

Annual Trace Organics Emission Report Waste-to-Energy Facility

August 2021 Survey
Operational Certificate 107051
Report Issued: September 23, 2021

CERTIFICATION

The field monitoring for this survey was conducted by certified stack test technicians as required by the British Columbia Ministry of Environment (BC MOE) Field Sampling Manual.

The field crew consisted of:

Mr. L. Agassiz (certified), Mr. C. Lanfranco (certified), Mr. J. Gibbs (certified) and Mr. S. Baker.

The report was prepared by Mr. L. Agassiz using reporting principles and guidelines generally acceptable to Metro Vancouver (MV).

The field crew and A. Lanfranco and Associates Inc. certify that the test methods used were BC MOE/MV approved reference methods for the parameters investigated.

Mark Lanfranco, CS7

President | Owner

Table of Contents

TEST PROGRAM ORGANIZATION	1
SUMMARY	2
1.0 INTRODUCTION	3
2.0 METHODOLOGY	3
2.1 Sampling and Analytical Methods	4
2.2 Calculations	10
2.2.1 Contaminant Concentration Calculations	10
2.2.2 Isokinetic Variation Calculations	12
2.2.3 Volumetric Flowrate Calculations	14
2.3 Quality Assurance/Quality Control (QA/QC) Techniques	14
3.0 TEST RESULTS	15
4.0 DISCUSSION	20

APPENDICES

Appendix 1 - Analytical Data

Appendix 2 - Computer Outputs of Measured and Calculated Data

Appendix 3 - Field Data Sheets

Appendix 4 - Calibration Data and Certification

TEST PROGRAM ORGANIZATION

Primary Stakeholders: Brent Kirkpatrick and Sarah Wellman

Metro Vancouver – Solid Waste Services Metrotower III - 4730 Kingsway

Burnaby, B.C. Canada

Email: brent.kirkpatrick@metrovancouver.org Email: sarah.wellman@metrovancouver.org

Facility Coordinator: Stephen McKinney

Facility Manager

Covanta Burnaby Renewable Energy ULC

5150 Riverbend Drive

Burnaby, BC Canada V3N 4V3

Email: smckinney@covanta.com

Project Manager/Sampling

Contractor:

Mr. Mark Lanfranco
President | Owner
A. Lanfranco and Associates Inc.
101 – 9488 189 St

Surrey, BC Canada V4N 4W7

Tel: (604) 881-2582

Email: mark.lanfranco@alanfranco.com

Sampling Crew: Mr. L. Agassiz – A. Lanfranco and Associates Inc.

Mr. C. Lanfranco – A. Lanfranco and Associates Inc.

Mr. J. Gibbs – A. Lanfranco and Associates Inc.

Mr. S. Baker – A. Lanfranco and Associates Inc.

SUMMARY

The following tables present the average of triplicate test results on Unit 3 for various trace organics on August 18-19, 2021. Additional emission parameters were measured by the facility's certified continuous emission monitoring system.

SUMMARY - Trace Organics

Parameter		Unit 3	Limit
PCDD/PCDF	(TEQ ng/Sm ³ @ 11% O ₂)	0.0022	0.08
PCDD/PCDF Mass Emission	(TEQ g/day)	4.03E-06	
PAH HCB* Total CB Total CP* Total PCB	(μg/Sm ³ @ 11% O ₂) (μg/Sm ³ @ 11% O ₂)	0.1038 0.0012 0.3097 0.0061 0.0143	5.0 1.0 1.0 1.0
Flowrate Temperature O_2	(Sm ³ /min) (°C) (vol % dry)	1105 152 9.4	

Standard conditions (S) of 20 °C and 101.325 kPa (dry)

Note: PCDD/PCDF results are in <u>nanograms</u> per cubic meter and <u>grams/day</u>, PAH/HCB/CB/CP are reported in <u>micrograms</u> per cubic meter.

^{*}Calculated using half detection limit

1 INTRODUCTION

Metro Vancouver (MV) commissioned an emissions monitoring survey at the Waste-to-Energy Facility (WTEF) in Burnaby, B.C. This report documents the results of a semi-volatile organics survey for dioxin/furan (PCDD/PCDF), polychlorinated biphenyl (PCB), polycyclic aromatic hydrocarbons (PAH), hexachlorobenzenes (HCB), chlorobenzenes (CB), and chlorophenols (CP) during normal operations at the facility.

This report includes detailed emission results, a brief outline of methods employed, equipment used, and a discussion of the survey. Supporting data is presented in the appendices section of this report.

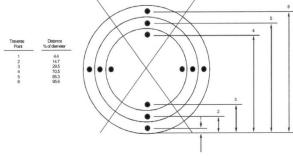
The individual source monitored for 2021 was Unit 3.

2 METHODOLOGY

All services provided by A. Lanfranco and Associates were conducted in accordance with approved reference methods as issued by:

- Metro Vancouver
- BC Ministry of Environment & Climate Change Strategy
- Environment Canada (EC)
- US Environmental Protection Agency (EPA)

2.1 Sampling and Analytical Methods


The following table lists the test methods used for the different parameters measured. The subsequent paragraphs briefly describe each method.

<u>Parameter</u>	Reference Method			
Sample and Velocity traverse points	EPS 1/RM/8 A Determination of Sampling Site and Traverse Points			
Velocity and flowrate	EPS 1/RM/8 B Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)			
Gas molecular weight (O ₂ /CO ₂)	EPS 1/RM/8 C Determination of Molecular Weight by Gas Analysis			
Flue gas Moisture	EPS 1/RM/8 D Determination of Moisture Content			
Dioxin/Furan (sampling)	EPS 1/RM/2 Reference Method for Source Testing - Measurement of Releases of Semi-Volatile Organic Compounds from Stationary Sources EPA Method 23 Determination of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans from Stationary Sources supporting			
Dioxin/Furan (analytical)	Methodology for Organic Analysis - A Method for the Analysis of Polychlorinated Dibenzopara-Dioxins (PCDD's), Polychlorinated Dibenzofurans (PCDF's) Environment Canada, December 1989			

Sampling Site and Traverse Points

This method is designed to aid in the representative measurement of pollutant emissions and/or total volumetric flow rate from a stationary source. A measurement site where the effluent stream is flowing in a known direction is selected, and the cross-section of the stack is divided into a number of equal areas. Traverse points are then located within each of these equal areas.

Primary: EPS 1/RM/8 Method A
Supporting: EPA Method 1

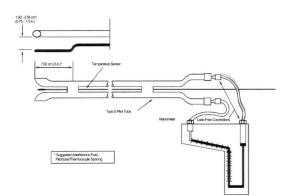


Figure 1. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points.

Stack Gas Velocity and Volumetric Flow Rate

The average gas velocity in a stack or duct is determined from the gas density and from the measurement of velocity pressure with an S-type pitot tube. A standard pitot tube may be used where plugging of the tube openings due to particulate matter and/or moisture is not likely to occur. Stack gas volumetric flow rate is determined from measurements of stack gas velocity, temperature, absolute pressure, dry gas composition, moisture content, and stack diameter.

