinger		EP248	0.1	mL	340	350	335	355	
Anions and Nutrients									
fluoride	16984-48-8	E248.F	5.0	μg/sample	<17.0 DLDS	<17.5 DLDS	<16.8 DLDS	<17.8 DLDS	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : VA22A3408

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF

C-O-C number : ---Sampler : ---Site : ----

Quote number : Standing Offer

No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 6

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 18-Feb-2022 13:30

Issue Date : 03-Mar-2022 10:33

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Kev

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples ■ No Quality Control Sample Frequency Outliers occur.									

Page : 3 of 6
Work Order : VA22A3408

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Air Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Air					⊏\	/aluation. ^ -	Holding time exce	euance,	– vviti iii i	Holding Till
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation					
Container / Client Sample ID(s)			Preparation	Holding Times Rec Actual		Eval	Analysis Date	Holding Times Rec Actual		Eval
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)			Date	Rec	Actual			Rec	Actual	
HDPE										
Unit 3 HF Run 1	E248.F	17-Feb-2022	02-Mar-2022				02-Mar-2022	28 days	13 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE	E248.F	17-Feb-2022	02-Mar-2022				02-Mar-2022	00 4	40 4	✓
Unit 3 HF Run 2	E240.F	17-Feb-2022	02-Wai-2022				02-IVIAI-2022	20 days	13 days	•
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 3 HF Run 3	E248.F	17-Feb-2022	02-Mar-2022				02-Mar-2022	28 days	13 days	✓
OIR OTH TRAITS	22 10.1	11 1 05 2022	OZ Wai ZOZZ				OZ Mai ZOZZ	20 dayo	10 dayo	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 2 HF Run 1	E248.F	16-Feb-2022	02-Mar-2022				02-Mar-2022	28 days	14 days	✓
SIN Z I II NAII I			02 mai 2022				02 mai 2022	20 44,0	aays	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 2 HF Run 2	E248.F	16-Feb-2022	02-Mar-2022				02-Mar-2022	28 days	14 days	✓
One 2 The Red 2	22 10.1	10 1 05 2022	OZ Mai ZOZZ				02 Wai 2022	20 dayo	11 dayo	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 2 HF Run 3	E248.F	16-Feb-2022	02-Mar-2022				02-Mar-2022	28 days	14 days	✓
Onit 2 Till Pour S	L240.1	10-1 05-2022	02-IVId1-2022				02-Wai-2022	20 days	14 days	•
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 1 HF Run 1	E248.F	15-Feb-2022	02-Mar-2022				02-Mar-2022	20 days	15 days	√
UIIIL I FF KUII I	E240.F	10-Feb-2022	02-Wai-2022				02-War-2022	zo uays	15 days	•

 Page
 : 4 of 6

 Work Order
 : VA22A3408

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Matrix: Air

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding	Holding Times Eval		Analysis Date Holding		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 1 HF Run 2	E248.F	15-Feb-2022	02-Mar-2022				02-Mar-2022	28 days	15 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 1 HF Run 3	E248.F	15-Feb-2022	02-Mar-2022				02-Mar-2022	28 days	15 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 5 of 6 Work Order : VA22A3408

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Air Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Method QC Lot # QC Regular Actual Expected Evaluation Analytical Methods Laboratory Duplicates (DUP) Fluoride by IC (Impinger, mg/sample) 421546 12 8.3 5.0 E248.F Laboratory Control Samples (LCS) Fluoride by IC (Impinger, mg/sample) 12 421546 1 8.3 5.0 E248.F Method Blanks (MB) Fluoride by IC (Impinger, mg/sample) 421546 E248.F 1 12 8.3 5.0 Matrix Spikes (MS) Fluoride by IC (Impinger, mg/sample) 421546 1 12 8.3 5.0 E248.F

Page : 6 of 6
Work Order : VA22A3408

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Fluoride by IC (Impinger, mg/sample)	E248.F Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation of Anions for IC (Impinger)	EP248 Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.

QUALITY CONTROL REPORT

Work Order :VA22A3408 Page : 1 of 3

Client : A. Lanfranco & Associates Inc. Contact

Mark Lanfranco

: Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone :604 881 2582

Project : Metro Vancouver WTE

:HF C-O-C number Sampler Site

Quote number : Standing Offer

No. of samples received : 9 No. of samples analysed : 9 Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address :8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone :778-370-3279

Date Samples Received : 18-Feb-2022 13:30

Date Analysis Commenced : 02-Mar-2022

:03-Mar-2022 10:33 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Supervisor - Water Chemistry Lindsay Gung Inorganics, Burnaby, British Columbia Page : 2 of 3
Work Order : VA22A3408

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Air					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Anions and Nutrient	ts (QC Lot: 421546)											
VA22A3407-001	Anonymous	fluoride	16984-48-8	E248.F	5.0	mg/sample	<5.0 µg/sample	<0.0050	0	Diff <2x LOR		
		volume, impinger		EP248	0.1	mL	235	235		Diff <2x LOR		

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Air

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 4215	46)					
fluoride	16984-48-8	E248.F	0.005	mg/sample	<0.0050	
volume, impinger		EP248	0.1	mL	500	

Page : 3 of 3
Work Order : VA22A3408

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Air						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 421546)									
fluoride	16984-48-8	E248.F	0.005	mg/sample	0.5 mg/sample	101	90.0	110	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Air					Matrix Spike (MS) Report								
					Spi	ike	Recovery (%)	Recovery	Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
Anions and Nutri	ents (QCLot: 421546)												
VA22A3407-002	Anonymous	fluoride	16984-48-8	E248.F	0.298	0.245	122	75.0	125				
					mg/sa	mg/sa							
					mple	mple							

[•] No Matrix Spike (MS) Results are required to be reported.

ALS Environmental

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

Page	1 of	
, ago		

Report To				Report Fo	ormat / Distribut	tion		Service	Reque	ested	(Rush	for rou	utine ar	nalysis	s subje	ct to ava	ilability)	ullet
Company:	A. Lanfranco and A	Associates		✓ Standard	d Other	-		Regul	lar (Stand	ard Tur	naroun	d Time	s - Busi	ness D	ays)			
Contact:	Mark Lanfranco		-	✓ PDF	Excel	Digital	Fax	Priorit	ty (2-4 Bu	ısiness (Days) -	50% S	iurcharg	ge - Co	ntact Al	LS to Conf	irm TAT	
Address:	Unit 101 9488 189	St		Email 1:	mark.lanfranco	@alanfranco.cor	n	Emer	gency (1-	2 Bus. C	Days) -	100%	Surchar	ge - C	ontact A	ALS to Cor	ıfirm TA	Т
	Surrey BC V4N 4W	V 7		Email 2:				Same	Day or V	Veekend	l Emer	gency -	Contac	t ALS t	o Confi	rm TAT		
Phone:	604-881-2582	Fax:	604-881-2581	Email 3:							Α	nalys	is Re	ques	t			
Invoice To	Same as Report?	✓ Yes	☐ No	Client / P	roject Informati	on		Please	e indica	te bel	ow Fi	tered,	Prese	erved	or bo	th (F, P,	, F/P)]
Hardcopy of I	nvoice with Report?	✓ Yes	☐ No	Job #:	Metro Vancouv	er WTE							. [
Company:				PO / AFE	: HF					1			.			• • •		
Contact:		·		LSD:	<u> </u>			:						- 1				۱ "
Address:														ı	- 1.			je
Phone:		Fax:		Quote #:														iai
Lab W	ork Order#			ALS	Brent Mack	Sampler:	A. Lanfranco and							1			ļ	ပ္မီ
(lab	use only)		· · · · · · · · · · · · · · · · · · ·	Contact:		Sampler.	A. Lamilanco and								- 1			o le
Sample		Sample I	dentification		Date	Time	Sample Type						- 1	ı				Number of Containers
#	: (Th	is description wi	II appear on the	report)	(dd-mmm-yy)	· (hh:mm)	Campic Type	<u>u</u>	Envi	ronm	ante	ı Div	dolon		4		Ц	Ž
	Unit 1 HF Run 1				15-Feb-22		Water	Х		couve		יום וג	/ISIUI	I	1		Щ	1
	Unit 1 HF Run 2						Water	X		ork Or					\perp			1
	Unit 1 HF Run 3						Water	х	V	/A2	<i>[2]</i>	₹ 34	+U C	5				1
											764	. EYY		ı				
	Unit 2 HF Run 1				16-Feb-22		Water	X				///			\perp			1
	Unit 2 HF Run 2						Water	Х				١Ŋ			\perp			1
	Unit 2 HF Run 3						Water	X										1
				•					Telepho	ne : +1	604 25	3 4168						
	Unit 3 HF Run 1				17-Feb-22		Water	X	I				1		T			1
	Unit 3 HF Run 2						Water	Х										1
	Unit 3 HF Run 3						Water	Х										1
	Special Inst	ructions / Regu	lations with wa	ater or land use (CCN	/IE-Freshwater	Aquatic Life/BC	CSR - Commerci	al/AB T	ier 1 - N	latura	l, etc) / Ha:	zardo	us D	etails			
Dianan manant	/oomala																	1
Please report	ug/sample		Failure to co	mplete all portions o	of this form may	delay analysis.	Please fill in this	form	FGIRI	Y				34.50				
	•	By the use of		user acknowledges a							e Exc	el tab).					- 1
	Also provided o			S location addresse										mon	analy	ses.		
	SHIPMENT RELE	ASE (client use)	SHIP	MENT RECEPT	ION (lab use on	ý)		S	HIPM	ENT	VERIF	ICAT	ION (lab us	e only)		
Released by:		Date (dd-mmm-yy)	Time (hh-mm)	Received by:	Date: 2/1%	Time:	Temperature:	Verifie	d by:		Date	e:		Time): 	Ye	servati s / No	?
					1 10	1 1		<u> </u>			Ц.,					IIT Y	es ado) SIF

CERTIFICATE OF ANALYSIS

Work Order : VA22A3407

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF

C-O-C number : --Sampler : --Site : ---

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 2

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 18-Feb-2022 13:30

Date Analysis Commenced : 02-Mar-2022

Issue Date : 03-Mar-2022 10:32

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Lindsay Gung Supervisor - Water Chemistry Inorganics, Burnaby, British Columbia

Page : 2 of 2 Work Order : VA22A3407

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
μg/sample mL	micrograms per sample millilitre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Impinger			CI	lient sample ID	Unit 1 HF Blank	Unit 2 HF Blank	Unit 3 HF Blank	
(Matrix: Air)								
			Client samp	oling date / time	15-Feb-2022	16-Feb-2022	17-Feb-2022	
Analyte	CAS Number	Method	LOR	Unit	VA22A3407-001	VA22A3407-002	VA22A3407-003	
					Result	Result	Result	
Field Tests								
volume, impinger		EP248	0.1	mL	235	245	240	
Anions and Nutrients								
fluoride	16984-48-8	E248.F	5.0	µg/sample	<5.0	<5.0	<5.0	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : VA22A3407

Client : A. Lanfranco & Associates Inc.

Contact : Mark Lanfranco

Address : Unit # 101 9488 - 189 St

Surrey BC Canada V4N 4W7

Telephone : 604 881 2582

Project : Metro Vancouver WTE

PO : HF

C-O-C number : ---Sampler : ---Site : ----

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 5

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 18-Feb-2022 13:30

Issue Date : 03-Mar-2022 10:33

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Kev

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples ■ No Quality Control Sample Frequency Outliers occur.		

Page : 3 of 5
Work Order : VA22A3407

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Air Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

vicuix. All						aluation. • –	riolding time excel	cuarioc ,	- *************************************	riolaling rii
Analyte Group	Method	Sampling Date	Ext	traction / Preparation				Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding	Eval	
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 3 HF Blank	E248.F	17-Feb-2022	02-Mar-2022				02-Mar-2022	28 days	13 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 2 HF Blank	E248.F	16-Feb-2022	02-Mar-2022				02-Mar-2022	28 days	14 days	✓
Anions and Nutrients : Fluoride by IC (Impinger, mg/sample)										
HDPE Unit 1 HF Blank	E248.F	15-Feb-2022	02-Mar-2022				02-Mar-2022	28 days	15 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : VA22A3407

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Air Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Method QC Lot # QC Regular Actual Expected Evaluation Analytical Methods Laboratory Duplicates (DUP) Fluoride by IC (Impinger, mg/sample) 421546 12 8.3 5.0 E248.F Laboratory Control Samples (LCS) Fluoride by IC (Impinger, mg/sample) 12 421546 1 8.3 5.0 E248.F Method Blanks (MB) Fluoride by IC (Impinger, mg/sample) 421546 E248.F 1 12 8.3 5.0 Matrix Spikes (MS) Fluoride by IC (Impinger, mg/sample) 421546 1 12 8.3 5.0 E248.F

Page : 5 of 5 Work Order : VA22A3407

Client : A. Lanfranco & Associates Inc.
Project : Metro Vancouver WTE

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Fluoride by IC (Impinger, mg/sample)	E248.F Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation of Anions for IC (Impinger)	EP248 Vancouver - Environmental	Air	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Reported sample volumes are for the bottle/sub-sample submitted for the listed analyses.

QUALITY CONTROL REPORT

Laboratory

Work Order :VA22A3407

Page : 1 of 3

: Vancouver - Environmental

Client : A. Lanfranco & Associates Inc.

: Mark Lanfranco Account Manager : Brent Mack

Address : Unit # 101 9488 - 189 St

Unit # 101 9488 - 189 St Address :8081 Lougheed Highway
Surrey BC Canada V4N 4W7 Burnaby, British Columbia Canada V5A 1W9

: 604 881 2582 Telephone : 778-370-3279

Project : Metro Vancouver WTE Date Samples Received : 18-Feb-2022 13:30

C-O-C number :---- Issue Date :03-Mar-2022 10:32 Sampler :---

Quote number : Standing Offer

No. of samples received : 3
No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Contact

Telephone

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Lindsay Gung Supervisor - Water Chemistry Inorganics, Burnaby, British Columbia

Page : 2 of 3
Work Order : VA22A3407

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Air					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	Anions and Nutrients (QC Lot: 421546)										
VA22A3407-001	Unit 1 HF Blank	fluoride	16984-48-8	E248.F	5.0	mg/sample	<5.0 μg/sample	<0.0050	0	Diff <2x LOR	
		volume, impinger		EP248	0.1	mL	235	235		Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Air

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 4215	546)					
fluoride	16984-48-8	E248.F	0.005	mg/sample	<0.0050	
volume, impinger		EP248	0.1	mL	500	

Page : 3 of 3 Work Order : VA22A3407

Client : A. Lanfranco & Associates Inc.

Project : Metro Vancouver WTE

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Air						Laboratory Control Sample (LCS) Report					
						Recovery (%)	%) Recovery Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 421546)											
fluoride	16984-48-8	E248.F	0.005	mg/sample	0.5 mg/sample	101	90.0	110			

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Air					Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Anions and Nutri	ents (QCLot: 421546)										
VA22A3407-002	Unit 2 HF Blank	fluoride	16984-48-8	E248.F	0.298 mg/sa	0.245 mg/sa	122	75.0	125		
					mple	mple					

[•] No Matrix Spike (MS) Results are required to be reported.