EPS 1/RM/8 Method B

EPA Method 2

Figure 2. Type S Pitot Tube Manometer Assembly

Molecular Weight by Gas Analysis Primary: EPS 1/RM/8 Method C

Supporting: EPA Method 3

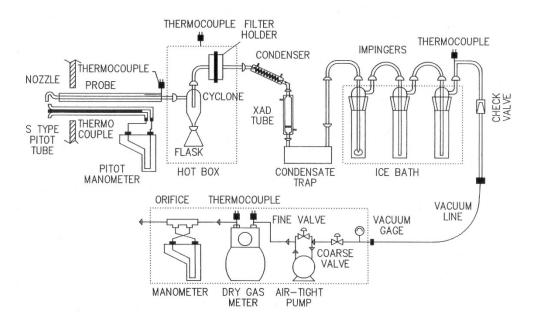
An integrated or grab sample is extracted from a single point in the gas stream and analyzed for its components using a Fyrite analyzer, a gas chromatograph, or calibrated continuous analyzers.

Primary:

Supporting:

Moisture Content Primary: EPS 1/RM/8 Method D

Supporting: EPA Method 4

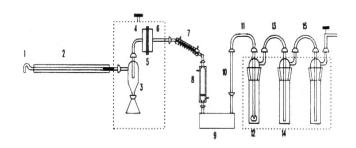

A gas sample is extracted from a single point in the enclosed gas stream being sampled. The moisture is condensed and its weight measured. This weight, together with the volume of gas sampled, enables the stack gas moisture content to be calculated.

Dioxins / Furans Primary: EPS 1/RM/2, 1/RM/3, 1/RM/23

Supporting: EPA Method 23

This method is applicable to the determination of emissions of polychlorinated dibenzo-paradioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and other semi-volatile organic compounds from stationary sources. An integrated gas sample is isokinetically withdrawn from the stack similar to Method 5. Semi-volatile organic compounds associated with particulate matter are collected in the front half components with remaining compounds not collected by the filter, being absorbed in an Amberlite XAD-2 resin trap.

Figure 3 - Dioxin / Furan Sampling Train



Due to the sensitivity of this test method, extra care and precautions are used. All sample trains were cleaned professionally at an accredited laboratory. A solvent proof of the glassware and XAD was archived as suggested by the method.

The train was operated for duration of 240 minutes. Upon completion, it was removed to a clean area for recovery. The recovered sample consists of 6 individual components:

Filter Rinses	 Front Half Rinses
XAD Trap	 Soak
Impingers	• Final Rinse

Complete sampling and recovery procedures can be supplied upon request.

Container or Sample	Component(s)	Recovery Procedure
1	1, 2, 3, 4	Wash and brush 3 times each with hexane (H) and acetone (A). Rinse 3 times each with H and A.
2	5	Remove carefully from holder. Place on pre- cleaned foil. Fold in half. Place in pre-cleaned glass petri dish.
3	6, 7	Soak 5 minutes each with H and A. Rinse 3 times each with H and A.
4	8	Cap ends and wrap in foil.
5	9, 12	Empty contents into container and rinse each 3 times with HPLC water.
6	6 to 15 except 8	Rinse 3 times each with H and A.

Mark liquid levels on all bottles.

All sample containers are pre-cleaned amber glass bottles with pre-cleaned Teflon lid

Figure 4 Recovery Procedures for Semi-Volatile Organics

Samples are analyzed on a high-resolution GS/MS at Pacific Rim Laboratories Inc. of Surrey, BC. Following is a description, in very simplified terms, of the basic procedures used to process the sample train and blank train components.

Initially the sample components are separated into liquid (containers 1, 4, 5 and 6) or solid phases (containers 2 and 3) and surrogate compounds (for recovery calculations) are injected into the solid phases of the front and back half samples. Liquid and solid samples are extracted with various solvents (usually benzene), sometimes under acid conditions. Figure 5 and Figure 6 demonstrate the step by step procedures used to extract the components of interest into a solvent phase which is ready for detailed splitting and clean-up. The concentrated extracts from Figure 5 are combined and are processed per procedures detailed in Figure 6.

When each target group has been isolated, as indicated in Figure 4, the extract volumes are dried, concentrated, and analysed by GC/MS analytical instrumentation. Prior to actual analysis, all samples were spiked with a performance standard for laboratory QA/QC purposes.

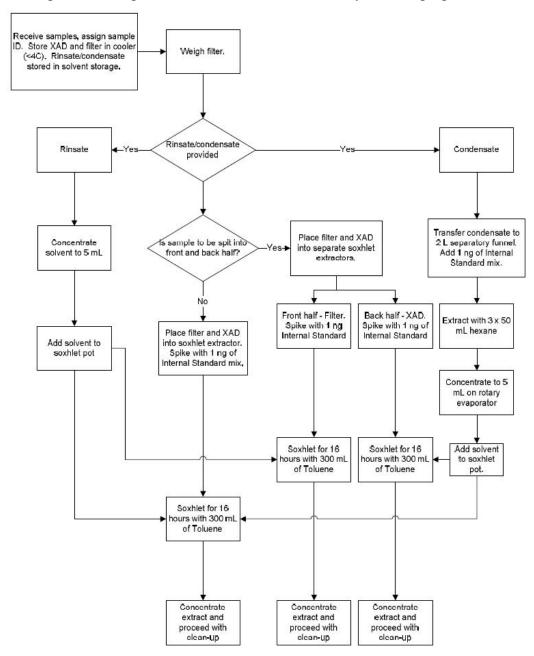


Figure 5 - Semi-Volatile Organics XAD and Filter Recovery Schematic

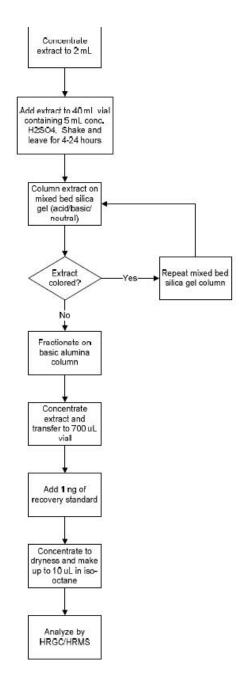


Figure 6 - Schematic of analytical methodology for dioxins and furans

2.2 **Calculations**

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-11 were used to calculate particulate concentration at standard conditions on a dry basis. Equations 12-26 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 27-29 were used to calculate the volumetric flowrate of the stack flue gas.

2.2.1 **Contaminant Concentration Calculations**

$$c = \frac{m}{V_{std}}$$
 Equation 1
$$m_{part} = m_{filter} + m_{pw}$$
 Equation 2
$$m_i = m_{ana,i} - m_{blank}$$
 Equation 3
$$m_{HF} = \frac{20.006}{18.998} (m_F - m_{blank})/1000$$
 Equation 4
$$V_{std} = \frac{V_{std(imp)}}{35.315}$$
 Equation 5
$$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$$
 Equation 6
$$V_{samp} = V_{final} - V_{init}$$
 Equation 7
$$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$$
 Equation 8
$$\Delta H_{ave} = \frac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}$$
, where $n =$ the number of points Equation 9
$$OC = \frac{20.9 - \%O_{2c}}{20.9 - \%O_{2m}}$$
 Equation 10
$$\%O_{2m} = \frac{1}{n} \sum_{i=1}^{n} \%O_{2i}$$
, where $n =$ the number of O_2 measurements Equation 11

Equation 11

Where,

c = Contaminant concentration

m = Contaminant mass

 m_i = Net analytical mass (mg, ng, or μ g) $m_{ana,i}$ = Analytical mass (mg, ng, or μ g) m_{blank} = Blank analytical mass (mg, ng, or μ g)

 $V_{std(imp)}$ = Sample volume at standard conditions (ft³) V_{std} = Sample volume at standard conditions (m³) V_{samp} = Sample volume at actual conditions (ft³)

 V_{final} = Final gas meter reading (ft³) V_{init} = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) T_m = Gas meter temperature (°F)

 $T_{m(ave)}$ = Average gas meter temperature (°F) P_m = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg)

 ΔH_{ave} = Average of individual point orifice pressures (inches of H_2O) $\Delta H_{i(act)}$ = Individual recorded point orifice pressures (inches of H_2O)

OC = Oxygen correction factor (dimensionless)

 $\%O_{2c}$ = Oxygen concentration to correct to (% dry basis)

 $\%O_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant.

The dioxins/furans and other semi-volatile organic compounds were treated slightly different. The blank results for all trace organic species are used as a Quality Assurance check and are not used to correct the analytic results. Also, according to the terms of the service agreement, individual trace organic species were reported as "non-detect" (ND) if all three tests for that species are below the detection limit. If one (or more) of the triplicate samples has a reportable value, the corresponding ND samples from the other test runs were reported at half the detection limit. For calculating of summarized results (PCDD& PCDF TEQ, Total PAHs, Total Chlorobenzenes, Total Chlorophenols, and Total PCBs) the substitution of half DL for each individual species, as detailed above, was performed prior to calculating the sums.

All results are reported in the units outlined in the service agreement. The following unit conversions were used throughout:

1 mg =
$$10^{-3}$$
 g
1 µg = 10^{-6} g
1 ng = 10^{-9} g
1 tonne = 10^{6} g

Oxygen corrections were applied by multiplying the result of Equation 1 by the result of Equation 10 for each individual result.

2.2.2 Isokinetic Variation Calculations

$$\Delta H_i = \frac{2.62 \times 10^7 \times c_p \times A_n \times (1 - B_{wo}) \times M_D \times (T_m + 459.67) \times \Delta p_i}{k_o \times M_w \times (T_{Stk} + 459.67)} \qquad \text{Equation 12}$$

$$R_m = 85.49 \times c_p \times \sqrt{\Delta p_i} \times \sqrt{\frac{(T_{stk_i} + 459.67)}{M_w \times P_B}} \times 60 \times A_n \times \frac{(T_{m_i} + 459.67) \times (1 - B_{wo})}{(T_{stk_i} + 459.67) \times y} \qquad \text{Equation 13}$$

$$A_n = \pi \left(\frac{d_n}{24}\right)^2 \qquad \qquad \text{Equation 14}$$

$$M_w = M_D \times (1 - B_{wo}) + 18 \times B_{wo} \qquad \qquad \text{Equation 15}$$

$$M_D = 0.44 \times \% CO_2 + 0.32 \times \% O_2 + 0.28 \times (100 - \% CO_2 - \% O_2) \qquad \qquad \text{Equation 16}$$

$$T_{Stk} = \frac{1}{n} \sum_{i=1}^n T_{Stk_i}, \text{where } n = \text{the number of points} \qquad \qquad \text{Equation 17}$$

$$B_{wo} = \frac{V_{cond}}{V_{cond} + V_{std(imp)}} \qquad \qquad \text{Equation 18}$$

$$V_{cond} = 0.04707 \times V_{gain} \qquad \qquad \text{Equation 19}$$

$$Iso = \frac{1}{n} \sum_{i=1}^n Iso_i, \text{where } n = \text{the number of points} \qquad \qquad \text{Equation 20}$$

$$Iso_i = \frac{v_{nzi}}{v_i}$$

Equation 21

$$v_i = 85.49 \times c_p \times \sqrt{\Delta p_i} \times \sqrt{\frac{\left(T_{Stk_i} + 459.67\right)}{\left(P_{Stk} \times M_W\right)}}$$

Equation 22

$$v_{nzi} = \frac{(V_i - V_{i-1}) \times y \times (T_{Stk_i} + 459.67) \times (P_B + \frac{\Delta H_{i(act)}}{13.6})}{A_n \times t_i \times 60 \times (T_{m(i)} + 459.67) \times P_{stk} \times (1 - B_{wo})}$$

Equation 23

$$P_{stk} = P_B + \frac{P_g}{13.6}$$

Equation 24

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
 , where $n =$ the number of points

Equation 25

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
 , where $n =$ the number of points

Equation 26

Where,

 $A_n = Nozzle area (ft^2)$

 d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H₂O)

 P_g = Stack Static pressure (inches of H_2O) P_{Stk} = Absolute stack pressure (inches of H_B) M_W = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

%CO₂ = Stack gas carbon dioxide concentration (% dry basis)

 $\%O_2$ = Stack gas oxygen concentration (% dry basis) B_{wo} = Stack gas water vapour, proportion by volume

 V_{cond} = Total volume of water vapor collected, corrected to standard conditions

 (ft^3)

 V_{gain} = Condensate gain of impinger contents (mL) P_{std} = Standard pressure (29.92 inches of Hg)

 v_{stk} = Average flue gas velocity (ft/sec)

Equation 27

 v_i = Individual point flue gas velocity (ft/sec)

 v_{nz} = Average velocity at nozzle(ft/sec)

 v_{nzi} = Individual point velocity at nozzle(ft/sec) Iso_i = Individual point isokinetic variation (%)

Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (ft^3 /min)

2.2.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$

$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
 Equation 28

$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
 Equation 29

Where,

 $Q_A = Actual flowrate (Am^3/min)$

 $Qs = Flowrate (m^3/min)$ at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)

d = Diameter of stack (inches)

2.3 Quality Assurance/Quality Control (QA/QC) Techniques

QA/QC of this survey was accomplished by the following mechanisms.

- 1. Pre and Post-test leak checks.
- 2. Calibration of volume measuring and monitoring instrumentation.
- 3. Proofing of organic glassware and supplies.
- 4. Analysis of all blank solutions and materials.
- 5. Surrogate spiking of XAD using EPA protocols
- 6. Internal standard spiking and recovery analysis of organic trains to Env. Canada specs
- 7. Blank train sampling of leak check average volume

3 TEST RESULTS

The results of stack emissions were calculated using a "STACK" computer program developed by A. Lanfranco and Associates to meet BC MOE/MV requirements.

Table 1 presents summarized trace organic results using the Hazardous Waste Regulation TEQ's, as well as additional organic species. Table 2 presents detailed PCDD/PCDF data and Table 3 presents trace organics results as a mass emission (not corrected for O₂). Detailed PAH and additional chlorinated organic species emission concentrations are presented in Table 4 and Appendix 2.

Trace organic results were recovery corrected according to surrogate recovery efficiencies determined for each organic analysis. Surrogates added and the recoveries determined are listed in the analytical data presented in the Appendices.

A stratification check was performed in 2018 and a cyclonic flow check was performed in 2006. Neither condition was present at the Unit 3 sampling location.