ALS Environmental

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#	

Page	1 of	1

Report To			Rep	ort Fo	rmat / Distribut	ion		Service Requested (Rush for routine analysis subject to availability)										
Company:	A. Lanfranco and A	ssociates	 ✓S	Standard	Other			~			Turnaro							
Contact:	Mark Lanfranco		√ P	PDF	☐ Excel	Digital	☐ Fax	○Pri	ority (2	-4 Busin	ess Days)	- 50%	Surchai	ge - Co	ntact AL	S to Confi	rm TAT	
Address:	Unit 101 9488 189	St	Ema	ail 1:	mark.lanfranco(Dalanfranco.co	m	Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm To					firm TAT					
	Surrey BC V4N 4W	17	Ema	ail 2:)Sa	me Day	or Wee	kend Eme	rgency	- Conta	ct ALS	to Confir	m TAT		
Phone:	604-881-2582	Fax: 604-881-2581	Ema	Email 3: Analysis Request														
Invoice To	Same as Report?	✓ Yes	Clie	nt / Pr	oject Informatio	on		Plea	ase in	dicate	below F	iltered	d, Pres	erved	or bot	h (F, P,	F/P)	
Hardcopy of I	nvoice with Report?	✓ Yes 🗌 No	Job	#:	Metro Vancouve	er WTE												
Company:			PO.	/ AFE:	HF						- 1				.			
Contact:			LSD):										- 1				
Address:									-									န္
Phone:		Fax:	Quo	ote #:				1					. -					tain
	Vork Order # o use only)		ALS Con	tact:	Brent Mack	Sampler:	A. Lanfranco and											Number of Containers
Sample #	(Th	Sample Identification is description will appear on the re	enort)		Date (dd-mmm-ÿy)	Time (hh:mm)	Sample Type											lumbe
, r	Unit 1 HF Blank	is description will appear on the re	porty				10/-4		ᄬ	+		+	\vdash	_		+	+-+	
	Unit I he biank		·····		15-Feb-22		Water		X	_		 					 	1
		— Environmental Division	on									<u> </u>						
	Unit 2 HF Blank	Vancouver			16-Feb-22		Water		x									1
		Work Order Reference	_									1						
	Unit 3 HF Blank	- VA22A340) <i>(</i> —	\rightarrow	17-Feb-22		Water		х	\dashv	_	+	\vdash	\dashv			\dagger	\exists
	OTIKOTII BIAIK		. 11.1		17-10-22	<u> </u>	vvalei						┝╌					
			<u> </u>									<u> </u>					<u> </u>	
						<u> </u>						1				ŀ		
														1				
		— III MY PAYON IN SAME	=									 				_		
		Telephone: +1 604 253 4168					· 		-							, l		
						 	<u> </u>					_						
1						·												
									- 1							1	1 1	
	Special Instr	ructions / Regulations with wate	r or land use	(CCM	E-Freshwater A	quatic Life/BC	CSR - Commerci	al/AB	Tier '	- Nat	ural, et	c) / Ha	zardo	us D	etails			
																· ·		
Please report	ug/sample						<u> </u>						5					
							Please fill in this							,				
	At	By the use of this form the us																
		another Excel tab are the ALS	location addr					rvatio	n / ho									
Delegged by	SHIPMENT RELE			SHIPN	MENT RECEPTI	7 - 4		2300	<u> </u>	1 (57,47,64)	MENT	Text of the	FICAT		top war a go			
Released by:		Date (dd-mmm-yy). Time (hh-mm)	Received by:		Date:	Time:	Temperature:	Verit	ied by	7.	Da	te:		Time			ervation / No ?	
		,	ł	/ ~ /	2/18	11308	19 °C				ŀ						es add	
											L				GE	NE 20.0		

APPENDIX - C COMPUTER GENERATED RESULTS

Client: Metro Vancouver Date: 14-Feb-22

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time:** 12:01 - 14:04

Concentrations:

Particulate 2.33 mg/dscm 0.00102 gr/dscf

1.25 mg/Acm 0.00055 gr/Acf

1.95 mg/dscm (@ 11% O2) 0.00085 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.159 Kg/hr 0.350 lb/hr

Flue Gas Characteristics:

Flow 1135 dscm/min 40079 dscf/min

 18.92 dscm/sec
 668 dscf/sec

 2111 Acm/min
 74548 Acf/min

Velocity 13.813 m/sec 45.32 f/sec

Temperature 156.2 oC 313.2 oF

Moisture 17.4 %

Gas Analysis 9.1 % O2

10.4 % CO2

30.030 Mol. Wt (g/gmole) Dry 27.935 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7048 dscm 95.520 dscf

Sample Time 120.0 minutes Isokineticity 105.2 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 14-Feb-22

Jobsite: WTE (Burnaby, BC) Run: 1 - Particulate / Metals

Source: Unit 1 **Run Time**: 11:10 - 13:15

Control Unit (Y)	0.9864	Collection:		Gas Analys	is (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.3080	Filter (grams) 0.00320		CO2	02	Impinger 1	238.0
Pitot Factor	0.8525	Washings (grams) 0.00310	Traverse 1	10.50	9.03	Impinger 2	130.0
Baro. Press. (in. Hg)	29.85		Traverse 2	10.33	9.13	Impinger 3	32.0
Static Press. (in. H20)	-18.00	Total (grams) 0.00630				Impinger 4	8.0
Stack Height (ft)	30					Impinger 5	4.0
Stack Diameter (in.)	70.90					Impinger 6	2.0
Stack Area (sq.ft.)	27.417			10.42	9.08	Gel	13.9
Minutes Per Reading	5.0						
Minutes Per Point	5.0					Gain (grams)	427.9

					Dry Gas	Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
raverse 1	0.0	307.768								
1	5.0	311.600	0.37	1.98	63	63	6	310	1.5	104.8
2	10.0	315.640	0.41	2.19	65	65	6	313	4.7	104.8
3	15.0	319.560	0.38	2.04	69	69	7	316	8.4	105.0
4	20.0	322.760	0.25	1.34	73	73	7	316	12.5	104.7
5	25.0	325.850	0.23	1.25	75	75	8	315	17.7	104.9
6	30.0	329.500	0.32	1.74	76	76	8	314	25.2	104.9
7	35.0	333.900	0.46	2.52	79	79	8	314	45.6	105.1
8	40.0	338.580	0.52	2.85	79	79	8	314	53.2	105.2
9	45.0	342.890	0.44	2.41	80	80	8	314	58.3	105.1
10	50.0	347.400	0.48	2.64	80	80	8	312	62.5	105.2
11	55.0	351.620	0.42	2.32	81	81	8	312	66.1	104.9
12	60.0	355.750	0.40	2.21	80	80	8	308	69.4	105.1
raverse 2	0.0	355.750								
1	5.0	359.650	0.36	1.98	79	79	9	312	1.5	105.0
2	10.0	363.330	0.32	1.76	80	80	9	312	4.7	104.9
3	15.0	367.560	0.42	2.32	81	81	9	311	8.4	105.1
4	20.0	372.080	0.48	2.64	81	81	9	313	12.5	105.3
5	25.0	376.650	0.49	2.70	82	82	9	313	17.7	105.2
6	30.0	380.940	0.43	2.38	83	83	9	312	25.2	105.1
7	35.0	385.180	0.42	2.32	83	83	9	313	45.6	105.1
8	40.0	389.520	0.44	2.43	83	83	9	314	53.2	105.2
9	45.0	393.900	0.45	2.48	83	83	8	314	58.3	105.0
10	50.0	398.180	0.43	2.37	83	83	8	314	62.5	104.9
11	55.0	402.250	0.39	2.15	82	82	8	315	66.1	105.0
12	60.0	406.220	0.34	2.04	83	83	6	315	69.4	109.5
Average:			0.402	2.211	78.5	78.5	8.0	313.2		105.2

Client: Metro Vancouver Date: 15-Feb-22

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 1 **Run Time:** 09:01 - 11:23

Concentrations:

Particulate 1.89 mg/dscm 0.00083 gr/dscf

1.04 mg/Acm 0.00045 gr/Acf

1.55 mg/dscm (@ 11% O2) 0.00068 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.132 Kg/hr 0.290 lb/hr

Flue Gas Characteristics:

Flow 1163 dscm/min 41059 dscf/min

 19.38 dscm/sec
 684 dscf/sec

 2110 Acm/min
 74500 Acf/min

Velocity 13.804 m/sec 45.29 f/sec

Temperature 153.7 oC 308.6 oF

Moisture 16.7 %

Gas Analysis 8.9 % O2

10.5 % CO2

30.040 Mol. Wt (g/gmole) Dry 28.035 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7012 dscm 95.392 dscf

Sample Time 120.0 minutes Isokineticity 102.6 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 15-Feb-22 Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals 09:01 - 11:23 Source: Unit 1 Run Time: Control Unit (Y) 0.9864 Collection Gas Analysis (Vol. %): Condensate Collection: 0.3080 Filter (grams) 0.00410 CO2 10.33 Impinger 1 Impinger 2 206.0 Nozzle Diameter (in.) Pitot Factor 0.8525 Washings (grams) 0.00100 134.0 Baro. Press. (in. Hg) 30.13 Traverse 2 10.75 8.90 Impinger 3 40.0 Total (grams) 0.00510 Static Press. (in. H20) -18.00 Impinger 4 6.0 Stack Height (ft) 30 3.0 Impinger 5 70.90 Stack Diameter (in.) 2.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 14.1 10.54 8 85 Gain (grams) 405 1 Minutes Per Reading 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Wall Stack Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 5.0 406.733 102.2 1.70 56 56 305 1.5 410,250 10.0 413.990 0.37 1.91 58 58 305 102.6 3 15.0 417.790 0.38 1.97 60 60 5.5 305 8.4 102.5 20.0 25.0 4 421.360 0.33 1.73 64 64 5.5 303 12.5 102.3 17.7 425.510 0.44 2.32 66 302 102.7 66 30.0 429.190 0.34 1.81 303 102.6 35.0 433.130 0.39 2.07 72 5.5 304 45.6 102.5 40.0 436.930 0.36 1.92 5.5 304 53.2 102.5 45.0 50.0 55.0 9 440.900 0.39 2.09 76 304 58.3 102.5 10 444.820 0.38 2.03 5.5 306 62.5 102.5 307 11 448.640 0.36 1.93 78 78 5.5 66.1 102.4 12 60.0 452.350 0.34 1.82 78 78 5.5 308 69.4 102.4 Traverse 2 0.0 5.0 452.350 455.900 0.33 1.71 310 102.4 10.0 459,400 0.32 1.66 63 63 310 4.7 102.5 15.0 64 6.5 463.320 0.40 2.08 310 8.4 102.6 3 20.0 467.470).44 2.31 6.5 310 102.7 5 25.0 470.960 0.31 1.63 70 70 311 17.7 102.6 6 30.0 474.510 0.32 1.68 72 312 25.2 102.4 35.0 479.420 0.61 312 45.6 102.9 3.21 8 40.0 484.170).57 3.00 74 74 315 102.8 45.0 9 489.050 0.60 3.16 75 75 315 58.3 102.8 50.0 493.750 0.55 315 62.5 103.3 10 2.90 55.0 60.0 498.230 2.69 2.53 75 75 75 6.5 315 66.1 102.2 502.602 75 315 12 0.48 6.5 69.4 102.8 Average: 0.411 2.161 69.9 69.9 6.1 308.6 102.6

Client: Metro Vancouver Date: 15-Feb-22

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 1 **Run Time:** 11:38 - 13:39

Concentrations:

Particulate 2.8 mg/dscm 0.0012 gr/dscf

1.5 mg/Acm 0.0007 gr/Acf

2.3 mg/dscm (@ 11% O2) 0.0010 gr/dscf (@ 11% O2)

Emission Rates:

Particulate 0.195 Kg/hr 0.431 lb/hr

Flue Gas Characteristics:

Flow 1171 dscm/min 41363 dscf/min

 19.52 dscm/sec
 689 dscf/sec

 2154 Acm/min
 76062 Acf/min

Velocity 14.093 m/sec 46.24 f/sec

Temperature 157.1 oC 314.8 oF

Moisture 17.1 %

Gas Analysis 9.0 % O2

10.4 % CO2

30.028 Mol. Wt (g/gmole) Dry 27.971 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7338 dscm 96.545 dscf

Sample Time 120.0 minutes Isokineticity 103.1 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 15-Feb-22 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 1 **Run Time:** 11:38 - 13:39 Control Unit (Y) 0.9864 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3080 Filter (grams) 0.00550 CO2 10.33 Impinger 1 Impinger 2 285.0 Pitot Factor 0.8525 Washings (grams) 0.00210 102.0 Baro. Press. (in. Hg) 30.13 Traverse 2 10.50 8.90 Impinger 3 14.0 Total (grams) 0.00760 Static Press. (in. H20) -18.00 Impinger 4 4.0 Stack Height (ft) 30 2.0 Impinger 5 Stack Diameter (in.) 70.90 1.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 15.3 10.42 9 04 Gain (grams) 423 3 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Time Dry Gas Meter Pitot ^P Traverse / Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 0.0 503.660 0.33 1.71 63 63 309 1.5 102.8 5.0 507.210 0.34 10.0 510.820 65 65 312 4.7 102.8 3 15.0 514,690 0.39 2.02 65 314 8.4 103.1 314 316 4 20.0 518.850 0.45 2.34 66 66 12.5 103.1 1.72 69 17.7 25.0 522.430 0.33 69 103.0 30.0 526.080 0.34 1.78 316 25.2 102.8 35.0 530.710 0.55 2.87 45.6 103.1 40.0 535.470 0.58 3.03 53.2 103.3 45.0 540.210 0.57 2.99 73 73 317 58.3 103.3 10 50.0 55.0 544,780 0.53 2.78 317 62.5 103.3 549.220 0.50 2.62 73 316 66.1 103.2 11 73 6 12 60.0 553.580 0.48 2.52 74 6 316 69.4 103.2 Traverse 2 553.580 0.0 557.600 0.41 2.15 103.1 72 71 10.0 561.360 0.36 1.89 72 314 4.7 102.9 565.420 15.0 0.42 2.20 314 8.4 103.1 20.0 569.280 0.38 1.99 12.5 103.1 5 25.0 573,430 0.44 2.30 71 315 17.7 103.1

71

65

70.2

71

72

71

71

71

70.4

6

9

9

6.9

315

315

314 314

314

315

314.8

25.2

45.6

53.2

58.3

62.5

66.1

69.4

103.0

103.0

102.9

103.0

103.0

102.9

103.6

103.1

6

9

10

12

Average:

30.0

35.0 40.0

45.0

50.0

55.0

60.0

577.670

581.820

585.680

589.590

593.400

597.050

600.753

0.46

0.44

0.38

0.39

0.37

0.34

0.35

0.422

2.41

2.31

1.99

2.04

1.94

1.78

1.83

2.208

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 1

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date Test Time	(min)	15-Feb-22 09:49 - 10:49	15-Feb-22 10:55 - 11:55	15-Feb-22 12:02 - 13:02
Test Duration	(min.)	60	60	60
Baro. Press.	(in. Hg)	30.16	30.16	30.16
DGM Factor	(Y)	0.9886	0.9886	0.9886
Initial Reading	(m^3)	500.413	501.029	501.648
Final Reading	(m ³)	501.023	501.645	502.252
Temp. Outlet	(Avg. oF)	50.7	42.0	42.3
Orifice Press.	(∆H in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm ³)	0.63	0.65	0.63
HF	(mg)	0.003	0.018	0.009
Oxygen	(Vol. %)	8.9	8.9	9.0
HF	(mg/Sm³)	0.004	0.028	0.014
HF	(mg/Sm ³ @ 11% O2)	0.003	0.023	0.012
Moisture	(Vol. %)	16.7	16.7	17.1

Tstd. (oF) 68 Pstd. (in. Hg) 29.92

Client: Metro Vancouver Date: 15-Feb-22

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 2 **Run Time:** 12:08 - 14:10

Concentrations:

Particulate0.0 mg/dscm0.0000 gr/dscf

0.0 mg/Acm 0.0000 gr/Acf

Emission Rates:

Particulate 0.003 Kg/hr 0.006 lb/hr

Flue Gas Characteristics:

Flow 1329 dscm/min 46945 dscf/min

22.16 dscm/sec 782 dscf/sec 2347 Acm/min 82902 Acf/min

Velocity 15.361 m/sec 50.40 f/sec

Temperature 151.0 oC 303.8 oF

Moisture 14.8 %

Gas Analysis 9.9 % O2

9.9 % CO2

29.984 Mol. Wt (g/gmole) Dry 28.210 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 3.1589 dscm 111.557 dscf

Sample Time 120.0 minutes Isokineticity 104.9 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 15-Feb-22 Run: Jobsite: WTE (Burnaby, B.C) 1 - Particulate / Metals Source: Unit 2 Run Time: 12:08 - 14:10 Control Unit (Y) 0.9854 Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3080 Filter (grams) 0.00005 CO2 10.00 264.0 Impinger 1 Pitot Factor 0.8525 Washings (grams) 0.00005 Traverse 1 Impinger 2 104.0 Baro. Press. (in. Hg) 30.13 Traverse 2 9.83 10.03 Impinger 3 20.0 Total (grams) 0.00010 Static Press. (in. H20) -18.50 Impinger 4 5.0 Stack Height (ft) 30 2.0 Impinger 5 Stack Diameter (in.) 70.90 2.0 Impinger 6 27.417 Stack Area (sq.ft.) Gel 14.7 Minutes Per Reading 9.92 9 93 Gain (grams) 4117 5.0 Minutes Per Point 5.0 Wall Dry Gas Temperature Stack Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 443.103 447.280 299 102.0 0.45 2.33 56 1.5 5.0 451.620 2.52 10.0 0.49 307 102.0 8 3 15.0 455.920 0.48 2.96 57 308 8.4 102.3 4 20.0 460.180 0.47 2.41 307 12.5 102.2 5 0.37 1.90 17.7 25.0 463.950 308 101.8 9 30.0 467.560 0.34 1.74 309 25.2 101.8 35.0 471.740 0.45 2.32 307 45.6 102.0 40.0 476.490 0.58 3.00 60 102.0 45.0 481.130 0.55 2.86 10 304 58.3 102.0 10 50.0 485,900 0.58 3.02 61 10 303 62.5 102.1 0.54 11 55.0 490.520 2.82 10 301 66.1 102.1 62 12 60.0 494.920 0.49 2.57 62 10 299 69.4 101.9 Traverse 2 0.0 494.920 499.780 0.60 3.12 308 102.0 5.0 2 10.0 504.630 0.60 3.11 64 12 309 4.7 101.9 15.0 308 509.240 0.54 2.81 12 8.4 101.9 20.0 513.360 0.42 2.18 308 12.5 103.1 5 25.0 517.380 0.41 2.14 64 64 10 305 17.7 101.7 6 30.0 521.740 0.48 2.51 2.58 65 10 305 25.2 101.8 35.0 529.180 0.49 10 45.6 171.3 299 40.0 534.280 0.65 3.43 66 66 10 300 102.0 9 45.0 539.380 0.65 3.42 66 66 10 302 58.3 102.1 544.260 50.0 0.59 3.12 10 299 62.5 10 102.1 55.0 548.980 2.91 2.72 67 298 66.1 102.2 60.0 553.530 67 292 12 9 69.4 101.8 0.512 Average: 2.688 62.0 62.0 9.8 303.8 104.9

Client: Metro Vancouver Date: 16-Feb-22

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 2 **Run Time:** 08:53 - 10:55

Concentrations:

Particulate 0.45 mg/dscm 0.00020 gr/dscf

0.27 mg/Acm 0.00012 gr/Acf

Emission Rates:

Particulate 0.035 Kg/hr 0.076 lb/hr

Flue Gas Characteristics:

Flow 1270 dscm/min 44858 dscf/min

 21.17 dscm/sec
 748 dscf/sec

 2170 Acm/min
 76645 Acf/min

Velocity 14.201 m/sec 46.59 f/sec

Temperature 143.1 oC 289.6 oF

Moisture 13.8 %

Gas Analysis 9.9 % O2

10.0 % CO2

29.988 Mol. Wt (g/gmole) Dry 28.329 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.7570 dscm 97.363 dscf

Sample Time 120.0 minutes Isokineticity 100.4 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 16-Feb-22 2 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: Source: Unit 2 Run Time: 08:53 - 10:55 Control Unit (Y) 0.9854 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3073 Filter (grams) 0.00005 Impinger 1 Impinger 2 174.0 Pitot Factor 0.8328 Washings (grams) 0.00120 Traverse 1 110.0 Baro. Press. (in. Hg) 30.33 Traverse 2 10.00 9.90 Impinger 3 16.0 Total (grams) 0.00125 Static Press. (in. H20) -20.00 Impinger 4 10.0 Stack Height (ft) 29.98 4.0 Impinger 5 Stack Diameter (in.) 70.90 Impinger 6 2.0 27.417 Stack Area (sq.ft.) Gel 16.4 9.95 9 90 Gain (grams) 332 4 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Stack Wall Traverse / Dry Gas Meter Pitot ^P Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 553.958 557.580 102.2 0.35 1.72 53 53 285 1.5 5.0 561.400 53 53 10.0 0.39 1.91 288 102.4 3 15.0 565,490 0.47 2.29 53 53 291 8.4 100.2 53 54 20.0 569.480 0.44 2.14 53 54 292 12.5 101.0 294 17.7 573.530 0.45 2.19 101.3 25.0 30.0 577.430 0.43 2.10 55 55 291 99.4 35.0 581.650 0.48 2.34 56 57 284 45.6 101.2 40.0 585.990 0.52 294 53.2 100.5 45.0 590.600 0.58 2.88 58 58 285 58.3 100.4 10 50.0 594.960 0.51 2.52 59 59 291 62.5 101.4 599.550 0.57 60 60 290 11 55.0 2.82 66.1 100.8 12 60.0 603.610 0.44 2.18 61 61 4 290 69.4 101.1 603.610 Traverse 2 0.0 607.710 2.39 62 62 298 298 10.0 612.030 0.52 2.56 62 62 4 4.7 99.4 15.0 0.44 616.010 2.16 8.4 99.4 20.0 619.990 0.42 101.5 5 25.0 624.090 0.45 2.22 63 63 298 17.7 101.1 6 30.0 627.950 0.42 2.07 64 64 298 25.2 98.3 632.210 0.49 2.42 297 45.6 100.5 35.0 8 40.0 636.680 65 65 270 53.2 99.4 9 45.0 641.310 0.55 2.84 66 66 268 58.3 100.8 645.650 0.50 2.54 66 66 279 10 50.0 62.5 99.8 11 55.0 649.700 0.44 2.19 66 67 66 67 293 290 66.1 100.1 60.0 653.520 12 0.39 1.96 69.4 99.8 0.469 2.324 Average: 60.0 60.0 4.3 289.6 100.4

Client: Metro Vancouver Date: 16-Feb-22

Jobsite: WTE (Burnaby, B.C) Run: 3 - Particulate / Metals

Source: Unit 2 **Run Time:** 11:10 - 13:12

Concentrations:

Particulate 0.8 mg/dscm 0.0004 gr/dscf

0.5 mg/Acm 0.0002 gr/Acf

Emission Rates:

Particulate 0.06 Kg/hr 0.136 lb/hr

Flue Gas Characteristics:

Flow 1222 dscm/min 43169 dscf/min

 20.37 dscm/sec
 719 dscf/sec

 2134 Acm/min
 75364 Acf/min

Velocity 13.964 m/sec 45.81 f/sec

Temperature 146.8 oC 296.3 oF

Moisture 14.8 %

Gas Analysis 9.9 % O2

9.9 % CO2

29.984 Mol. Wt (g/gmole) Dry 28.206 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.8035 dscm 99.005 dscf

Sample Time 120.0 minutes Isokineticity 101.7 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 16-Feb-22 3 - Particulate / Metals Jobsite: WTE (Burnaby, B.C) Run: 11:10 - 13:12 Unit 2 **Run Time:** Source: Control Unit (Y) 0.9958 Collection Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3073 Filter (grams) 0.00005 9.85 Impinger 1 Impinger 2 178.0 Pitot Factor 0.8328 Washings (grams) 0.00230 Traverse 1 Baro. Press. (in. Hg) 30.30 Traverse 2 10.00 9.85 Impinger 3 30.0 Total (grams) 0.0023 Static Press. (in. H20) -20.00 Impinger 4 14.0 Stack Height (ft) 30 4.0 Impinger 5 Stack Diameter (in.) 70.90 2.0 Impinger 6 27.417 16.4 Stack Area (sq.ft.) Gel Minutes Per Reading 9.93 9 90 Gain (grams) 366 4 5.0 **Minutes Per Point** 5.0 Dry Gas Temperature Stack Wall Dry Gas Meter Pitot ^P Traverse / Time Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 654.975 103.3 0.49 2.42 66 66 300 1.5 5.0 659,280 10.0 663.650 0.52 2.56 66 66 304 102.1 3 15.0 667,600 0.44 2.16 66 66 304 8.4 100.2 4 20.0 671.410 0.39 1.93 67 67 301 12.5 102.2 0.34 67 17.7 674.960 1.68 301 25.0 102.0 30.0 678.740 0.38 1.89 68 68 296 102.2 35.0 682.850 0.47 2.35 68 68 295 45.6 100.0 40.0 687.250 294 53.2 101.7 45.0 691.880 0.57 2.87 69 69 291 58.3 101.9 10 50.0 696.520 0.58 2.91 69 69 293 62.5 101.4 55.0 701.030 2.71 294 11 0.54 70 70 66.1 102.0 12 60.0 705.330 0.49 2.47 70 70 290 69.4 101.8 Traverse 2 0.0 705.330 5.0 709.410 0.45 2.24 299 101.3 10.0 713.600 0.46 2.30 71 299 4.7 102.7 717.680 0.44 2.19 71 302 15.0 8.4 102.4 3 20.0 721.600 0.40 2.00 298 102.9 5 25.0 725,260 0.36 1.80 71 71 298 17.7 101.2 6 30.0 728.870 0.35 1.75 71 71 298 25.2 101.3 35.0 732.610 0.37 1.86 295 45.6 101.7 40.0 736.530 0.41 2.06 72 72 294 101.2 740.810 72 9 45.0 0.48 2.48 72 293 58.3 102.2 744.970 0.46 101.3 10 50.0 2.32 292 62.5 11 55.0 749.050 0.44 2.23 72 73 72 73 290 66.1 101.4 60.0 752.930 2.03 290 12 0.40 69.4 100.9 0.448 Average: 2.232 69.7 69.7 3.0 296.3 101.7

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 2

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date	(min.)	16-Feb-22	16-Feb-22	16-Feb-22
Test Time		10:09 - 11:09	11:19 - 12:129	12:29 - 13:29
Test Duration		60	60	60
Baro. Press.	(in. Hg)	30.27	30.27	30.27
DGM Factor	(Y)	0.9886	0.9886	0.9886
Initial Reading	(m ³)	502.258	502.852	503.466
Final Reading	(m ³)	502.848	503.461	504.072
Temp. Outlet	(Avg. oF)	51.0	43.0	46.7
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.61069	0.63954	0.63247
HF	(mg)	0.008	0.010	0.009
Oxygen	(Vol. %)	9.9	9.9	9.9
HF	(mg/Sm³)	0.013	0.015	0.014
HF	(mg/Sm³ @ 11% O2)	0.011	0.013	0.013
Moisture (isokinetic)	(Vol. %)	13.8	13.8	14.8

*Wet Basis Calculated on moisture from isokinetic tests

Tstd. (oF) 68

Pstd. (in. Hg)

29.92

Client: Metro Vancouver Date: 16-Feb-22

Jobsite: WTE (Burnaby, B.C) Run: 1 - Particulate / Metals

Source: Unit 3 **Run Time:** 11:58 - 13:59

Concentrations:

Particulate 3.41 mg/dscm 0.00149 gr/dscf

1.85 mg/Acm 0.00081 gr/Acf

Emission Rates:

Particulate 0.203 Kg/hr 0.448 lb/hr

Flue Gas Characteristics:

Flow 994 dscm/min 35089 dscf/min

 16.56 dscm/sec
 585 dscf/sec

 1829 Acm/min
 64579 Acf/min

Velocity 11.966 m/sec 39.26 f/sec

Temperature 154.4 oC 309.9 oF

Moisture 17.9 %

Gas Analysis 9.5 % O2

10.3 % CO2

30.019 Mol. Wt (g/gmole) Dry 27.873 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.3160 dscm 81.789 dscf

Sample Time 120.0 minutes Isokineticity 103.4 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client:Metro VancouverDate:16-Feb-22Jobsite:WTE (Burnaby, B.C)Run:1 - Particulate / Metals

Source: Unit 3 **Run Time**: 11:58 - 13:59

Control Unit (Y)	1.0037	Collection:		Gas Analys	is (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.3073	Filter (grams) 0.00730		CO2	O2	Impinger 1	256.0
Pitot Factor	0.8328	Washings (grams) 0.00060	Traverse 1	10.25	9.50	Impinger 2	82.0
Baro. Press. (in. Hg)	30.26		Traverse 2	10.25	9.45	Impinger 3	14.0
Static Press. (in. H20)	-19.00	Total (grams) 0.00790				Impinger 4	6.0
Stack Height (ft)	30					Impinger 5	3.0
Stack Diameter (in.)	70.90					Impinger 6	2.0
Stack Area (sq.ft.)	27.417					Gel	14.7
Minutes Per Reading	5.0			10.25	9.48	Gain (grams)	377.7
Minutes Per Point	5.0						

					Dry Gas	Dry Gas Temperature			Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Traverse 1	0.0	504.402								
1	5.0	508.160	0.41	1.81	58	58	5	300	1.5	103.7
2	10.0	511.960	0.42	1.85	58	58	5	301	4.7	103.6
3	15.0	515.790	0.43	1.87	59	59	5	310	8.4	103.6
4	20.0	519.600	0.44	1.92	59	59	5	310	12.5	101.9
5	25.0	523.250	0.39	1.70	60	60	4	311	17.7	103.5
6	30.0	526.720	0.35	1.53	61	61	4	311	25.2	103.2
7	35.0	529.410	0.21	0.92	61	61	6	310	45.6	103.5
8	40.0	532.290	0.24	1.05	62	62	6	309	53.2	103.5
9	45.0	535.110	0.23	1.01	63	63	8	310	58.3	103.3
10	50.0	538.000	0.24	1.05	64	64	8	311	62.5	103.5
11	55.0	540.950	0.25	1.10	65	65	7	311	66.1	103.4
12	60.0	543.790	0.23	1.02	66	66	7	310	69.4	103.5
	•		•		•		•			•
Traverse 2	0.0	543.790								
1	5.0	546.640	0.23	1.02	67	67	8	306	1.5	103.4
2	10.0	549.420	0.22	0.97	67	67	8	311	4.7	103.0
3	15.0	552.320	0.24	1.06	67	67	8	311	8.4	103.3
4	20.0	555.290	0.25	1.11	69	69	8	312	12.5	103.4
5	25.0	558.380	0.27	1.19	69	69	6	312	17.7	103.5
6	30.0	561.410	0.26	1.15	69	69	6	313	25.2	103.5
7	35.0	565.030	0.37	1.64	70	70	6	312	45.6	103.5
8	40.0	568.600	0.36	1.60	70	70	6	312	53.2	103.5
9	45.0	572.320	0.39	1.73	70	70	5	311	58.3	103.5
10	50.0	576.230	0.43	1.91	71	71	5	312	62.5	103.6
11	55.0	580.230	0.45	2.00	71	71	4	312	66.1	103.6
12	60.0	584.283	0.46	2.05	71	71	4	310	69.4	103.7
Average:	l		0.324	1.428	65.3	65.3	6.0	309.9		103.4

Client: Metro Vancouver Date: 17-Feb-22

Jobsite: WTE (Burnaby, B.C) Run: 2 - Particulate / Metals

Source: Unit 3 **Run Time:** 08:50 - 10:52

Concentrations:

Particulate 2.54 mg/dscm 0.00111 gr/dscf

1.40 mg/Acm 0.00061 gr/Acf

Emission Rates:

Particulate 0.147 Kg/hr 0.324 lb/hr

Flue Gas Characteristics:

Flow 966 dscm/min 34102 dscf/min

 16.09 dscm/sec
 568 dscf/sec

 1753 Acm/min
 61897 Acf/min

Velocity 11.469 m/sec 37.63 f/sec

Temperature 150.1 oC 302.1 oF

Moisture 17.5 %

Gas Analysis 9.3 % O2

10.2 % CO2

30.003 Mol. Wt (g/gmole) Dry 27.897 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.2463 dscm 79.327 dscf

Sample Time 120.0 minutes Isokineticity 103.2 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 17-Feb-22 Run: Jobsite: WTE (Burnaby, B.C) 2 - Particulate / Metals 08:50 - 10:52 Source: Unit 3 Run Time: Control Unit (Y) 1.0037 Collection: Gas Analysis (Vol. %): Condensate Collection: 0.3073 Filter (grams) 0.00560 CO2 10.25 232.0 Nozzle Diameter (in.) 02 Impinger 1 Pitot Factor 0.8328 Washings (grams) 0.00010 Impinger 2 78.0 Baro. Press. (in. Hg) 30.26 Traverse 2 10.15 9.15 Impinger 3 21.0 Total (grams) 0.00570 Static Press. (in. H20) -19.00 Impinger 4 5.0 Stack Height (ft) 30 4.0 Impinger 5 70.90 Stack Diameter (in.) 2.0 Impinger 6 Stack Area (sq.ft.) 27.417 Gel 16.7 10.20 9 28 Gain (grams) 358 7 Minutes Per Reading 5.0 Minutes Per Point 5.0 Dry Gas Temperature Wall Stack Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Inlet Outlet Vacuum Temp. Dist. Isokin. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 584.855 103.2 0.24 1.05 56 56 5.5 300 1.5 5.0 587.720 10.0 4.7 590.520 0.23 1.01 56 56 5.5 301 103.0 3 15.0 593.260 0.22 0.96 56 56 5.5 302 8.4 103.2 4 20.0 595.930 0.21 0.92 56 56 5.5 303 12.5 102.9 25.0 5.5 304 17.7 598.670 0.22 103.1 0.96 30.0 601.480 1.01 58 5.5 305 103.3 35.0 604.940 0.35 1.53 58 58 306 45.6 103.3 40.0 608.410 0.35 1.53 306 53.2 103.4 45.0 50.0 55.0 9 612.600 0.51 2.24 60 5.5 306 58.3 103.4 10 616.420 0.42 1.86 61 5.5 301 62.5 103.2 620.280 0.43 1.90 61 5.5 303 66.1 103.3 61 12 60.0 624.010 0.40 1.77 61 61 5.5 303 69.4 103.4 Traverse 2 624.010 0.0 5.0 627.460 0.34 1.50 304 103.4 10.0 631.010 0.36 1.60 64 64 64 6.5 304 4.7 103.2 15.0 303 8.4 634.410 0.33 1.46 103.1 3 20.0 637.770 0.32 1.42 302 103.2 5 25.0 641.240 0.34 1.52 65 7.5 301 17.7 103.4 6 30.0 644.560 0.31 1.39 66 66 7.5 300 25.2 103.3 35.0 647.290 0.21 0.94 45.6 103.1 300 8 40.0 650.150 1.03 6.5 300 53.2 103.0 45.0 9 653.080 0.24 1.08 67 67 6.5 299 58.3 103.2 50.0 0.25 299 10 656.070 1.12 6.5 62.5 103.2 55.0 60.0 659,060 0.25 1.12 68 68 299 66.1 103.0 661.870 0.22 300 12 0.99 68 68 69.4 103.3