TABLE 1: UNIT 3 TRACE ORGANICS RESULTS TABLE

Parameter		Test 1	Test 2	Test 3	Average
Test Date		18-Aug-21	19-Aug-21	19-Aug-21	
Test Time		08:30 - 12:32	08:36 - 12:38	12:57 - 17:00	
Duration	(minutes)	240	240	240	240
PCDD & PCDF TEQ PCDD & PCDF TEQ	(ng/Sm ³) (ng/Sm ³ @ 11% O ₂)	0.0007 0.0006	0.0037	0.0032 0.0028	0.0025 0.0022
PCDD & PCDF TEQ	(ng/sm @11% O ₂)	0.0000	0.0032	0.0028	0.0022
Total PAH	$(\mu g/Sm^3)$	0.1045	0.1769	0.0815	0.1210
Total PAH	$(\mu g/S m^3 @ 11\% O_2)$	0.0859	0.1531	0.0723	0.1038
Total HCB*	$(\mu g/Sm^3)$	0.0015	0.0014	0.0014	0.0014
Total HCB*	$(\mu g/S m^3 @ 11\% O_2)$	0.0013	0.0012	0.0012	0.0012
Total CB	$(\mu g/Sm^3)$	0.2572	0.4659	0.3544	0.3591
Total CB	$(\mu g/S m^3 @ 11\% O_2)$	0.2115	0.4032	0.3144	0.3097
Total CP*	$(\mu g/Sm^3)$	0.0077	0.0070	0.0068	0.0071
Total CP*	$(\mu g/S m^3 @ 11\% O_2)$	0.0063	0.0060	0.0060	0.0061
Total PCB	$(\mu g/Sm^3)$	0.0033	0.0449	0.0014	0.0165
Total PCB	$(\mu g/S m^3 @ 11\% O_2)$	0.0027	0.0388	0.0012	0.0143
Stack Temperature	(°C)	150	153	154	152
Flowrate	(Sm ³ /min)	1097	1099	1118	1105
Oxygen (O ₂)	(vol % dry)	8.9	9.5	9.7	9.4
Carbon Dioxide (CO ₂)	(vol % dry)	10.9	10.2	9.8	10.3
Moisture	(vol %)	15.0	15.9	16.2	15.7
Isokinetic Variation	(%)	102	103	104	103

Standard conditions (S) of 20 °C and 101.325 kPa (dry)

^{*}Calculated using half DL convention.

	TABLE	2 Detailed F	PCDD/PCD	F Emission	Results		
		Test 1		Test 2		Test 3	
Test Date:		18-Au	g-21	19-Aug-21		19-Aug-21	
Test Time:		08:30 -	12:32	08:36 -	12:38	12:57 -	17:00
Component	TEF	Analyzed	TEQ	Analyzed	TEQ	Analyzed	TEQ
		(ng)	(ng)	(ng)	(ng)	(ng)	(ng)
2378 TCDD	1.0000	0.0000	ND	0.0000	ND	0.0000	ND
12378 PCDD	0.5000	0.0000	ND	0.0000	ND	0.0000	ND
123478 HxCDD	0.1000	0.0000	ND	0.0000	ND	0.0000	ND
123678 HxCDD	0.1000	0.0000	ND	0.0000	ND	0.0000	ND
123789 HxCDD	0.1000	0.0020	0.0002	0.0020	0.0002	0.0049	0.0005
1234678 HpCDD	0.0100	0.0140	0.0001	0.0320	0.0003	0.0380	0.00038
OCDD	0.0010	0.0300	0.00003	0.0730	0.00007	0.0730	0.00007
2378 TCDF	0.1000	0.0000	ND	0.0000	ND	0.0000	ND
12378 PCDF	0.0500	0.0020	0.0001	0.0090	0.0005	0.0130	0.0007
23478 PCDF	0.5000	0.0020	0.0010	0.0200	0.0100	0.0170	0.0085
123478 HxCDF	0.1000	0.0000	ND	0.0000	ND	0.0000	ND
123678 HxCDF	0.1000	0.0020	0.0002	0.0020	0.0002	0.0089	0.0009
234678 HxCDF	0.1000	0.0020	0.0002	0.0130	0.0013	0.0020	0.0002
123789 HxCDF	0.1000	0.0020	0.0002	0.0020	0.0002	0.0020	0.0002
1234678 HpCDF	0.0100	0.0240	0.00024	0.0430	0.00043	0.0350	0.00035
1234789 HpCDF	0.0100	0.0000	ND	0.0000	ND	0.0000	ND
OCDF	0.0010	0.0075	7.5E-06	0.0240	0.000024	0.0075	7.50E-06
Summed PCDD & PC	DF TEQ (ng	<u>(</u>)	0.0023		0.0132		0.0117
Sample Volume (dscm))		3.2546		3.5888		3.6826
PCDD & PCDF TEQ	ng/dscm		0.00071		0.00368		0.00319
PCDD & PCDF TEQ	ng/dscm @	11% O ₂	0.00059		0.00318		0.00283
PCDD & PCDF TEQ	grams/day		0.000001		0.000006		0.000005
Flouresta (da am/r-i)			1007		1000		1110
Flowrate (dscm/min)			1097		1099		1118 9.7
Oxygen (Vol. %)	D/)		8.9 10.9		9.5 10.2		
Carbon Dioxide (Vol. 9	70)		10.9				9.8
Moisture (Vol. %)					15.9		16.2
Temperature (oC)			150		153		154

102

Isokinetic Variation (%)

104

103

TABLE 3: UNIT 3 TRACE ORGANICS MASS EMISSIONS RESULTS

Parameter		Test 1	Test 2	Test 3	Average
PCDD & PCDF TEQ	(g/sec)	1.30E-11	6.74E-11	5.94E-11	4.66E-11
PCDD & PCDF TEQ	(tonnes/annum)	4.11E-10	2.12E-09	1.87E-09	1.47E-09
Total PAH	(g/sec)	1.91E-06	3.24E-06	1.52E-06	2.22E-06
Total PAH	(tonnes/annum)	6.02E-05	1.02E-04	4.79E-05	7.01E-05
Total HCB*	(g/sec)	2.81E-08	2.55E-08	2.53E-08	2.63E-08
Total HCB*	(tonnes/annum)	8.86E-07	8.05E-07	7.98E-07	8.29E-07
Total CB	(g/sec)	4.70E-06	8.53E-06	6.60E-06	6.61E-06
Total CB	(tonnes/annum)	1.48E-04	2.69E-04	2.08E-04	2.09E-04
Total CP*	(g/sec)	1.40E-07	1.28E-07	1.26E-07	1.32E-07
Total CP*	(tonnes/annum)	4.43E-06	4.02E-06	3.99E-06	4.15E-06
Total PCB	(g/sec)	6.07E-08	8.22E-07	2.59E-08	3.03E-07
Total PCB	(tonnes/annum)	1.91E-06	2.59E-05	8.17E-07	9.55E-06

Standard conditions (S) of 20 °C and 101.325 kPa (dry)

Note - tonnes/annum based on 8760 operating hours

^{*}Calculated using half DL convention.

 TABLE 4
 Detailed PCB/PAH/CB/CP Emission Results

Test Date:		Test 1 18-Aug-21	Test 2 19-Aug-21	Test 3 19-Aug-21	
Test Time:		08:30 - 12:32	08:36 - 12:38	12:57 - 17:00	
Component		Analyzed	Analyzed	Analyzed	
		(ug)	(ug)	(ug)	
Benz(a)anth	racene	ND	ND	ND	- 1
Benzo(a)pyr		ND	ND	ND	ı
Benzo(b) flu		ND	ND	ND	- 1
Benzo(e)pyr	rene	0.030	0.005	0.040	
Benzo(g,h,i)		0.030	0.250	0.010	
Benzo(k)fluo	oranthene	ND	ND	ND	- 1
Chrysene		ND	ND	ND	- 1
Dibenz(a,j)a	cridine	ND	ND	ND	- 1
Dibenz(a,h)a	acridine	ND	ND	ND	- 1
Dibenz(a,h)a	anthracene	ND	ND	ND	- 1
Dibenzo(a,i)	pyrene	ND	ND	ND	- 1
Fluoranthen	ie	0.040	0.070	0.030	
Indeno(1,2,3	3-c,d)pyrene	ND	ND	0.030	
Phenanthrei		0.140	0.180	0.110	
Pyrene		0.070	0.090	0.050	
7H-dibenzo((c,g)carbazole	ND	ND	ND	- 1
Acenaphthe		ND	ND	ND	- 1
Acenaphthy		ND	ND	ND	- 1
Fluorene		0.030	0.040	0.030	
Dibenzo(a,e) fluoranthene	ND	ND	ND	- 1
3-Methylch		ND	ND	ND	- 1
5-Methylchi		ND	ND	ND	- 1
-	hylbenz(a)anthracene	ND	ND	ND	- 1
Dibenzo(a,h	•	ND	ND	ND	- 1
Dibenzo(a,e)pyrene	ND	ND	ND	1
Dibenzo(a,l)		ND	ND	ND	- 1
Quinoline		ND	ND	ND	- 1
Total CP		0.0250	0.0250	0.0250	
Total CB		0.8370	1.6720	1.3050	
HCB		0.0050	0.0050	0.0050	
* ND = Less	than detection limit				
PCB Total ((ng)	10.8	161.0	5.1	
Total PAH ((ug)	0.340	0.635	0.300	
Sample Vol	ume (ds cm)	3.25	3.59	3.68	
Oxygen		8.9	9.5	9.7	
РАН	ug/dscm	0.1045	0.1769	0.0815	
HCB	ug/dscm	0.1045	0.0014	0.0013	
CB Total	ug/dscm	0.0013	0.4659	0.3544	
CP Total	ug/dscm	0.2372	0.4039	0.0068	
PCB Total	ug/dscm	0.0077	0.0449	0.0003	
- CD TOUR		0.0000	VIV 117	0.0011	
PAH	ug/dscm@11% O2	0.0859	0.1531	0.0723	
HCB	ug/ds cm @ 11% O2	0.0013	0.0012	0.0012	
CB Total	ug/ds cm @ 11% O2	0.2115	0.4032	0.3144	
CP Total	ug/ds cm @ 11% O ₂	0.0063	0.0060	0.0060	
PCB Total	ug/ds cm @ 11% O ₂	0.0027	0.0388	0.0012	
	3 , 3 32				

4 DISCUSSION

The emissions monitoring for this survey was preformed during normal processing of municipal solid waste at the Waste-to-Energy facility. Three sample runs for each test parameter were conducted over two days to determine final results.

Testing commenced on August 17, 2021; however, upset boiler conditions led to the test being terminated approximately one hour in. Two tests were then completed back-to-back on August 19, 2021.

Results from this survey indicate that emissions are below the operational certificate limits for each pollutant.

Trace organics results are similar to data from 2019 and 2020; however, there was a notable increase in total PCB's this year. The increase was almost entirely attributed to results from Run 2 for Dichlorobiphenyl. Additional quality checks were requested from the analytical laboratory and the result is believed to be accurate. For example, surrogate recoveries were 34% and 36%, well within the acceptable range of 5%-145%. The lab manager also confirmed that 95% of the total PCB is coming from PCB011 – 3,3'-dichlorobiphenyl, which is a common occurrence when PCBs are elevated. The emissions can most likely be attributed to the yellow pigment found in paint.

Dioxin/Furan results are expressed using the International Toxic Equivalents (I-TEQ). In this report, individual species that were measured below detection limits were reported as zero or "non-detect" if there was no detection in any of the three test runs.

In the blank sample, no dioxin/furan congeners were detected, and minimal congeners were detected at levels only very slightly above the detection limit for PCB, CB and CP. There were a number of PAH's detected in the blank sample but at very low levels.

The QA/QC program showed very low or non-detectable levels of target contaminants in the blank sample, which used the same solid sorbent resin and clean-up solvents as those used for samples. Additionally, the proof analysis of the glassware and XAD (prior recent blanks) showed no significant PCDD/PCDF.

For all tests and the blank test, internal standard recoveries ranged from 43 to 101%.

EPA Method 23 surrogate recoveries ranged from 73 to 126% for each Dioxin/Furan sample. The recovery QA/QC data is expected to meet EPA performance specifications (M23) of 70 to 130% for pre-test spiked surrogates. The M23 spiking protocol is not required in Canada and is included in the sampling/analytical protocol for additional QA/QC and information purposes only.

There were no problems associated with sample collection or analysis. Sampling was conducted in accordance with the respective reference methods and passed all appropriate quality assurance and quality control criteria. It is therefore stated that these results are reported with a high degree of confidence and are an accurate representation of emission characteristics for the operating conditions maintained on the test dates.

APPENDIX 1 ANALYTICAL DATA and QA/QC RESULTS

SAMPLE RECEIPT FORM / CHEMICAL ANALYSIS FORM

Surrey, BC V4N 4W7

Phone: (604) 881-2582

Email: mark.lanfranco@alanfranco.com

RECEIVED BY: E. Douglas DATE/TIME: August 20, 2021 (3:20 p.m.)

CONDITION: Okay, 23.2°C

# of Containers	Sample Type	Sample (Client Codes)	Lab Codes	Test Requested
5	Stack	MV Unit 3 – DF - Blank	PR212732	PCDD/F, PCB, PAH/HCB, CB, CP
5	Stack	MV Unit 3 – DF - Run 1	PR212733	PCDD/F, PCB, PAH/HCB, CB, CP
5	Stack	MV Unit 3 – DF - Run 2	PR212734	PCB, PAH/HCB, CB, CP
5	Stack	MV Unit 3 – DF - Run 3	PR212735	PCDD/F, PCB, PAH/HCB, CB, CP

STORAGE: XAD and filter stored at 4°C, rinses stored at ambient temperature.

ANALYTES: HRGC/HRMS analysis for polychlorinated dibenzo(p)dioxins and dibenzofurans (PCDD/F),

polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH).

SPECIAL INSTRUCTIONS: none

METHODOLOGY

Reference Method: PCDD/F: SOP LAB01; EPA Method 23, Environment Canada 1-RM-3

PCB: SOP LAB02F; EPA Method 1668C PAH/CB/CP: SOP LAB013; in house

Data summarized in Data Report attached.

Report sent to: Mark Lanfranco Date: September 14, 2021

Comments: Results relate only to items tested.