62.0

62.0

6.0

302.1

103.2

0.300

1.330

Average:

Client: Metro Vancouver Date: 17-Feb-22

Jobsite: WTE(Burnaby,B.C) Run: 3 - Particulate / Metals

Source: Unit 3 **Run Time:** 11:12 - 13:14

Concentrations:

Particulate 2.28 mg/dscm 0.00100 gr/dscf

1.24 mg/Acm 0.00054 gr/Acf

Emission Rates:

Particulate 0.135 Kg/hr 0.298 lb/hr

Flue Gas Characteristics:

Flow 989 dscm/min 34939 dscf/min

 16.49 dscm/sec
 582 dscf/sec

 1810 Acm/min
 63932 Acf/min

Velocity 11.846 m/sec 38.86 f/sec

Temperature 155.3 oC 311.5 oF

Moisture 17.2 %

Gas Analysis 9.8 % O2

10.8 % CO2

30.120 Mol. Wt (g/gmole) Dry 28.035 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 2.3708 dscm 83.726 dscf

Sample Time 120.0 minutes Isokineticity 103.1 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Client: Metro Vancouver Date: 17-Feb-22 Jobsite: WTE(Burnaby,B.C) Run:

3 - Particulate / Metals 11:12 - 13:14 Run Time: Source: Unit 3

Control Unit (Y) Nozzle Diameter (in.) 1.0037 0.3120 0.8525 Collection: Filter (grams) 0.00530 Washings (grams) 0.00010 Gas Analysis (Vol. %): Condensate Collection: 255.0 Impinger 1 Impinger 2 Pitot Factor 76.0 Baro. Press. (in. Hg) 30.26 Traverse 2 11.00 10.00 Impinger 3 14.0 Total (grams) 0.00540 Static Press. (in. H20) Stack Height (ft) Impinger 4 Impinger 5 6.0 3.0 -19.00 30 70.90 Stack Diameter (in.) Impinger 6 1.0 14.6 369.6 27.417 Gel Stack Area (sq.ft.) 10.80 Minutes Per Reading 5.0 5.0 9.80 Gain (grams)

Minutes Per Point	5.0									
					Dry Ga	s Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
Traverse 1	0.0	662.417								
1	5.0	665.920	0.31	1.54	67	67	7	303	1.5	103.1
2	10.0	669.460	0.32	1.57	66	66	7	309	4.7	103.2
3	15.0	673.110	0.34	1.68	67	67	8	308	8.4	103.0
4	20.0	676.700	0.33	1.62	66	66	8	309	12.5	103.1
5	25.0	680.600	0.39	1.91	66	66	8	310	17.7	103.1
6	30.0	684.410	0.37	1.82	67	67	8	310	25.2	103.2
7	35.0	687.480	0.24	1.18	67	67	5	310	45.6	103.1
8	40.0	690.490	0.23	1.13	67	67	5	308	53.2	103.1
9	45.0	693.620	0.25	1.25	68	68	5	312	58.3	102.9
10	50.0	696.870	0.27	1.33	68	68	5	313	62.5	102.9
11	55.0	699.940	0.24	1.18	68	68	5	313	66.1	103.1
12	60.0	702.880	0.22	1.08	68	68	5	313	69.4	103.1
		1		r		T	1		T	
raverse 2	0.0	702.880								
1	5.0	705.950	0.24	1.18	68	68	5	310	1.5	102.9
2	10.0	709.080	0.25	1.23	68	68	5	314	4.7	103.1
3	15.0	712.090	0.23	1.13	68	68	5	311	8.4	103.1
4	20.0	715.020	0.22	1.08	69	69	5	317	12.5	102.8
5	25.0	718.090	0.24	1.18	69	69	6	315	17.7	103.0
6	30.0	721.290	0.26	1.28	69	69	6	313	25.2	103.1
7	35.0	724.950	0.34	1.68	70	70	9	313	45.6	103.0
8	40.0	728.720	0.36	1.78	70	70	9	312	53.2	103.1
9	45.0	732.440	0.35	1.73	70	70	10	312	58.3	103.1
10	50.0	736.600	0.44	2.16	69	69	10	313	62.5	103.2
11	55.0	740.670	0.42	2.07	69	69	10	311	66.1	103.2
12	60.0	744.613	0.39	1.93	70	70	10	318	69.4	104.0
Averege			0.302	1.488	68.1	68.1	6.9	311.5		103.1
Average:			0.302	1.488	08.1	08.1	0.9	311.5		103.1

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Source: Unit 3

Sample Type: HF

Parameter		Test 1	Test 2	Test 3
Test Date	(min.)	17-Feb-22	17-Feb-22	17-Feb-22
Test Time		09:09 - 10:09	10:23 - 11:23	11:32 - 12:32
Test Duration		60	60	60
Baro. Press.	(in. Hg)	30.26	30.26	30.26
DGM Factor	(Y)	0.9886	0.9886	0.9886
Initial Reading	(m ³)	504.088	504.701	505.309
Final Reading	(m ³)	504.696	505.306	505.909
Temp. Outlet	(Avg. oF)	41.7	40.0	41.0
Orifice Press.	(ΔH in.H2O)	0.50	0.50	0.50
Gas Volume	(Sm³)	0.63962	0.63894	0.63239
HF	(mg)	0.009	0.009	0.009
Oxygen	(Vol. %)	9.3	9.3	9.8
HF	(mg/Sm ³)	0.014	0.014	0.014
HF	(mg/Sm ³ @ 11% O2)	0.012	0.012	0.013
Moisture (isokinetic)	(Vol. %)	17.5	17.5	17.2

*Wet Basis Calculated on moisture from isokinetic tests

Tstd. (oF) 68

Pstd. (in. Hg)

29.92

Client: Metro Vancouver

Jobsite: WTE (Burnaby,B.C)

Parameter: N₂O

Molecular Weight: 44.00 grams/mol Reportable Detection

Lab Detection Limit: 0.1 ppm Limit: 0.18 mg/Sm³

Sample ID	Date	Time	N₂O ppm	N₂O mg/Sm³	N₂O mg/Sm³ @ 11% O₂
Unit 1 - Run 1 Unit 1 - Run 2 Unit 1 - Run 3 Average	15-Feb-22 15-Feb-22 15-Feb-22	09:45 - 10:45 10:48 - 11:48 11:55 - 12:55	3.0 2.0 2.0	5.5 3.7 3.7	6.0 4.1 4.0 4.7
Unit 1 - Run 1 Unit 2 - Run 2 Unit 2 - Run 3 Average	16-Feb-22 16-Feb-22 16-Feb-22	09:15 - 10:15 10:32 - 11:32 11:36 - 12:36	1.0 1.0 0.0	1.8 1.8 0.2	1.9 1.8 0.2 1.3
Unit 3 - Run 1 Unit 3 - Run 2 Unit 3 - Run 3 Average	17-Feb-22 17-Feb-22 17-Feb-22	09:09 - 10:09 10:23 - 11:23 11:30 - 12:30	2.0 26.0 8.0	3.7 47.6 14.6	3.8 50.8 14.8 23.1

APPENDIX - D FIELD DATA SHEETS

CLIENT 4.				NOZZLE	G-36	7 DIAME	TER, IN. O.	3680	IMPINGER		FINAL	TOTAL GAIN
17.17	W.T.E			PROBE	+C	, (p 0.85	25	VOLUMES	(mL)	(mL)	(mL)
SOURCE //wi	[#]	1 1 1							Imp. #1	0	238	238
PARAMETER / RUN N	o partiwate	/retals	- RUN 1	PORT LENG					lmp. #2	100	230	130
DATE TOR.	4.7077			STATIC PR	ESSURE, IN.	H2O - /5	3.0"		Imp. #3	100	132	32
OPERATOR: QS	7	=	92	STACK DIA		70.94			Imp. #4	. 0	.8	8
CONTROL UNIT	CAE A !-!	Y 0.9	864	STACK HEI	GHT	30.01			Imp. #5	100	104	9
		ΔΗ@ / \$	66						Imp. #6	100		2
BAROMETRIC PRESS	SURE, IN. Hg 79.3			INITIAL LEA	K TEST	0007 (0 /54		Upstream 0	iametero		
ASSUMED MOISTURI				FINAL LEAF	- Juli		2 (2,			n Diameters		
									1			
Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °	F		Pump Vac.	Fyr	rites	
Point	7.171	IN. H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
MIN /2:01	307.768			Outlet				Exit		Vol. %	Vol. %	
/	3/1.60	0.37	198	63	3/0	253	75/	50	6			
2	315.64	0.41	2.19	65	3/3	243	-/			10.0	94	
3	3/9 54	0.38	264	69	3/6	256	256	5/	7	10.0	//	
4	377 72	013	135	33	312	700	200		7			
5	325.85	0.73	132	75	3/5	252	25/	.59	8			
6	329 SD	0.32	774	75	270	202	-0/	- 37	-			
7	333.90	0.46	3 = 5	79	3/4	249	250	54	8	10.5	9.7_	
8	33× 5×	0.57	285	79	3/4	20	250	->7	-	10.3	1.2	
9	342.29	0.44	241	30	3/4	Zst	248	56	8			
10	347 90	0.48	264	80	3/2	230	240	26	0	_		
11	35/62	0.42	232	\$7	3/2	2/17	70.7	-	-	//	7-	
	355.75		221			247	247	52	8	11.0	85	
12	333.73	0.40	221	3D	308	ļ						
-	2-6 1-	83/	190	70	2/0	3		4.1.	9			
1	3.59.65	0.36	1,98	37	3/2	253	255	54	7			
2	363.33	0.32	176	80	3/2	0-11				105	2.9	
3	367.56	0.42	2.32	8/	3//	254	253	.55	9			
4	372.08	048	2.64	8/	3/3							
\$	376 65	0.49	270	82	3/3	25/	25/	45	9			
6	380.94	043	238	83	312		(15)					
7	385. /8	0.42	232	23 23	3/3	250	250	46	9	105	9.1	
9	387.52	0.44	2.43	83	3/4	-7-						
	393.90	045	248	83		250	250	47	2			
10	398 18	0.43	2.37	83	314							
11	402.25	039	2.15	82	3/5	250	250	48	8	100	94	
12 14:04	406.22	0.37	2.04	23	315							

		DUDALAC	W D O	NOZZLE (8-307	DIAME	TER, IN.	3080	IMPINGER	INITIAL	FINAL	TOTAL GAIN
METRO	VANCOUVER WTE	- BURNAE	BY B.C.	PROBE		Cp ,85		VOLUMES	(mL)	(mL)	(mL)	
SOURCE	Unit #1								lmp, #1	12	2061	206
PARAMETER / R		415 122	2	PORT LENG					Imp. #2	100	239	734
DATE FOR	5.2022			STATIC PR	ESSURE, IN.	H2O	-18.0)	Imp. #3	100	140	40
	363			STACK DIA	METER		70,9"		Imp. #4	0	6	6
CONTROL UNIT	CAL AL-1	Y 194	60	STACK HEI	GHT		30.00		Imp. #5	100	103	3
			366						Imp. #6	100	102	2
BAROMETRIC PI	RESSURE, IN. Hg	30,13		INITIAL LEA		10016	315-61		Imp. #7	MEL		
ASSUMED MOIS				FINAL LEAF	(TEST	10000	150		Imp. #8		1 1	
Clock Ti	me Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature '	PF		Pump Vac.	Fy	rites	
	V 2	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	1
Point 9:01	406,733		111, 1120	Outlet	Julion	11000	L DOX	Exit		Vol. %	Vol. %	
1	410,25	153	7.217	56	305	254	253	49	10.0			
2 10	413,90	137	1,91	58	305					10,0	8,5	
3	417:79	1,38	1107	60	305	750	251	49	3,5		100	
4 20	142136	133	1173	64	303							
5	425.51	12/4	12,32	66	302	251	251	51	5,0			
6 30	429.19	134	1.8	71	363					10,5	8.8	
7 - 8	4133,13	139	12.07	72	304	250	SSO	52	5,5			
8 40	436.013	136	1,92	74	300	-	170					
9	440,90	139	2.09	76	304	257	152	51	5.5	10 1	101	
10 50	444,82	138	2.03	77	306	100	000	7	C 000	10.5	9.1	
11 60	448,64	136	1.93	78	307	750	251	51	5,5	<u></u>		
12 60	452,35	1.37	1.82	78	308	-	-	-			+	
1	455.90	133	1.71	63	318	251	250	47	6,0		+	
2 10	459,40	132	1.60	63	310	631	123	17	0.	11,6	8.8	
3	463,32	140	2.08	9011	310	253	252	46	6,5	1110	0.0	
4 20	467:47	144	231	60	310		0	-7.0	0,7		 	
5	670.96	13	7,63	71	311	254	253	46	7,0		1	
6 30	444.51	132	1,68	72	312	1	177		1	10.5	90	
7	1/30/42	161	3,21	72	312	255	250	215	7,0		1 "	
8 40	484.17	157	3,00	74	315							
9	U59.05	660	1316	75	1315	252	251	45	7,0			
10 50	493.73	195	12,90	75	315							
11	498,23	151	2.69	75	1315	257	254	45	6.5			
12	502,602	1218	12,53	73	315	1						
11 22	ENDEST					1			-		-	
					-						-	
			ļ							_		
		L	L									

	AETRO MA	NACH VED WEE	DUDNAS	V D O	NOZZLE /	307	DIAME	TER, IN. , 3	080	IMPINGER	INITIAL	FINAL	TOTAL GAIN
	AIE I KO AA	NCOUVER WTE	- BUKNAB	i B.C.	PROBE	76		Cp .85		VOLUMES	(mL)	(mL)	(mL)
SOUR	E ()vi	F# 1				-				Imp. #1	0	283	283
PARAM	IETER / RUN N	o particlime	HAIS 123	3	PORT LENG	GTH .				Imp. #2	106	702	102
DATE	Fr. 10 15	,7022			STATIC PR	ESSURE, IN.	. H2O	-18,0		Imp. #3	100	17/4	14
OPER/					STACK DIA	METER		7634	911	Imp. #4	0	4	4
CONT	OL UNIT CA		Y 1986	4	STACK HEI	GHT		30.0	11	Imp. #5	100	102	7
	36.1		ΔH@ 1.81							Imp. #6	100	101	1
BARO	METRIC PRESS	SURE, IN. Hg 30	0.13	A	INITIAL LEA		10016	154			6161		
ASSUN	MED MOISTURE	E, Bw	10/2		FINAL LEAF	(TEST	001(91	54		Imp. #8		1	
	Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °	F		Pump Vac.		rites	
Point	i	F	IN. H₂O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
	11:38	503,660		L .	Outlet		ļ		Exit		Vol. %	Vol. %	
1		SOF. 21	133	1,71	63	309	750	251	48	4,0			
2	10	510,80	1341	1177	65						10,5	9.2	
3		514,69	139	7,02	65	314	252	254	48	4,0			
4	20	518,85	145	2.34	100	314							
5		522, 43	133	1,72	69	316	750	251	47	5,0			
6	30	526.08	134	1,78	72	316					9,5	8,2	
7		530,71	155	2.8+	7	317	757	254	50	5,5			
8	40	535,47	158	3,03	71	317							
9		540, 21	157	2,99	73	317	252	249	50	4,5			
10	50	544.78	153	2,78	73	317					110	9,1	
11		549.22	150	2.62	73	316	299	251	49	465			
12	60	553.5%	148	2,52	74	316		"	7 /				
			1										
1		557,60	,410	2,15	72	314	250	250	418	4,0	10,5	8,5	
2	10	561.36	:36	1.89	72	314							
3		Sh5,42	142	220	71	314	257	249	48	4.5			
4	20	569,28	138	1,99	71	315							
5		573,43	149	2.30	71	315	250	249	47	405			
6	30	577,67	: 4160	2,91	71	315							
7		58 82	,44	7.31	171	314	251	250	47	4,5			
8	40	585.68	138	1,99	72	315					105	9,3	
9		589,59	, 39	2.04	71	314	250	249	45	4,0		1.6	
10	50	593,40	,37	1.94	71	314							0
11		597,505	34	1.78	171	314	253	248	94	400			
12		600,753	135	1,53	71	315							
	13:39	END test											
							1			1			