David Hope, P.Chem., CEO

 Client:
 A. Lanfranco & Associates

 Client ID:
 MV Unit 3 – DF - Blank

 PRL ID:
 PR212732

Sample Date: Date Extracted: Date Analysed: Filter Wt.: 18-Aug-21 30-Aug-21 8-Sep-21 0.36

DIOXINS			
		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDD	ND	2	
Total TCDD	ND	2	0
1,2,3,7,8-PeCDD	ND	4	
Total PeCDD	ND	4	0
1,2,3,4,7,8-HxCDD	ND	4	
1,2,3,6,7,8-HxCDD	ND	4	
1,2,3,7,8,9-HxCDD	ND	4	
Total HxCDD	ND	4	0
1,2,3,4,6,7,8-HpCDD	ND	4	
Total HpCDD	ND	4	0
OCDD	ND	15	0
<u> </u>		Total Di	oxin TEQ

	I-TEQs					
(ND=0)	(ND=½DL)	(ND=DL)				
pg	pg	pg				
ND	1	2				
ND	1	2				
ND	0.2	0.4				
ND	0.2	0.4				
ND	0.2	0.4				
ND	0.02	0.04				
ND	0.0075	0.015				
0.0	2.6	5.3				

FURANS			
		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDF	ND	2	
Total TCDF	ND	2	0
1,2,3,7,8-PeCDF	ND	4	
2,3,4,7,8-PeCDF	ND	4	
Total PeCDF	ND	4	0
1,2,3,4,7,8-HxCDF	ND	4	
1,2,3,6,7,8-HxCDF	ND	4	
1,2,3,7,8,9-HxCDF	ND	4	
2,3,4,6,7,8-HxCDF	ND	4	
Total HxCDF	ND	4	0
1,2,3,4,6,7,8-HpCDF	ND	4	
1,2,3,4,7,8,9-HpCDF	ND	4	
Total HpCDF	ND	4	0
OCDF	ND	15	0
		Total Fu	ıran TEQ

	I TEO-	
(NID 0)	I-TEQs	(ND DL)
(ND=0)	(ND=½DL)	(ND=DL)
pg	pg	pg
ND	0.1	0.2
ND	0.1	0.2
ND	1	2
ND	0.2	0.4
ND	0.02	0.04
ND	0.02	0.04
ND	0.0075	0.015
0.0	2.0	4.1

Tatal	PCDD/PCDF	Tavia Fault	
Lotal	P(.1)11/P(.1)F	LOXIC FOILIV	/aient (ngi

0.0	4.7	9.4
-----	-----	-----

Surrogate	Recoveries	(%)

³ /Cl ₄ -2,3,7,8-TCDD	109
¹³ C ₁₂ -2,3,4,7,8-PeCDF	122
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	73
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	83
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	76

Internal Standards (%)	
¹³ C ₁₂ -2,3,7,8-TCDD	45
¹³ C ₁₂ -1,2,3,7,8-PeCDD	92
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	88
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	73
¹³ C ₁₂ -OCDD	69
¹³ C ₁₂ -2,3,7,8-TCDF	40
¹³ C ₁₂ -1,2,3,7,8-PeCDF	64
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	65
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	96

 Client:
 A. Lanfranco & Associates

 Client ID:
 MV Unit 3 – DF - Run 1

 PRL ID:
 PR212733

Sample Date: Date Extracted: Date Analysed: Filter Wt.: 18-Aug-21 30-Aug-21 8-Sep-21 0.36

DIOXINS			
		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDD	ND	2	
Total TCDD	13	2	4
1,2,3,7,8-PeCDD	ND	4	
Total PeCDD	14	4	2
1,2,3,4,7,8-HxCDD	ND	4	
1,2,3,6,7,8-HxCDD	ND	4	
1,2,3,7,8,9-HxCDD	ND	4	
Total HxCDD	23	4	1
1,2,3,4,6,7,8-HpCDD	14	4	
Total HpCDD	33	4	2
OCDD	30	15	1
		Total Di	oxin TEQ

	I-TEQs		
(ND=0)	(ND=½DL)	(ND=DL)	
pg	pg	pg 2	
ND	1	2	
ND	1	2	
ND	0.2	0.4	
ND	0.2	0.4	
ND	0.2	0.4	
0.14	0.14	0.14	
0.03	0.03	0.03	
0.2	2.8	5.4	

Pg ND 34 ND ND ND	2 2 2 4 4 4	peaks 2 0
ND ND ND	2 4 4 4	
ND ND ND	4 4 4	
ND ND	4 4	0
ND	4	0
		0
ND	4	
	4	
ND	4	0
24	4	
ND	4	
30	4	2
ND	15	1
	ND 24 ND	ND 4 24 4 ND 4 30 4

	LTEO-	
	I-TEQs	
(ND=0)	(ND=½DL)	(ND=DL)
pg	pg	pg
ND	0.1	0.2
ND	0.1	0.2
ND	1	2
ND	0.2	0.4
	-	-
0.24	0.24	0.24
ND	0.02	0.04
	3.02	2.0.
ND	0.0075	0.015
0.2	2.3	4.3

T-1-I DODD/DODE	Toxic Equivalent (ng)
IOTAL PUDDI/PUDE	LOXIC Equivalent (ng)

0.4 5.0 9.7	
-------------	--

Surrogate	Recoveries	(%)

³⁷ Cl ₄ -2,3,7,8-TCDD	95
¹³ C ₁₂ -2,3,4,7,8-PeCDF	126
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	74
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	77
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	73

Internal Standards (%)	
¹³ C ₁₂ -2,3,7,8-TCDD	54
¹³ C ₁₂ -1,2,3,7,8-PeCDD	87
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	90
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	78
¹³ C ₁₂ -OCDD	61
¹³ C ₁₂ -2,3,7,8-TCDF	41
¹³ C ₁₂ -1,2,3,7,8-PeCDF	71
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	74
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	97

 Client:
 A. Lanfranco & Associates

 Client ID:
 MV Unit 3 – DF - Run 2

 PRL ID:
 PR212734

Sample Date: Date Extracted: Date Analysed: Filter Wt.: 19-Aug-21 30-Aug-21 8-Sep-21 0.36

DIOXINS			
		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDD	ND	2	
Total TCDD	4.2	2	1
1,2,3,7,8-PeCDD	ND	4	
Total PeCDD	19	4	2
1,2,3,4,7,8-HxCDD	ND	4	
1,2,3,6,7,8-HxCDD	ND	4	
1,2,3,7,8,9-HxCDD	ND	4	
Total HxCDD	46	4	1
1,2,3,4,6,7,8-HpCDD	32	4	
Total HpCDD	62	4	2
OCDD	73	15	1
		Total Di	oxin TEQ

	I-TEQs	
(ND=0)	(ND=½DL)	(ND=DL)
pg	pg	pg 2
ND	1	2
ND	1	2
ND	0.2	0.4
ND	0.2	0.4
ND	0.2	0.4
0.32	0.32	0.32
0.073	0.073	0.073
0.4	3.0	5.6

		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDF	ND	2	
Total TCDF	72	2	3
1,2,3,7,8-PeCDF	9	4	
2,3,4,7,8-PeCDF	20	4	
Total PeCDF	100	4	4
1,2,3,4,7,8-HxCDF	ND	4	
1,2,3,6,7,8-HxCDF	ND	4	
1,2,3,7,8,9-HxCDF	ND	4	
2,3,4,6,7,8-HxCDF	13	4	
Total HxCDF	13	4	1
1,2,3,4,6,7,8-HpCDF	43	4	
1,2,3,4,7,8,9-HpCDF	ND	4	
Total HpCDF	43	4	1
OCDF	24	15	1
		Total Fu	ıran TEQ

	LTEO-		
I-TEQs			
(ND=0)	(ND=½DL)	(ND=DL)	
pg	pg	pg	
ND	0.1	0.2	
0.45	0.45	0.45	
10	10	10	
ND	0.2	0.4	
ND	0.2	0.4	
ND	0.2	0.4	
1.3	1.3	1.3	
0.43	0.43	0.43	
ND	0.02	0.04	
0.024	0.024	0.024	
12.2	12.9	13.6	

Tatal DODD	PCDF Toxic	Carriera la set d	/\
เดเลเ คน.เมเม	PUDE INSIC	Follivalent	naı

12.6	15.9	19.2

Surrogate	Recoveries	(%)

³ /Cl ₄ -2,3,7,8-TCDD	108
¹³ C ₁₂ -2,3,4,7,8-PeCDF	123
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	77
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	79
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	77

Internal Standards (%)	
internal Standards (70)	
¹³ C ₁₂ -2,3,7,8-TCDD	55
¹³ C ₁₂ -1,2,3,7,8-PeCDD	101
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	81
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	72
¹³ C ₁₂ -OCDD	53
¹³ C ₁₂ -2,3,7,8-TCDF	43
¹³ C ₁₂ -1,2,3,7,8-PeCDF	75
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	64
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	80

 Client:
 A. Lanfranco & Associates

 Client ID:
 MV Unit 3 – DF - Run 3

 PRL ID:
 PR212735

Sample Date: Date Extracted: Date Analysed: Filter Wt.: 19-Aug-21 30-Aug-21 8-Sep-21 0.36

DIOXINS			
		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDD	ND	2	
Total TCDD	ND	2	1
1,2,3,7,8-PeCDD	ND	4	
Total PeCDD	27	4	2
1,2,3,4,7,8-HxCDD	ND	4	
1,2,3,6,7,8-HxCDD	ND	4	
1,2,3,7,8,9-HxCDD	4.9	4	
Total HxCDD	77	4	2
1,2,3,4,6,7,8-HpCDD	38	4	
Total HpCDD	82	4	2
-			
OCDD	73	15	1
		Total Di	oxin TEQ

	I-TEQs	
(ND=0)	(ND=½DL)	(ND=DL)
pg	pg	pg 2
ND	1	2
ND	1	2
ND	0.2	0.4
ND	0.2	0.4
0.49	0.49	0.49
0.38	0.38	0.38
0.073	0.073	0.073
0.9	3.3	5.7

		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDF	ND	2	
Total TCDF	140	2	6
1,2,3,7,8-PeCDF	13	4	
2,3,4,7,8-PeCDF	17	4	
Total PeCDF	120	4	4
1,2,3,4,7,8-HxCDF	ND	4	
1,2,3,6,7,8-HxCDF	8.9	4	
1,2,3,7,8,9-HxCDF	ND	4	
2,3,4,6,7,8-HxCDF	ND	4	
Total HxCDF	8.9	4	1
1,2,3,4,6,7,8-HpCDF	35	4	
1,2,3,4,7,8,9-HpCDF	ND	4	
Total HpCDF	37	4	1
OCDF	ND	15	0
	-	Total Fu	ıran TEQ

	I-TEQs	
(ND 0)	i i	(ND DL)
(ND=0)	(ND=½DL)	(ND=DL)
pg	pg	pg
ND	0.1	0.2
0.65	0.65	0.65
8.5	8.5	8.5
ND	0.2	0.4
0.89	0.89	0.89
ND	0.2	0.4
ND	0.2	0.4
0.35	0.35	0.35
ND	0.02	0.04
ND	0.0075	0.015
10.4	11.1	11.8

 otal PCDD/PC	DE T! - E	
 Otal PCIDID/PCI	DE LOXIC FOIL	ilvalent (ng)

11.3	14.5	17.6

Surrogate	Recoveries	(%)

³ /Cl ₄ -2,3,7,8-TCDD	102
¹³ C ₁₂ -2,3,4,7,8-PeCDF	120
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	73
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	77
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	73

ND - none detected

49
78
76
64
48
40
65
61

74

¹³C₁₂ -1,2,3,4,6,7,8-HpCDF

 Client:
 A. Lanfranco & Associates
 Contact:
 Mark Lanfranco

 Client ID:
 BLANK
 Date Extracted:
 30-Aug-21

 PRL ID:
 DF210790B
 Date Analysed:
 8-Sep-21

DIOXINS	1	DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDD	ND	2	
Total TCDD	ND	2	0
1,2,3,7,8-PeCDD	ND	4	
Total PeCDD	ND	4	0
1,2,3,4,7,8-HxCDD	ND	4	
1,2,3,6,7,8-HxCDD	ND	4	
1,2,3,7,8,9-HxCDD	ND	4	
Total HxCDD	ND	4	0
1,2,3,4,6,7,8-HpCDD	ND	4	
Total HpCDD	ND	4	0
OCDD	ND	15	0
		Total Di	oxin TEQ

	I-TEQs	
(ND=0)	(ND=½DL)	(ND=DL)
pg	pg	pg
ND	1	2
ND	1	2
ND	0.2	0.4
ND	0.2	0.4
ND	0.2	0.4
ND	0.02	0.04
ND	0.0075	0.015
0.0	2.6	5.3

FURANS			
		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDF	ND	2	
Total TCDF	ND	2	0
1,2,3,7,8-PeCDF	ND	4	
2,3,4,7,8-PeCDF	ND	4	
Total PeCDF	ND	4	0
1,2,3,4,7,8-HxCDF	ND	4	
1,2,3,6,7,8-HxCDF	ND	4	
1,2,3,7,8,9-HxCDF	ND	4	
2,3,4,6,7,8-HxCDF	ND	4	
Total HxCDF	ND	4	0
1,2,3,4,6,7,8-HpCDF	ND	4	
1,2,3,4,7,8,9-HpCDF	ND	4	
Total HpCDF	ND	4	0
OCDF	ND	15	0
	•	Total Fu	ıran TEQ

	I-TEQs				
(ND=0)	(ND=½DL)	(ND=DL)			
pg	pg	pg			
ND	0.1	0.2			
ND	0.1	0.2			
ND	1	2			
ND	0.2	0.4			
ND	0.2	0.4			
ND	0.2	0.4			
ND	0.2	0.4			
ND	0.02	0.04			
ND	0.02	0.04			
ND	0.0075	0.015			
0.0	2.0	4.1			

Total PCDD/PCDF Toxic Equivalent (pg)	
---------------------------------------	--

0.0	4./	9.4

Internal Standards (%)	
¹³ C ₁₂ -2,3,7,8-TCDD	58
¹³ C ₁₂ -1,2,3,7,8-PeCDD	85
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	85
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	79
¹³ C ₁₂ -OCDD	55
¹³ C ₁₂ -2,3,7,8-TCDF	48
¹³ C ₁₂ -1,2,3,7,8-PeCDF	65
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	66
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	84