J	1	4
	7	/

CLIENT					NOZZLE	G-30	J DIAME	TER, IN.		IMPINGER		FINAL	TOTAL GAIN
	190	W.T.E			PROBE	70	7	Cp 0.83	525	VOLUMES		(mL)	(mL)
SOURCE	UN17	142		1.						Imp. #1	1	264	264
PARAMETER	R / RUN No		eticulate	/ Rew 1	PORT LENG					Imp. #2	/190	204	104
	cb. 13	5.2027		-		ESSURE, IN.		8.5"		Imp. #3	100	120	20
PERATOR:		7				METER 7	7911			Imp. #4	2004	4	5
CONTROL U	JNIT C	RE J099	Y 0.98	?59	STACK HEI	GHT 30	10'		,	Imp. #5	100	102	2
		7		25						Imp. #6	100	102	2
AROMETRI	IC PRESS	URE, IN. Hg 30.	/3		INITIAL LEA	K TEST	2001	0/54		Upstream D	meters		
SSUMED M	MOISTURE				FINAL LEAK			@15"		Downstream	Diameters		
							1-001						
Clor	ck Time	Dry Gas Meter ft ³	Pitot ΔP	Orifice ΔH			Temperature 6	F		Pump Vac.	Fy	rites	
Point		14	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	- 1
	208	443.103	["		Outlet				Exit		Vol. %	Vol. %	1
1	. 00	447.78	0.45	223	.56	799	222	246	49	8		7075	-
	10	451 62	049	252	3	307	w	276	-//	0	10.0	96	-+-
3		455 97	248	296	24	308	248	252	5/	Ź	100	1 6	
ATT	20	460.18	249	241	27	307	210	200	-0/				
5		463.95	0 33	7.90	27	302	258	250	53	9			
V655	7 5	427 58	034	1 20	23	309	200	230		-			
7	/-	27170	nes	232	39	307	258	75/	5/	9	10.0	9.9	
	70	03126	200	300	60	305	2.30	/5/	3/	/	10.0	/ /	
9	re l	469.77	0.30	2.85	6/	309	258	250	52	10			
	20	485.90	2	3.02	6/	303	230	250	27	7.0		\vdash	-
11	~	490.52	0.00	282	62	30/	258	7-1	54	1.	7-	10	
	60	494.97	0.49	237	62	299	200	25/	>7	10	10.0	10.D	
12 (GE/	417.72	0.97	037	60	201				_			
1		499.78	0.60	3.12	64	308	258	248	51	12			
	19	304.63	0.60	3.11	64	309	470	240	21	1.2	95	5	
3		501.11	0.54	281	64	308	257	251	51	12	7.5	10.2	
	200	513 36	0.42	218	64	308	101	401	31	12			
5	200	517.38	0.41	7 14	64	305	258	252	52	60		-	
	<i>35</i>	511.38	148	2 51	65	305	638	202	32	(D)	100	98	
7 3	שנ	329.18	049	2.58	13	299	258	256	54	/4	10.0	10	
	120	534.28	0.65	3.43	66	300	Z > X	636	27	/6			
9	70	53938	0.65	3.42	66	302	257	253	52	1-			
	50	544.26	059	3.12	67	299	201	433	20	/D	1-	(0)	
11	20	548.98	055	2.91	1	298	259	250	57_	9	10.0	10.1	
	110	553.53	051	272	87	292	207	000	3/	1			
/7	-//5	233.53	1.51	d TL	04	20						-	
	-												
-+-													
					I	L							

P.H

0.45.4	^			NOZZLEG	3879	DIAME	TER, IN. 3	013	IMPINGER	INITIAL	FINAL	TOTAL GAIN
CLIENT MV	Covanta			PROBE A	LGURD		Cp Was		VOLUMES		(mL)	(mL)
SOURCE () A, -	共工								lmp. #1	1600	174	194
PARAMETER / RUI	No Metals PU	12-2		PORT LENG	STH /				Imp. #2	100	210	110
DATE Feb-16	-22			STATIC PR	ESSURE, IN.	H20 - 20	-			100	1166	16
OPERATOR: ///		000000000000000000000000000000000000000			METER 76				Imp. #4			110
CONTROL UNIT	CAE 30919	Y 9857		STACK HEI	GHT 1 CC				Imp. #5	1.00	104	4
	CATO COVI	AH@ \ X77		†	700				Imp. #6	4.00,100	100	2.00
BAROMETRIC PRE	SSURE, IN. Hg 30.3	2		INITIAL LEA	K TEST (), (17/400 15h			Upstream D		1.00	
ASSUMED MOISTU	JRE, BW			FINAL LEAP	TEST DO	22 00.154			Downstream			
	1870			1	0.0.	7 (2) 10						
Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature ^c	F		Pump Vac.	Fy	rites	
Point		IN. H ₂ O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	1
0853	553.958	111.1120	111.1120	Outlet	Stack	11000	l Box	Exit		Vol. %	Vol. %	
10000		26	1.72		001	251	261	51	3	9.8	10	
-	\$57.58	35 31	191	53	285	777	251) L	_ >	7.8	10	
2 2	561.40	13		53	200	251	0.00	20	-//		-	-
100	565.49	47	2.29	53	291	251	252	50	5.5		-	
4	569 48	.44	2.14	53	292 294 291 284 294	0.00		- no 1				
3	5/3.53	45	219	54 35 56 57	274	253	251	51	5.5		_	
6	577.43	43	2.1	55	29				-,		-	
7	581. 8 5 585.99	48	2.B4	56	254	253	254	53	6			
8	585.99	52	254	67	294						0.0	
q	590.60 594.96	.58	2.88	58 59	1285	253	251	53	6,5	10	9.8	
10	594.96	51	2.52	59	291							
11	599 55	.57	282	1 60	290	251	253	54	6			
12	603.61	.44	218	61	290							
					- 1-3						0.00	
	607.71	48	2.39 2.56	61	288	257	252	54	6	10	98	
7	612.63	.52	2.56	62	298							
3	616.01	194	Zille	62	798	255	255	53	5.5			-
<u> </u>	619.99	42	207	63	298 298							
3	624.09	43	2 22	63	298	252	252	53	5.5			
Ь	627.95	142	207	64	298							
7	632.21	149	242	164	297	258	254	54	6	10	10	
8	636.68	-53	272	1 65	270							
q	641.31	55	2.84	65 66	268	258	251	55	6.5			
10	643.65	-53 -55 -56	2.51	1 66	219							
	649 76	44	2.19	166	293	259	250	55	6			
12 1055	653.52	.39	1.96	67	293 290							
	-				•	1						

CLIENT M//	Care to			NOZZLE	-307		TER, IN.	3073	IMPINGER	INITIAL	FINAL	TOTAL GAIN
SOURCE ///	grania	9		PROBE	46-1	(Op O	1428	VOLUMES	(mL)	(mL)	(mL)
PARAMETER / RUN N	Don't	0		DODT LEVE					lmp. #1	0	171:	178
DATE LA	MELONE	1-3		PORT LEN					lmp. #2	100	772	172
OPERATOR:	16127				ESSURE, IN.		20,0		Imp. #3	100	190	30
CONTROL UNIT	2000	100	X	STACK DIA	METER 7	1.40			Imp. #4	. 0	14:	14
JON TROL UNIT	1077	∆Н@ //	27	STACK HEI	GHT	•			Imp. #5	100	109	4
BAROMETRIC PRESS	URE, IN. Hg 3//		2/	INCOME AND A SEC		2000	0		lmp. #6	100	1071	7
SSUMED MOISTURE	, Bw / / / 0	30		INITIAL LEA		100 3	9/5		Upstream D			
POOMED MICIOTORE	, bw / 1 / 0			FINAL LEAP	(TEST	003	15	/-	Downstream	Diameters		
Clock Time	Dry Gas Meter ft ³	Pitot ΔP	Orifice AH			Temperature °	F		Pump Vac.	E		
Point	-110-11	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	rites	
1/7/0	654,975	00	000	Outlet			Bux	Exit	IIV. rig	Vol. %	O ₂ Vol. %	
-4	659,28	1141	2,72	65	300	15%	736	20	4	9.7	11111	
7	600,60	1.62	2,56	65	304	-					100	
4	567.60	770	3 69	66	394	155	166	_30	4			
4	97086	0 37	1,193	6-I	301	7						
3	27 14	4 35	199	95	301	125	23.6	30	4			
9	200 FJ	0.30	09	95	276	171	77					
A	687 17	9 75	200	94	293	156	157	3/	5	00		
9	697 1	937	2 77	65	394	100	222			100	9.9	
10	696 62	050	9 77	-67	293	156	154	5/	3		, ,	
7/	20 01	0 54	271	30	767	256	0.00					
14	70333	049	247	20	290	00	15/	51	5			
		10//	//	70	270							
/	70941	11.45	7.14	FO	790	1258	250	37				
73	7/3 60	0 46	7.30	21	299	270	150	2/	2	100	70.01	
	717 68	0.44	7/9	41	307	722	120	50		100	10.0	
4	721.60	1140	7.00	27	79P	2 2 7	190	51				
5	725.26	0:36	1,80	71	100	757	750	30	3			
6	720.07	0.35	175	71	128	_	200					
7	732.61	037	1,86	72	793	75 Z	- 72 /	5-2	-	,	-	
	736 33	0.41	206	72	194				_	100	QI	$\overline{}$
98	740.81	0.48	2,48	72	297	25%	22/	37	3	100	7.7	
10	744 47	0.46	232	72	192							_
10 12010	749.05	0.44	223	77	290	252	251	57	3			
12 13:12	732.93	0.40	2-03	73	290		,					
		 										
				0-1								

				NOZZLE C	13072	DIAME	TER, IN. ,3	3073	IMPINGER	INITIAL	FINAL	TOTAL GAIN
METRO VA	NCOUVER WTE	- BURNAB	Y B.C.		L GUDD		Cp , 83 29		VOLUMES	(mL)	(mL)	(mL)
SOURCE VYI'L	2				C CA D IVE				Imp. #1	0	12561	256
PARAMETER / RUN N		415 R1		PORT LENG	STH				Imp. #2	100	182	#2
DATE Feb 16,	7-177	101			ESSURE, IN.	. H2O	-19,00		Imp. #3	100	1774	14
OPERATOR: 36	wee			STACK DIA			70.90	01	Imp. #4	0	. 6 .	6
	u 15	Y 1.0037		STACK HEI			30.0	10	Imp. #5	100	103	3
CONTROLOGIA	0 13	AH@ J.ble		 					lmp. #6	100	182	2
BAROMETRIC PRESS	URE IN Ha 7	0.76		INITIAL LEA	K TEST ,	00001511			Imp. #7	GEL	1 1	
ASSUMED MOISTURE	.Bw	10/0		FINAL LEAF	(TEST	000 Q1511			Imp. #8			
AGGOINED INCIGION	.,	70				MARCHA						
Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature '	'F		Pump Vac.	Fy	rites	
Point		IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
11.58	504,402		1	Outlet				Exit		Vol. %	Vol. %	1.45
1	508, 16	141	1,81	38	3(4)	250	754	817	4.5			
2 10	511.016	1412	1,85	58	360					10,50	9,50	
3	515,79	143	1.87	59	310	252	253	47	4.5			
4 20	5101.60	144	7,92	50	310			1				
5	573,25	139 -	1,70	60	3/1	251	248	47	4,5			
6 30	526, FZ	135	1.53	61	311	1				140	925	
7 50	529, 41	121	192	61	310	250	757	4/8	4,0			
8 40	532,29	124	1,05	102	309							
9	535(1)	123	1,01	63	310	249	252	48	400			
10 50	536,00	124	1,05	104	1311			C				
11	GUD. 95	125	1,10	65	311	250	251	47	4,0			
12 60	947.79	123	1452-	Gio	310			7				
	/ (). / (1							
1	546,64	123	1,02	107	306	1251	1249	49	40			
2 10	549,42	122	,97	67	311			,		10:0	9,4	
3	552132	124	1,06	67	311	250	251	49	400			
4 20	555,201	125	1/4/1	69	312							
5	558,34	127	1,19	69	1313	251	1249	49	460			
6 30	561,41	126	1/15	109	3/2			/				
7	565,03	337	11/04	70	312	253	251	48	405			
8 40	5691,100	136	1,60	70	312					10,5	9,5	
9	572,32	139	11,73	70	311	252	752	48	40		1	
10 50	576,23	1413	17097	171	312			7			1	
11	580.23	145	200	71	312	250	250	48	4,0		-	
12	534,783	146	2.05	71	310							
13:59	END fast										 	
	1071										+	
								-			+	$\overline{}$

AMETRO VA	NOOLIVED WITE	DUDNAD	VBC	NOZZLE /	03070		TER, IN. 13	073	IMPINGER		FINAL	TOTAL GAIN
METROVA	NCOUVER WTE	- BURNAB	T B.C.	PROBE A	L GWR	D-1	CP , 837	28	VOLUMES	((mL)	(mL)
SOURCE Unit	#3	-							lmp. #1	0	132	232
PARAMETER / RUN N		etale R	2	PORT LENG	STH				lmp. #2	100	175	78
	17,2022	121111		STATIC PR	ESSURE, IN.	H2O	-19,00		Imp. #3	100	124	21
OPERATOR: 36	4			STACK DIA	METER	7	2.90"		Imp. #4	. 0	5	3
CONTROL UNIT A	115	Y 1.00	7	STACK HER	GHT	-	30,011		lmp. #5	100	104	4
7.10		ΔH@ 1,60							Imp. #6	150	102	7
BAROMETRIC PRESS	SURE, IN. Hg 30,	26		INITIAL LEA	K TEST	10006	715		Imp. #7	GEL		
ASSUMED MOISTUR		10/0		FINAL LEAK	(TEST	10009	154		Imp. #8		!	
Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °	F		Pump Vac.	Fy	rites	
Point Property	501101-	IN. H₂O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
Point 81,50	584.855		_	Outlet				Exit		Vol. %	Vol. %	
1 1	58+72	124	1,05	56	300	250	257	49	9,5			
2 10	540,52	123	1.07	360	301			T '	11.3	10,5	9,5	
3	593,76	122	196	56	302	252	753	49	3,5			
4 20	5015.013	121	192	510	303			1				
5	508.67	122	P16.	57	704	2521	25%	48	3.5			
6 30	601.48	120	1,01	58	305							
7	604,94	135	1153	58	306	255	250	44	5,0			
8 40	108,41	135	11,53	59	306							
9	1/2/20	151	229	60	306	257	249	48	3,5	10,0	9.3	
10 50	116:42	142	12,66	61	301						1	
11	620,28	143	1.90	lai	303	249	251	48				
12 60	624.01	140	1177	61	303							
		, i										
1	1627,46	34	1,50	63	304	250	251	48	6,5			
2 10	63(0)	136	1/10	104	304					9.5	815	
3	1,314,01	133	146	64	303	252	250	401	7.0			
4 20	13417	132	4.412	65	302							
5	691,24	134	1152	65	361	250	749	49	75			
6 30	644,56	134	129	66	300							
7	617,29	,21	194	66	300	251	257	49	6,5			
8 40	1050,15	, 23	1,03	67	300				,	10,8	9.8	
9	653.08	124	1,0%	67	299	250	248	48	6.5			
10 50	656.0+	1:25	1,12	107	299		77.	112	10 0			
11	1059,06	175	1:12	198	799	261	252	48	(ew)		-	
12	661970	122	199	68	300				-			
10:36	END fest					-			-			
				-	-						 	
						-					 	$\overline{}$

		DUDALAD	V D O	NOZZLE /	6318	DIAME	TER, IN. 13	20	IMPINGER	INITIAL	FINAL ,	TOTAL GAIN
METRO VA	NCOUVER WTE	- BURNAB	Y B.C.	PROBE O	70	= (Op 1852	6	VOLUMES		(mL)	(mL)
SOURCE Unit	#3								Imp. #1	6	255	255
	10 partie/n	notals 1	23	PORT LENG	STH				lmp. #2	100	176	76
	7.7022	(CIA)		STATIC PR	ESSURE, IN	H2O -	19.0		lmp. #3	100	1/4	14
OPERATOR: 7/2	11000			STACK DIA	METER	7	0,90		Imp. #4	62	6	G
CONTROL UNIT	4/5	Y 1.003	7	STACK HE	GHT	-3	0,0		Imp. #5	100	103:	3
		DH@ 1.66	9						Imp. #6	100	101	
BAROMETRIC PRESS	SURE, IN. Hg 30	2, 26		INITIAL LEA	K TEST	1000	AUS"		Imp. #7	LOEI		
ASSUMED MOISTURE		10/2		FINAL LEA	K TEST	10010	lb .		Imp. #8	-	1 1	
Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ΔH			Temperature °	F		Pump Vac.	Fy	rites	
Point his 10	110 1111	IN. H₂O	IN. H₂O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	1
1112	1962.417			Outlet	1			Exit	l	Vol. %	Vol. %	
1	1005,92	131	1,54	67	303	754	252	46	45			
2 10	609.46	132	1,57	Tele	309					10.7	1915	
3	673. 11	134	1,68	67	308	753	1252	46	45			
4 20	676,70	133	1,62	106	209							
5	680,60	139	1,91	Te.69	310	252	253	46	45,0			
6 30	7084,4	137	7582	16+	30							
7	687, 48	24	118	67	310	2512	251	46	5,0	10,5	9.7	
8 40	690,40	123	7,13	67	308			, , ,				
9	1813,62	125	1,25	68	312	750	22/3	46	5,0			
10 50	696 87	127	1,33	68	33	-			1,,,,,			
11	699,94	124	1,18	68	313	249	251	46	4.5		-	
12 60	702.88	:22	1,09	105	313	_					-	
		077	1157	100	71	0 ====	7/2	2/5	45			
1 10	705.95	124	1.13	68	310	250	249	75	10	11.5	00	
2 10	700,08	125	1,23	68	34	1000	257	1111	11.00	11,0	9.8	
3	7/2,09	123	1,13	498	317	250	257	47	4.5	-	-	
4 20	715.02	122	1.08	69		257	249	45	4-5			
6 30	7181 909	26	1.18	10	3/3	131	61	- ()	70		 	
6 30	72 , 29	34		40	3/3	7250	249	45	5,0		 	
8 40	724.95	36	1,68	70	3/2	1.6)0	01-1	-13	200		 	
9 40	- 38:34	135	13	70	312	250	251	45	5.0	11.0	10,2	
10 50	736,60	149	2.16	69	73	0,50	<i>D</i> / (100	W.CO	15/5	-
11	70,60	142	207	60	311						1 1	
12	744,613	307	1,93	70	38							
13:14	ENDTEST	,,,		1								
1.3.1	71.01											
		<u> </u>										

Final

Client Source Parameter Date	COVANTA (MV W Unit#1 HF Feb 15, 2022	Cp Pbar 30.1 Operator Lia	U-A 0.9886 6 Static - 19.0 m/christian	Client Colors Source Vr Parameter H Date Fe	IANTA (MV WT) Nit #2 F 6 16, 2022	Cp Pbar 30.2	V-A 0.9886 27 Static - 20.0 m/christian
Leak Check		Run 2	Run 3	Leak Check	Run 1	Run 2	Run 3
Initial	0.0001	0.0001	0.0001	Initial	0.0001	0.000	0.000
Final	0.0001	0.0001	0.0001	Final	0.0001	0.000	0.0001

Test	Time	DGM Volume		ature (°F)	Imp.		∆P IN. H₂	0
No.	(hhmm)	(cu ft) / (m ³)	DGM Outlet	Stack	Vol. (mL)	R1	R2	R3
	09:49	500.4131	68		200		1 (2	
1			46					
	10:49	501.0234	38		262			
	10:55	501.0285	46		700			
2			42					
	11:55	501.6452	38		268			
	12:02	501.6480	47		200			
3			43				35	
	13:02	502.2516	37		260			

Test	Time	DGM Volume	Tempera	ture (°F)	lmp.	/	∆P IN. H₂	Ω
No.	(hhmm)	(cu ft) / (m ³)	DGM Outlet	Stack	Vol. (mL)	R1	R2	R3
	09:17	502.2576	62		Zeo		112	110
1			49					
	10:17	502.8478	42		295			
	10:30	502.8521	48		200			
2			42					
	11:30	503.4605	39		282			517 35
	11:45	503,4655	46		200			
3			44					
	12:45	504.0716	50		262			

Client Source	COVI	ANTA (MU WTE + #3	Y Cp	LMU-A	0.9886	Client		Y	
Parameter Date	HF	17,2022	Pbar Operator	<u> </u>	Static -19 Christian	Parameter		Pbar	Static
Leak Chec	k	Run 1	Run		Run 3	Leak Check	Run 1	Run 2	Run 3

Leak Check	Run 1	Run 2	Run 3	Leak Check	Run 1
Initial	0.0001	0.0001	0.0001	Initial	
Final	0.0001	0.0001	2 00001	Final	

Test	Time	DGM Volume		ature (°F)	Imp.	_	∆P IN. H₂	0
No.	(hhmm)	(cu ft) / (m ³)	DGM Outlet	Stack	Vol. (mL)	R1	R2	R3
	09.09	504.0884	46	200	200		11/2	110
1			40					
	0'.09	504.6955	39		280			
	10:23	504.7014	41		200			
2			40					
	11:23	505.3058	39		275			
	11:32	505.3092	41		200			
3			42					
	12:32	505 9086	40		275			

		501111	Tempera	ature (°F)	lmp.	,	∆P IN. H₂	^
Test No.	Time (hhmm)	DGM Volume (cu ft) / (m³)	DGM Outlet	Stack	Vol. (mL)			
			Outlet		(1112)	R1	R2	R3
1								
	I							
3								9
2				_				
_								
3								
					1			
					ı			

APPENDIX – E CALIBRATION SHEETS and TECHNICIAN CERTIFICATES

A.Lanfranco & Associates inc.

FPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: AU 15 Date: 11-Jan-22

 Serial #:
 0028SPC-081915-1
 Barometric Pressure:
 30.01
 (in. Hg)

 Theoretical Critical Vacuum:
 14.16
 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

			DRY GA	S METER READIN	IGS	-				-CI	RITICAL ORIF	CE READING	GS-			
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Te Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Temperati Final (deg F)	ure Average (deg F)		
3.60	30.00	797.900	830.200	32.300	73.0	73.0	75.0	75.0	73	0.8185	17.0	71.0	79.0	75.0		
1.80	16.00	830.400	842.834	12.434	75.0	75.0	76.0	76.0	63	0.5956	20.0	77.0	79.0	78.0		
1.10	38.00	843.200	866.213	23.013	76.0	76.0	78.0	78.0	55	0.4606	22.0	78.0	81.0	79.5		
0.61	29.00	866.600	879.867	13.267	78.0	78.0	78.0	78.0	48	0.3560	23.0	81.0	84.0	82.5		
0.27	19.00	880.100	885.968	5.868	78.0	78.0	79.0	79.0	40	0.2408	24.5	81.0	82.0	81.5		
VOLUME	S METER VOLUME		VOLUME	VOLUME	VOLUME		DRY GAS			CAL	IBRATION FA	ORIFICE CTOR		Average (deg F) 75.0 78.0 79.5 82.5 81.5		
CORRECTED Vm(std) (cu ft)	CORRECTED Vm(std) (liters)		CORRECTED Vcr(std) (cu ft)	CORRECTED Vcr(std) (liters)	NOMINAL Vcr (cu ft)		Value (number)	Y Variation (number)		Value (in H2O)	dH@ Value (mm H2O)	Variation (in H2O)				
32.303	914.8		31.859	902.2	32.197		0.986	-0.017		1.781	45.23	0.112		0.730		
12.346	349.6		12.330	349.2	12.530		0.999	-0.005		1.686	42.83	0.017		0.742		
22.747	644.2		22.614	640.4	23.046		0.994	-0.010		1.723	43.76	0.054		0.738		
13.074	370.3		13.302	376.7	13.632		1.017	0.014		1.605	40.78	-0.063		0.748		
5.772	163.5		5.900	167.1	6.035		1.022	0.018		1.549	39.34	-0.120		0.758		
					Avera	ıge Y>	1.0037	Avera	ge dH@>	1.669	42.4	Av	erage Ko>	0.743		

Т	EMPERATURE CALIBRAT	ION	
Calibration Standard>	Omega Model CL23A S/N:T-2	18768	
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Rev Variation (degF)	sults Percent of Absolute
32	32	0	0.00%
100	100	0	0.00%
300	300	0	0.00%
500	500	0	0.00%
1000	1000	0	0.00%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.
For Orfifce Calibration Factor dril@, the orfice differential pressure in inches of H20 that equates to 0.75 cfm of air at 8F and 29 g sinches of Hg, acceptable tolerance of individual values from the average is +-0.2.
For Temperature Device, the reading must be within 1.5% of certified calibration standard (absolute temperature) be acceptable.

A.Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: CAE AL1 Date: 11-Jan-22

 Serial #:
 0028-070611-1
 Barometric Pressure:
 30.01
 (in. Hg)

 Theoretical Critical Vacuum:
 14.16
 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

	DRY GAS METER READINGS									-C	RITICAL ORIF	ICE READING	GS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Te Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	bient Temperat Final (deg F)	ure Average (deg F)
3.75	15.00	46.600	62.350	15.750	61.0	61.0	63.0	63.0	73	0.8185	18.0	66.0	70.0	68.0
1.90	24.00	62.800	81.430	18.630	64.0	64.0	67.0	67.0	63	0.5956	20.0	73.0	74.0	73.5
1.20	19.00	82.000	93.537	11.537	67.0	67.0	69.0	69.0	55	0.4606	22.0	76.0	77.0	76.5
0.68	15.00	94.000	100.938	6.938	69.0	69.0	70.0	70.0	48	0.3560	23.5	77.0	78.0	77.5
0.34	27.00	101.200	109.756	8.556	62.0	62.0	65.0	65.0	40	0.2408	24.5	64.0	73.0	68.5
DRY GA	S METER VOLUME		VOLUME	ORIFICE	VOLUME			S METER ON FACTOR		CAL	LIBRATION FA	ORIFICE	·	
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y			_IBRATION FA dH@	CTOR		
VOLUME	VOLUME		VOLUME	VOLUME	VOLUME					CAl Value (in H2O)	_IBRATION FA			Ko (value)
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr		CALIBRATIO Value	ON FACTOR Y Variation		Value	LIBRATION FA dH@ Value	CTOR Variation		
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)		CALIBRATION Value (number)	ON FACTOR Y Variation (number)		Value (in H2O)	LIBRATION FA dH@ Value (mm H2O)	CTOR Variation (in H2O)		(value)
VOLUME CORRECTED Vm(std) (cu ft) 16.119	VOLUME CORRECTED Vm(std) (liters) 456.5		VOLUME CORRECTED Vcr(std) (cu ft) 16.035	VOLUME CORRECTED Vcr(std) (liters) 454.1	VOLUME NOMINAL Vcr (cu ft) 15.993		CALIBRATION Value (number) 0.995	ON FACTOR Y Variation (number) 0.008		Value (in H2O) 1.873	LIBRATION FA dH@ Value (mm H2O) 47.57	CTOR Variation (in H2O) 0.006		(value) 0.693
VOLUME CORRECTED Vm(std) (cu ft) 16.119 18.855	VOLUME CORRECTED Vm(std) (liters) 456.5 534.0		VOLUME CORRECTED Vcr(std) (cu ft) 16.035 18.572	VOLUME CORRECTED Vcr(std) (liters) 454.1 526.0	VOLUME NOMINAL Vcr (cu ft) 15.993 18.717		Value (number) 0.995 0.985	ON FACTOR Y Variation (number) 0.008 -0.001		Value (in H2O) 1.873 1.799	LIBRATION FA dH@ Value (mm H2O) 47.57 45.68	Variation (in H2O) 0.006 -0.068		(value) 0.693 0.716
VOLUME CORRECTED Vm(std) (cu ft) 16.119 18.855 11.601	VOLUME CORRECTED Vm(std) (liters) 456.5 534.0 328.5		VOLUME CORRECTED Vcr(std) (cu ft) 16.035 18.572 11.339	VOLUME CORRECTED Vcr(std) (liters) 454.1 526.0 321.1	VOLUME NOMINAL Vcr (cu ft) 15.993 18.717		Value (number) 0.995 0.985 0.977	ON FACTOR Y Variation (number) 0.008 -0.001 -0.009		Value (in H2O) 1.873 1.799 1.901	LIBRATION FA dH@ Value (mm H2O) 47.57 45.68 48.29	Variation (in H2O) 0.006 -0.068 0.035		(value) 0.693 0.716 0.702

TEMPERATURE CALIBRATION										
Calibration Standard>	Omega Model CL23A S/N:T-2	18768								
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Re: Variation (degF)	sults Percent of Absolute							
32	32	0	0.00%							
100	100	0	0.00%							
300	300	0	0.00%							
500	500	0	0.00%							
1000	1000	0	0.00%							

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.
For Orfifce Calibration Factor dril@, the orfice differential pressure in inches of H20 that equates to 0.75 cfm of air at 8F and 29 g sinches of Hg, acceptable tolerance of individual values from the average is +-0.2.
For Temperature Device, the reading must be within 1.5% of certified calibration standard (absolute temperature) be acceptable.

Calibrated by: Scott Ferguson Signature: Date: January 11, 2022

A.Lanfranco & Associates inc.

FPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: CAE J099 Date: 11-Jan-22

 Serial #:
 0028-022210-1
 Barometric Pressure:
 30.01
 (in. Hg)

 Theoretical Critical Vacuum:
 14.16
 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

	DRY GAS METER READINGS							-CRITICAL ORIFICE READINGS-						
dH	Time	Volume Initial	Volume Final	Volume Total	Initial T	Outlet	Inlet	Temps. Outlet	Orifice Serial#	K' Orifice Coefficient	Actual Vacuum	Initial	bient Temperat	Average
(in H2O)	(min)	(cu ft)	(cu ft)	(cu ft)	(deg F)	(deg F)	(deg F)	(deg F)	(number)	(see above)	(in Hg)	(deg F)	(deg F)	(deg F)
3.60	28.00	939.400	969.525	30.125	66.0	66.0	67.0	67.0	73	0.8185	16.0	65.0	76.0	70.5
1.85	15.00	897.500	909.074	11.574	62.0	62.0	63.0	63.0	63	0.5956	20.0	69.0	73.0	71.0
1.15	23.00	909.200	923.024	13.824	64.0	64.0	67.0	67.0	55	0.4606	22.0	74.0	80.0	77.0
0.66	18.00	923.500	931.772	8.272	67.0	67.0	69.0	69.0	48	0.3560	23.5	81.0	82.0	81.5
0.34	16.00	932.500	937.548	5.048	69.0	69.0	71.0	71.0	40	0.2408	24.5	80.0	83.0	81.5
DRY GA	S METER			ORIFICE										
							DRY GA	S METER				ORIFICE		
VOLUME	VOLUME							S METER ON FACTOR		CAL				
CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y			IBRATION FA	CTOR		
CORRECTED Vm(std)	CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr		CALIBRATIO Value	ON FACTOR Y Variation		Value	LIBRATION FA dH@ Value	CTOR Variation		Ko
CORRECTED Vm(std) (cu ft)	CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)		CALIBRATION Value (number)	ON FACTOR Y Variation (number)		Value (in H2O)	LIBRATION FA dH@ Value (mm H2O)	CTOR Variation (in H2O)		(value)
CORRECTED Vm(std) (cu ft) 30.557	CORRECTED Vm(std) (liters) 865.4		VOLUME CORRECTED Vcr(std) (cu ft) 29.861	VOLUME CORRECTED Vcr(std) (liters) 845.7	VOLUME NOMINAL Vcr (cu ft) 29.924		CALIBRATION Value (number) 0.9772	ON FACTOR Y Variation (number) -0.008		Value (in H2O) 1.791	LIBRATION FA dH@ Value (mm H2O) 45.49	Variation (in H2O) -0.034		(value) 0.721
CORRECTED Vm(std) (cu ft) 30.557 11.779	CORRECTED Vm(std) (liters) 865.4 333.6		VOLUME CORRECTED Vcr(std) (cu ft) 29.861 11.635	VOLUME CORRECTED Vcr(std) (liters) 845.7 329.5	VOLUME NOMINAL Vcr (cu ft) 29.924 11.671		Value (number) 0.9772 0.9877	ON FACTOR Y Variation (number) -0.008 0.002		Value (in H2O) 1.791 1.753	LIBRATION FA dH@ Value (mm H2O) 45.49 44.53	Variation (in H2O) -0.034 -0.072		(value) 0.721 0.722
CORRECTED Vm(std) (cu ft) 30.557 11.779 13.965	CORRECTED Vm(std) (liters) 865.4 333.6 395.5		VOLUME CORRECTED Vcr(std) (cu ft) 29.861 11.635 13.719	VOLUME CORRECTED Vcr(std) (liters) 845.7 329.5 388.5	VOLUME NOMINAL Vcr (cu ft) 29.924 11.671 13.917		Value (number) 0.9772 0.9877 0.9824	ON FACTOR Y Variation (number) -0.008 0.002 -0.003		Value (in H2O) 1.791 1.753 1.832	UBRATION FA dH@ Value (mm H2O) 45.49 44.53 46.54	Variation (in H2O) -0.034 -0.072 0.007		(value) 0.721 0.722 0.711
CORRECTED Vm(std) (cu ft) 30.557 11.779 13.965 8.307	CORRECTED Vm(std) (liters) 865.4 333.6 395.5 235.3		VOLUME CORRECTED Vor(std) (cu ft) 29.861 11.635 13.719 8.264	VOLUME CORRECTED Vcr(std) (liters) 845.7 329.5 388.5 234.0	VOLUME NOMINAL Vcr (cu ft) 29.924 11.671 13.917 8.453		Value (number) 0.9772 0.9877 0.9824 0.9948	ON FACTOR Y Variation (number) -0.008 0.002 -0.003 0.009		Value (in H2O) 1.791 1.753 1.832 1.767	UBRATION FA dH@ Value (mm H2O) 45.49 44.53 46.54 44.87	Variation (in H2O) -0.034 -0.072 0.007 -0.058		(value) 0.721 0.722 0.711 0.716
CORRECTED Vm(std) (cu ft) 30.557 11.779 13.965	CORRECTED Vm(std) (liters) 865.4 333.6 395.5		VOLUME CORRECTED Vcr(std) (cu ft) 29.861 11.635 13.719	VOLUME CORRECTED Vcr(std) (liters) 845.7 329.5 388.5	VOLUME NOMINAL Vcr (cu ft) 29.924 11.671 13.917		Value (number) 0.9772 0.9877 0.9824	ON FACTOR Y Variation (number) -0.008 0.002 -0.003		Value (in H2O) 1.791 1.753 1.832	UBRATION FA dH@ Value (mm H2O) 45.49 44.53 46.54	Variation (in H2O) -0.034 -0.072 0.007		(value) 0.721 0.722 0.711

TEMPERATURE CALIBRATION						
Calibration Standard> Omega Model CL23A S/N:T-218768						
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Rev Variation (degF)	sults Percent of Absolute			
32	32	0	0.00%			
100	100	0	0.00%			
300	300	0	0.00%			
500	500	0	0.00%			
1000	1000	0	0.00%			

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.
For Orfifce Calibration Factor dril@, the orfice differential pressure in inches of H20 that equates to 0.75 cfm of air at 8F and 29 g sinches of Hg, acceptable tolerance of individual values from the average is +-0.2.
For Temperature Device, the reading must be within 1.5% of certified calibration standard (absolute temperature) be acceptable.

Calibrated by: Scott Ferguson Signature: Date: January 11, 2022

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: LMU-A Date: 5-Jan-22

Serial #: Kimmon 186 Barometric Pressure: 30.11 (in. Hg)

Theoretical Critical Vacuum: 14.20 (in. Hg)

!!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

!!!!!!!!!

	DRY GAS METER READINGS							-CRITICAL ORIFICE READINGS-						
	-	Volume	Volume	Volume	Initial T			Temps.	Orifice	K' Orifice	Actual		bient Tempera	
dH (in H2O)	Time (min)	Initial (m³)	Final (m³)	Total (cu ft)	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	Serial# (number)	Coefficient (see above)	Vacuum (in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)
0.00	17.00	492.2545	492.4783	7.903	57.0	57.0	56.0	56.0	48	0.3560	20.0	58.0	58.0	58.0
0.00	16.00	492.4790	492.6902	7.458	58.0	58.0	61.0	61.0	48	0.3560	20.0	55.0	57.0	56.0
0.00	15.00	492.6910	492.8894	7.006	60.0	60.0	62.0	62.0	48	0.3560	20.0	56.0	57.0	56.5
			*****	******	*****	****** DEG	III TC *****	*****	*****	******	***			
DBV GA	e METED					KES						OBIEICE		
	S METER			ORIFICE		KES	DRY GAS	S METER				ORIFICE		
VOLUME	VOLUME		VOLUME	ORIFICE	VOLUME	KES		S METER ON FACTOR			 LIBRATION FA			
VOLUME				ORIFICE		REC	DRY GAS	S METER						
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vor(std)	VOLUME NOMINAL Vcr	KES	DRY GAS CALIBRATIO	S METER ON FACTOR Y Variation		CAL Value	 LIBRATION FA dH@ Value	CTOR Variation		
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)	RES	DRY GAS CALIBRATIO Value (number)	DN FACTOR Y Variation (number)		CAL Value (in H2O)	 IBRATION FA dH@ Value (mm H2O)	CTOR Variation (in H2O)		
VOLUME CORRECTED Vm(std) (cu ft) 8.127	VOLUME CORRECTED Vm(std) (liters) 230.2		VOLUME CORRECTED Vcr(std) (cu ft) 8.007	VOLUME CORRECTED Vcr(std) (liters) 226.7	VOLUME NOMINAL Vcr (cu ft) 7.808	RES	DRY GAS CALIBRATIO Value (number) 0.985	DN FACTOR Y Variation (number) -0.003		CAL Value (in H2O) 0.000	 LIBRATION FA dH@ Value (mm H2O) 0.00	Variation (in H2O) 0.000		
VOLUME CORRECTED Vm(std) (cu ft) 8.127 7.626	VOLUME CORRECTED Vm(std) (liters) 230.2 216.0		VOLUME CORRECTED Vcr(std) (cu ft) 8.007 7.550	VOLUME CORRECTED Vcr(std) (liters) 226.7 213.8	VOLUME NOMINAL Vcr (cu ft) 7.808 7.335	RES	DRY GAS CALIBRATIO Value (number) 0.985 0.990	DN FACTOR Y Variation (number) -0.003 0.002		CAL Value (in H2O) 0.000 0.000	 LIBRATION FA dH@ Value (mm H2O) 0.00 0.00	Variation (in H2O) 0.000		

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2. For Temperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by:	Liam Forrer	Signature:	_ /	orrer	Date:	Januar	v 5. 2	022

Pitot Tube Calibration

 Date:
 05-Jan-22
 Temp (R): 530

 Pbar (in.Hg):
 30.16
 Dn (in.): 0.25

Pitot ID:	7A-1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.050	0.070	14.9	0.8367	0.0024
0.100	0.140	21.0	0.8367	0.0024
0.150	0.210	25.7	0.8367	0.0024
0.350	0.490	39.3	0.8367	0.0024
0.590	0.850	51.0	0.8248	0.0095
-		Average:	0.8343	0.0038

	Pitot ID:	ST 8A			
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
	0.040	0.055	13.3	0.8443	0.0027
	0.080	0.110	18.8	0.8443	0.0027
	0.180	0.250	28.2	0.8400	0.0016
	0.300	0.420	36.4	0.8367	0.0049
	0.500	0.690	47.0	0.8427	0.0011
,			Average:	0.8416	0.0026

Pitot ID:	7B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.030	0.040	11.4	0.8574	0.0056
0.120	0.160	22.8	0.8574	0.0056
0.200	0.247	29.5	0.8521	0.0003
0.380	0.520	40.6	0.8463	0.0055
0.730	1.000	56.3	0.8459	0.0059
		Average:	0.8518	0.0046

Pitot ID:	ST 8B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.060	0.080	16.3	0.8574	0.0039
0.090	0.120	19.8	0.8574	0.0039
0.190	0.260	29.0	0.8463	0.0072
0.320	0.430	37.6	0.8540	0.0006
0.630	0.850	52.8	0.8523	0.0012
		Average:	0.8535	0.0033

	Pitot ID:	7 AL GVRD-	1		
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
	0.060	0.085	16.3	0.8318	0.0011
	0.090	0.125	19.9	0.8400	0.0072
	0.145	0.200	25.3	0.8430	0.0101
	0.290	0.420	35.8	0.8226	0.0102
	0.530	0.760	48.4	0.8267	0.0061
•			Average:	0.8328	0.0069

Pitot ID:	ST 8C			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.050	0.070	14.9	0.8367	0.0031
0.085	0.120	19.4	0.8332	0.0004
0.195	0.270	29.0	0.8413	0.0078
0.420	0.600	43.1	0.8283	0.0053
0.630	0.900	52.8	0.8283	0.0053
		Average:	0.8336	0.0044

	Pitot ID:	7C			
ĺ	Reference	S-Type	Air	Pitot	Deviation
١	Pitot	Pitot	Velocity	Coeff.	(absolute)
ı	(in H2O)	(in H2O)	(ft/s)	Ср	
ĺ	0.030	0.040	11.4	0.8574	0.0048
١	0.060	0.080	16.3	0.8574	0.0048
١	0.110	0.150	21.9	0.8478	0.0047
١	0.210	0.280	30.5	0.8574	0.0048
ı	0.500	0.690	47.0	0.8427	0.0098
			Average:	0.8525	0.0058

Pitot ID:				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average:		

Calibrated by: Jeremy Gibbs Signature: ______ Date: January 5, 2022

^{*} Average absolute deviation must not exceed 0.01.

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

GLASS NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Scott Ferguson
Date: January 18, 2022

Signature: Scott Ferguson

						//
Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
-	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
Α	0.1250	0.1240	0.1245	0.0010	0.1245	0.0000845
G-165	0.1640	0.1655	0.1660	0.0020	0.1652	0.0001488
G-170	0.1705	0.1695	0.1700	0.0010	0.1700	0.0001576
G-178	0.1780	0.1780	0.1790	0.0010	0.1783	0.0001735
J	0.1880	0.1880	0.1880	0.0000	0.1880	0.0001928
E	0.1880	0.1895	0.1882	0.0015	0.1886	0.0001939
Q	0.2070	0.2050	0.2060	0.0020	0.2060	0.0002315
L	0.2112	0.2120	0.2105	0.0015	0.2112	0.0002434
G-215	0.2150	0.2135	0.2160	0.0025	0.2148	0.0002517
G-218	0.2180	0.2175	0.2190	0.0015	0.2182	0.0002596
G-221	0.2195	0.2195	0.2225	0.0030	0.2205	0.0002652
G-2231	0.2230	0.2230	0.2225	0.0005	0.2228	0.0002708
G-2232	0.2220	0.2240	0.2235	0.0020	0.2232	0.0002716
G-225	0.2245	0.2250	0.2240	0.0010	0.2245	0.0002749
G-2251	0.2230	0.2260	0.2245	0.0030	0.2245	0.0002749
G-228	0.2280	0.2270	0.2300	0.0030	0.2283	0.0002746
P-18	0.2375	0.2370	0.2380	0.0010	0.2375	0.0002044
G-245	0.2440	0.2450	0.2450	0.0010	0.2447	0.0003265
G-247	0.2440	0.2470	0.2470	0.0010	0.2463	0.0003203
G-2501	0.2430	0.2500	0.2505	0.0020	0.2503	0.0003310
G-250	0.2505	0.2505	0.2500	0.0005	0.2503	0.0003418
G-253	0.2530	0.2520	0.2520	0.0010	0.2523	0.0003473
G-257	0.2565	0.2585	0.2570	0.0020	0.2573	0.0003612
Р	0.2580	0.2570	0.2575	0.0010	0.2575	0.0003616
P-2	0.2787	0.2790	0.2785	0.0005	0.2787	0.0004237
G-280	0.2780	0.2800	0.2810	0.0030	0.2797	0.0004266
G-282	0.2810	0.2820	0.2840	0.0030	0.2823	0.0004348
G-287	0.2870	0.2880	0.2860	0.0020	0.2870	0.0004493
G-2871	0.2870	0.2875	0.2865	0.0010	0.2870	0.0004493
G-292	0.2922	0.2920	0.2926	0.0006	0.2923	0.0004659
G-294	0.2940	0.2935	0.2940	0.0005	0.2938	0.0004709
G-304	0.3040	0.3045	0.3045	0.0005	0.3043	0.0005052
MV-01	0.3050	0.3045	0.3055	0.0010	0.3050	0.0005074
G-3072	0.3070	0.3070	0.3080	0.0010	0.3073	0.0005152
G-307	0.3080	0.3080	0.3080	0.0000	0.3080	0.0005174
G-308	0.3065	0.3080	0.3095	0.0030	0.3080	0.0005174
G-309	0.3085	0.3085	0.3090	0.0005	0.3087	0.0005196
G-3091	0.3090	0.3090	0.3085	0.0005	0.3088	0.0005202
G-310	0.3090	0.3105	0.3095	0.0015	0.3097	0.0005230
G-312	0.3115	0.3130	0.3115	0.0015	0.3120	0.0005309
G-3121	0.3115	0.3125	0.3130	0.0015	0.3123	0.0005321
G-3121	0.3113	0.3123	0.3170	0.0013	0.3123	0.0005321
V-06	0.3100	0.3100	0.3170	0.0010	0.3207	0.0005438
V-00 P-27	0.3200	0.3210	0.3210	0.0010	0.3387	0.0005008
G-344	0.3367	0.3365	0.3440	0.0005	0.3443	0.0006467
G-344 G-345	0.3440	0.3450	0.3440	0.0010	0.3443	0.0006492
G-346	0.3450	0.3460	0.3460	0.0010	0.3457	0.0006517
G-367	0.3675	0.3650	0.3670	0.0025	0.3665	0.0007326
P-14	0.3910	0.3935	0.3920	0.0025	0.3922	0.0008388
G-433	0.4335	0.4330	0.4330	0.0005	0.4332	0.0010234
G-437	0.4350	0.4345	0.4355	0.0010	0.4350	0.0010321
G-468	0.4677	0.4670	0.4670	0.0007	0.4672	0.0011907
P-29	0.4680	0.4680	0.4690	0.0010	0.4683	0.0011963
P-7	0.4965	0.4940	0.4930	0.0035	0.4945	0.0013337
В	0.5015	0.5030	0.5025	0.0015	0.5023	0.0013763
G-540	0.5405	0.5400	0.5405	0.0005	0.5403	0.0015924

Where:

D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in. (a)

Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in. (b)

(c) Average = average of D1, D2 and D3

	BAROMETER CALIBRATION FORM							
		Pbar Env Canada		Device (inc	hes of Hg)	Difference		
					Elevation			
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)		
LA	5-Jan-22	102.5	30.27	30.16	30.23	0.04		
DS	5-Jan-22	102.5	30.27	30.16	30.23	0.04		
CL	5-Jan-22	102.5	30.27	30.17	30.24	0.03		
ML	5-Jan-22	102.5	30.27	30.14	30.21	0.06		
SB	5-Jan-22	102.5	30.27	30.15	30.22	0.05		
SH	5-Jan-22	102.5	30.27	30.15	30.22	0.05		
MG	5-Jan-22	102.5	30.27	30.23	30.30	-0.03		
SF	5-Jan-22	102.5	30.27	30.16	30.23	0.04		
JG	5-Jan-22	102.5	30.27	30.12	30.19	0.08		
JC	5-Jan-22	102.5	30.27	30.15	30.22	0.05		
LF	5-Jan-22	102.5	30.27	30.15	30.22	0.05		

Calibrated by: Jeremy Gibbs Signature: Date: 05-Jan-21

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74 metric e.html

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Calibrated by: Justin Ching 13-Jan-22 Date:

Carter Lanfranco Signature:

TEMPERATURE DEVICE CALIBRATIONS

Reference Device								Temp	erature Set	ttings (degre	es F)					
Model CL23A Calib	rator		3	32 100		20	200		300		500		800		1700	
Device	ALA#	Serial #	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation
Omega HH11A	3	300132	32.5	0.10%	99.1	-0.16%	200.9	0.14%	302.5	0.33%	497.2	-0.29%	797.3	-0.21%	1697	-0.14%
Omega HH11A	4	200167		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%
Omega HH11A	6	600059	33	0.20%	99.6	-0.07%	201.6	0.24%	301.3	0.17%	498.2	-0.19%	799.6	-0.03%	1697	-0.14%
TPI 341K	7	2.0315E+10	30.9	-0.22%	98.6	-0.25%	198.6	-0.21%	298.7	-0.17%	498.4	-0.17%	795.9	-0.33%	1695	-0.23%
TPI 341K	8	2.0313E+10	32.1	0.02%	99	-0.18%	200.7	0.11%	300.2	0.03%	488.2	-1.23%	797.6	-0.19%	1696	-0.19%
Cont Cmpny	10	102008464	30.5	-0.31%	97.6	-0.43%	198.2	-0.27%	297.8	-0.29%	498	-0.21%	796.4	-0.29%	1695	-0.23%
Omega HH11	14	409426		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%
TPI 341K	16	400120029	31	-0.20%	99	-0.18%	199.1	-0.14%	298.5	-0.20%	500	0.00%	799.9	-0.01%	1701	0.05%
TPI 341K	18	2.0329E+10	31.2	-0.16%	99.2	-0.14%	198.1	-0.29%	298.6	-0.18%	498.6	-0.15%	799.1	-0.07%	1697	-0.14%
TPI 341K	20	2.0329E+10	30.9	-0.22%	98	-0.36%	198.1	-0.29%	298.8	-0.16%	497.2	-0.29%	797.9	-0.17%	1697	-0.14%
TPI 341K	22	2.0329E+10	31.4	-0.12%	98.9	-0.20%	198	-0.30%	298.8	-0.16%	497.7	-0.24%	798	-0.16%	1697	-0.14%
Reference device is	a NIST ce	rtified digital th	ermocouple	calibrator												

Variation expressed as a percentage of the absolute temperature must be within 1.5 %

Calibration Certificate

 Date:
 12-Jan-22
 Insrtument Calibrated:
 Testo 1 (330-2LL)

 Calibrated by:
 Daryl Şampson
 Serial #:
 03101345

 Authorizing Signature:
 Customer:
 ALA

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

O ₂	Initial Evaluation					After Calibration				
Gas	Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Certified Value (vol %)	
Zero O ₂ Ambient	0.5 11.1 20.9	0.50 0.10 0.05	Pass Pass Pass		0.2 11.0 21.0	0.20 0.00 0.00	Pass Pass Pass		0 11.00 20.95	

Performance Specification: +/- 1% O₂ (absolute diff)

СО		Initial Evaluation	on						
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero	1	0.3%	Pass		0	0.0%	Pass		0
1 Gas	475	0.6%	Pass		472	0.1%	Pass		472
2 Gas	1912	0.3%	Pass		1909	0.1%	Pass		1907
3 Gas	998	0.3%	Pass		996	0.1%	Pass		995
4 Gas	242	0.5%	Pass		241	0.3%	Pass		240

Performance Specification: +/- 5% of Certified Gas Value

NO		Initial Evaluation	on						
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero	1	0.3%	Pass		0	0.0%	Pass		0
1 Gas	475	0.3%	Pass		474	0.1%	Pass		473
2 Gas	101	0.6%	Pass		100	0.4%	Pass		100.4
3 Gas	257	0.8%	Pass		256	0.4%	Pass		255
4 Gas	46	0.8%	Pass		46	0.8%	Pass		45.64

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure (PSI)	O ₂ (Vol. %)	CO (ppm)	NO (ppm)
Zero Gas (N ₂)	2735278Y	27-Jul-2020	26-Jul-2025	300	0	0	0
1 Gas	SG9107852B	6-May-2021	5-May-2024	1100	-	471.5	473.4
2 Gas	XC004912B	10-Jun-2021	11-Jun-2029	1200	-	1907	100.4
3 Gas	DT0017994	10-Mar-2017	10-Mar-2025	250	-	995	255
4 Gas	CC428385	7-Apr-2021	8-Apr-2029	1200	-	240.3	45.64
O_2/CO_2	SX30844	16-Mar-2021	17-Mar-2029	700	11.00	-	-

Note: National Institute of Standards and Technology traceable certificates are available upon request.

Calibration Certificate

 Date:
 11-Jan-22
 Insrtument Calibrated:
 Testo 2 (330-2LX)

 Calibrated by:
 Louis Agassiz
 Serial #:
 03282252

 Authorizing Signature:
 ALA
 Customer:
 ALA

Ambient Conditions: Temperature: 8 °C Barometric Pressure: 101.96 kPa Relative Humidity: 94%

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

	Initial Evaluation	on						
Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Certified Value (vol %)
0.1	0.10	Page		0	0.00	Pass		0
11.3	0.30	Pass		11.1	0.10	Pass		11.00
20.9	0.06	Pass	Recal	20.9	0.06	Pass		20.96
	0.1 11.3	Instrument Reading (vol %) % Calibration Error	Reading (vol %) % Calibration Error Pass/Fail 0.1 0.10 Pass 11.3 0.30 Pass	Instrument Reading (vol %) % Calibration Error Pass/Fail Notes 0.1 0.10 Pass 11.3 0.30 Pass	Instrument Reading (vol %) % Calibration Error Pass/Fail Notes	Instrument Reading (vol %)	Instrument Reading (vol %) % Calibration Error Pass/Fail Notes Reading (vol %) % Calibration Error Pass/Fail 0.1 0.10 Pass 0 0.00 Pass 11.3 0.30 Pass 11.1 0.10 Pass	Instrument Reading (vol %)

Performance Specification: +/- 1% O₂ (absolute diff)

СО	In administration of	Initial Evaluation				After Calibration				
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)	
Zero 1 Gas 2 Gas	0 1618 225	0.0% 15.2% 6.4%	Pass Fail Fail	Recal	0 1906 241	0.0% 0.1% 0.3%	Pass Pass Pass		0 1907 240.3	

Performance Specification: +/- 5% of Certified Gas Value

NO	Instrument	Initial Evaluation	on		Instrument	Certified Value			
Gas	Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Reading (ppm)	% Calibration Error	Pass/Fail	Notes	(ppm)
Zero 1 Gas	0 111	0.0% 10.6%	Pass Fail	Recal	0 100	0.0% 0.4%	Pass		0 100.4
2 Gas	50	9.6%	Fail	Recai	46	0.4%	Pass Pass		45.64

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure (PSI)	O ₂ (Vol. %)	CO (ppm)	NO (ppm)
Zero Gas (N ₂)	2735278Y	27-Jul-2020	26-Jul-2025	300	0	0	0
1 Gas	XC004912B	10-Jun-2021	11-Jun-2029	1200	-	1907	100.4
2 Gas	CC428385	7-Apr-2021	8-Apr-2029	1200	-	240.3	45.64
O ₂ /CO ₂	SX30844	16-Mar-2021	17-Mar-2029	700	11.00	-	-

Note: National Institute of Standards and Technology traceable certificates are available upon request.

Canadian Association for Laboratory Accreditation Inc.

Certificate of Accreditation

A. Lanfranco and Associates Inc. 101 - 9488 - 189th Street Surrey, British Columbia

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Accreditation No.: A4232

Issued On: February 5, 2021

Accreditation Date: February 5, 2021

Expiry Date: August 6, 2023

Cladra M. Clabras

Faculty of Continuing Education and Extension

Daryl Sampson

has successfully completed

The program of studies and is awarded the certificate in

STACK SAMPLING

May 2005

Date

Dear

Faculty of Continuing Education and Protection

MOUNT ROYAL UNIVERSITY

Faculty of Continuing Education and Extension

Michael Eugene Goods

has successfully completed

Stack Sampling

35 Hours / 2019

May 22, 2019

Date

Shawn Harrington

has met the requirements of

Stack Testing for Pollutants (CHSC 7760)

School of Process, Energy and Natural Resources Chemical Sciences Program

Endorsed by:

Environment Canada

Environnement

British Columbia Ministry of

JUNE 21, 2001

School of Process, Energy and Natural Resources

Marsh Hemekey, Dean

MOUNT ROYAL UNIVERSITY

Faculty of Continuing Education and Extension

Jeremy Shawn Gibbs

has successfully completed

Stack Sampling

35 Hours / 2019

May 22, 2019

Date

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration I Daryl Sampson , as a member of Air and Waste Management Association declare Select one of the following: Absence from conflict of interest Other than the standard fee I will receive for my professional services, I have no financial or other interest in the outcome of this project . I further declare that should a conflict of interest arise in the future during the course of this work, I will fully disclose the circumstances in writing and without delay to Mr. Sajid Barlas , erring on the side of caution.

\square Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conduction and standards of practice.	ng my work in accordance with my Code of Ethics
In addition, I will take the following ste have disclosed, to ensure the public int	ps to mitigate the real or perceived conflict(s) I erest remains paramount:
	sure may be interpreted as a threat to my by the statutory decision maker accordingly.
Information and Protection of Privacy Act for transparency and ensuring professional ethic statement you consent to its publication and	es and accountability. By signing and submitting this its disclosure outside of Canada. This consent is revoked. If you have any questions about the information please contact the Ministry of
Signature:	Witnessed by:
X Daryl Sampson	Mark Lanfranco
Print name: Daryl Sampson	Print name:
Date: Dec.18, 2020	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

their common sense, conscience and sense of personal in	tegrity.
<u>Declaration</u>	
Jeremy Globs as a me	ember of _Air and Waste Management Association
declare	
Select one of the following:	
X Absence from conflict of interest	
Other than the standard fee I will receive for my p	rofessional services, I have no financial or
other interest in the outcome of this project	. I further declare that should a
conflict of interest arise in the future during the co	ourse of this work, I will fully disclose the
circumstances in writing and without delay to Mr. Sajid Barlas	, erring on the side of caution.

☐ Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conducting and standards of practice.	my work in accordance with my Code of Ethics
In addition, I will take the following steps have disclosed, to ensure the public inter	to mitigate the real or perceived conflict(s) I est remains paramount:
Further, I acknowledge that this disclosur independence and will be considered by t	•

This conflict of interest disclosure statement is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name

Date: Dec.16, 2020

Witnessed by:

151

Mark Lanfranco
Print name:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

Confidentiality and Impartiality Agreement

Confidentiality is legally enforceable in our client contracts for all projects and ensures that our firm, its personnel, and any outsourced bodies treat all information obtained or created during our scope of work as confidential. Our firm does not disclose information that is not public regarding a client or responsible party to a third party without express consent of that party. Our firm informs the client and responsible party before placing any information in the public domain and will use equipment and facilities to ensure the secure handling of confidential information.

Impartiality Our firm's policies and procedures regarding conflict of interest (COI) and safeguarding impartiality reflects the commitment to act impartially in all activities. Our firm understands that the principles of COI and impartiality are essential to providing independent services. Our team is required to personally declare any potential threat to impartiality or potential COI. Should a potential COI or threat to impartiality be identified, our team will work to determine mitigation measures, if applicable.

This agreement is made by and between	
Muhuel Goods Milliff	(1st Party)
AND	
A. Lanfranco and Associates Inc.	(2 nd Party)
As of <u>24 Nov</u> ,20 <u>20</u>	

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;

1/

- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

I <u>Shawn Harrington</u> , as a m declare	ember of Air and Waste Management Association
Select one of the following:	
☑ Absence from conflict of interest	
Other than the standard fee I will receive for my	professional services, I have no financial or
other interest in the outcome of this project	. I further declare that should a
conflict of interest arise in the future during the o	course of this work, I will fully disclose the
circumstances in writing and without delay to Mr. Sajid Barlas	, erring on the side of caution.

Date: Dec.16, 2020

Descripti	on and nature of conflic	t(s):	
		.(0).	
and the second			
	ntain my objectivity, cood dards of practice.	nducting my work	in accordance with my Code of Ethics
	on, I will take the followi losed, to ensure the pul	• .	ite the real or perceived conflict(s) I ins paramount:

•		•	interpreted as a threat to my tory decision maker accordingly.
			under section 26(c) of the Freedom of the section 26(c) of the Freedom of the fre
•			untability. By signing and submitting t
•	·		re outside of Canada. This consent is
			f you have any questions about the new please contact the Ministry of
	•		s Office at 1-800-663-7867.
ignature:	// · A	Wi	itnessed by:
Manya	Home alon		(A)

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Print name:

Mark Lanfranco

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional <u>Daryl S</u>	ampson	
	Title Senior	Environmental Technician/Project Manager	
2.	Are you a registered member of a profess	ional association in B.C.? ☐ Yes ☒ No	
	Name of Association:	Registration #	
3.	Brief description of professional services:		
	Environmental consulting, specializing in a	ir and atmospheric sciences	
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.			
<u>Declaration</u>			
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.			
Sig	nature:	Witnessed by:	
<u>x 2</u>	Daryl Sampson	x Zen Com	
Pri	Daryl Sampson nt Name: <u>Daryl Sampson</u>	Print Name: Louis Agassiz	
Da	te signed: November 23, 2020		

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

knowledge, experience and objectivity necessary to fulfill this role.		
1. Name of Qualified Professional Jeverny Obles		
Title Environmental technician		
2. Are you a registered member of a professional association in B.C.? ☐ Yes ☐ No		
Name of Association:Registration #		
3. Brief description of professional services: Environmental Consultant Specialize in Gir and of the mospheric Sciences		
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.		
<u>Declaration</u>		
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above. Signature: Witnessed by:		
* home fill		
Print Name: Deremy 6.45 Print Name: Connoc Laan		
Date signed: Nav 1 2020		

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{}f 1}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

1. Name of Qualified Professional

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

Michael Goods

	Titlo Envir	onmental Technician	
	Title <u>Elivir</u>	onnental rechinician	
2.	Are you a registered member of a profes	sional association in B.C.?	□ Yes □ No
	Name of Association:	Registration #	
3.	Brief description of professional services:		
	Environmental Technician - specialising in air and atmospheric sciences		
		•	
Propured to the propured to th	is declaration of competency is collected untection of Privacy Act for the purposes of ofessional ethics and accountability. By signification and its disclosure outside of Cananato be revoked. If you have any question resonal information please contact the Minadquarters Office at 1-800-663-7867.	increasing government transpare ning and submitting this statement ada. This consent is valid from the as about the collection, use or disc	ency and ensuring nt you consent to its e date submitted and closure of your
	<u>D</u>	<u>eclaration</u>	
	m a qualified professional with the knowled		· · · · · · · · · · · · · · · · · · ·
Się	nature:	Witnessed by:	
<u>X</u>	Mgoods	_ x /// //	1/
Pr	nt Name: <u>Michael Goods</u>	Print Name: Scott Fergu	uson
Da	te signed:		
10	ualified Professional in relation to a duty or function (under ministry legislation, means an individu	ual who

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional	Shawn Harrington
	Title	Senior Environmental Technician /Project manager
2.	Are you a registered member of a	professional association in B.C.? ☐ Yes ☑No
	Name of Association:	Registration #
3.	Brief description of professional se Environmental consulting ,spe	ervices: ecializing in air and atmospheric sciences
Pro pro pu car pe	otection of Privacy Act for the purpo ofessional ethics and accountability blication and its disclosure outside nnot be revoked. If you have any q	ected under section 26(c) of the <i>Freedom of Information and</i> oses of increasing government transparency and ensuring r. By signing and submitting this statement you consent to its of Canada. This consent is valid from the date submitted and uestions about the collection, use or disclosure of your the Ministry of Environment and Climate Change Strategy 67.
		<u>Declaration</u>
	·	knowledge, skills and experience to provide expert ndations in relation to the specific work described above.
<u>X</u> Pri	int Name: Shawn Harrington te signed: November 26, 2020	Witnessed by: X Print Name: Mark anfranco

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who