QC REPORT - SPIKE

 Client:
 A. Lanfranco & Associates
 Contact:
 Mark Lanfranco

 Client ID:
 SPIKE
 Date Extracted:
 30-Aug-21

 PRL ID:
 DF210791S
 Date Analysed:
 8-Sep-21

DIOXINS	Acceptable Recov			ble Recovery	Pass/Fail
	LOF	Recovery	Min	Max	
Congeners	pg	%	%	%	
2,3,7,8-TCDD	200	93	80	120	Pass
1,2,3,7,8-PeCDD	200	117	80	120	Pass
1,2,3,4,7,8-HxCDD	400	82	80	120	Pass
1,2,3,6,7,8-HxCDD	400	96	80	120	Pass
1,2,3,7,8,9-HxCDD	400	101	80	120	Pass
1,2,3,4,6,7,8-HpCDD	400	107	80	120	Pass
OCDD	1000	116	80	120	Pass

Int. Std	
Recoveries	
%	
56	
81	
-	
88	
-	
84	
75	

URANS			Accepta	able Recovery	Pass/Fail
	LOF	Recovery	Min	Max	
Congeners	pg	%	%	%	
2,3,7,8-TCDF	200	102	80	120	Pass
1,2,3,7,8-PeCDF	200	115	80	120	Pass
2,3,4,7,8-PeCDF	200	117	80	120	Pass
1,2,3,4,7,8-HxCDF	400	82	80	120	Pass
1,2,3,6,7,8-HxCDF	400	101	80	120	Pass
1,2,3,7,8,9-HxCDF	400	105	80	120	Pass
2,3,4,6,7,8-HxCDF	400	100	80	120	Pass
1,2,3,4,6,7,8-HpCDF	400	86	80	120	Pass
1,2,3,4,7,8,9-HpCDF	400	88	80	120	Pass
OCDF	1000	97	80	120	Pass

Int. Std Recoveries %
46
72
-
-
69
-
-
80
-
-

LOF - Level of Fortification

 Client:
 A. Lanfranco & Associates
 Contact:
 Mark Lanfranco

 Client ID:
 MV Unit 3 – DF - Blank
 Date Extracted:
 30-Aug-21

 PRL ID:
 PR212732
 Date Analysed:
 10-Sep-21

Dioxin-like PCBs				Surrogate
			DL	Recoveries
Chemical Name	IUPAC#	ng	ng	%
3,4,4',5-TeCB	PCB 81	ND	0.02	56
3,3',4,4'-TeCB	PCB 77	ND	0.02	64
2,3',4,4',5'-PeCB	PCB 123	ND	0.02	48
2,3',4,4',5-PeCB	PCB 118	ND	0.02	56
2,3,4,4',5-PeCB	PCB 114	ND	0.02	52
2,3,3',4,4'-PeCB	PCB 105	ND	0.02	56
3,3',4,4',5-PeCB	PCB 126	ND	0.02	80
2,3',4,4',5,5'-HxCB	PCB 167	ND	0.02	68
2,3,3',4,4',5-HxCB	PCB 156	ND	0.02	72
2,3,3',4,4',5'-HxCB	PCB 157	ND	0.02	76
3,3',4,4',5,5'-HxCB	PCB 169	ND	0.02	84
2,3,3',4,4',5,5'-HpCB	PCB 189	ND	0.02	60
		Toxic Equ	ıivalent (WI	HO-TEQ)

WHO-TE	WHO-TEQs (2005)				
(ND=0)	(ND=DL)				
ng	ng				
ND	6.00E-06				
ND	2.00E-06				
ND	6.00E-07				
ND	6.00E-07				
ND	6.00E-07				
ND	6.00E-07				
ND	2.00E-03				
ND	6.00E-07				
ND	6.00E-07				
ND	6.00E-07				
ND	6.00E-04				
ND	6.00E-07				
0.00E+00	2.61E-03				

Total PCB					
		DL			
Homologs	ng	ng			
Monochlorobiphenyls	ND	0.05			
Dichlorobiphenyls	2.4	0.05			
Trichlorobiphenyls	0.21	0.05			
Tetrachlorobiphenyls	ND	0.05			
Pentachlorobiphenyls	ND	0.05			
Hexachlorobiphenyls	ND	0.05			
Heptachlorobiphenyls	ND	0.05			
Octachlorobiphenyls	ND	0.05			
Nonachlorobiphenyls	ND	0.05			
Decachlorobiphenyl	ND	0.05			
Total PCB	2.62				

ND -	none	detected
------	------	----------

Surrogate Recoveries		
Chemical Name	IUPAC#	%
13C12-2-MoCB	1L	52
13C12-4,4'-DiCB	15L	44
13C12-2,2',6'-TrCB	19L	40
13C12-3,4,4'-TrCB	37L	56
13C12-2,2',6,6'-TeCB	54L	52
13C12-2,2',4,6,6'-PeCB	104L	48
13C12-2,2',4,4',6,6'-HxCB	155L	52
13C12-2,2',3,4',5,6,6'-HpCB	188L	44
13C12-2,2',3,3',5,5',6,6'-OcCB	202L	52
13C12-2,3,3',4,4',5,5',6-OcCB	205L	60
13C12-2,2',3,3',4,4',5,5',6-NoCB	206L	64
13C12-DeCB	209L	60

 Client:
 A. Lanfranco & Associates
 Contact:
 Mark Lanfranco

 Client ID:
 MV Unit 3 – DF - Run 1
 Date Extracted:
 30-Aug-21

 PRL ID:
 PR212733
 Date Analysed:
 10-Sep-21

Dioxin-like PCBs				Surrogate
			DL	Recoveries
Chemical Name	IUPAC#	ng	ng	%
3,4,4',5-TeCB	PCB 81	ND	0.02	56
3,3',4,4'-TeCB	PCB 77	ND	0.02	64
2,3',4,4',5'-PeCB	PCB 123	ND	0.02	48
2,3',4,4',5-PeCB	PCB 118	ND	0.02	56
2,3,4,4',5-PeCB	PCB 114	ND	0.02	52
2,3,3',4,4'-PeCB	PCB 105	ND	0.02	56
3,3',4,4',5-PeCB	PCB 126	ND	0.02	80
2,3',4,4',5,5'-HxCB	PCB 167	ND	0.02	68
2,3,3',4,4',5-HxCB	PCB 156	ND	0.02	72
2,3,3',4,4',5'-HxCB	PCB 157	ND	0.02	76
3,3',4,4',5,5'-HxCB	PCB 169	ND	0.02	84
2,3,3',4,4',5,5'-HpCB	PCB 189	ND	0.02	60
		Toxic Equ	uivalent (WHC	O-TEQ)

WHO-TE	WHO-TEQs (2005)			
(ND=0)	(ND=DL)			
ng	ng			
ND	6.00E-06			
ND	2.00E-06			
ND	6.00E-07			
ND	2.00E-03			
ND	6.00E-07			
ND	6.00E-07			
ND	6.00E-07			
ND	6.00E-04			
ND	6.00E-07			
0.00E+00	2.61E-03			

Total PCB				
		DL		
Homologs	ng	ng		
Monochlorobiphenyls	ND	0.05		
Dichlorobiphenyls	8.2	0.05		
Trichlorobiphenyls	1.74	0.05		
Tetrachlorobiphenyls	0.53	0.05		
Pentachlorobiphenyls	0.19	0.05		
Hexachlorobiphenyls	0.14	0.05		
Heptachlorobiphenyls	0.05	0.05		
Octachlorobiphenyls	ND	0.05		
Nonachlorobiphenyls	ND	0.05		
Decachlorobiphenyl	ND	0.05		
Total PCB	10.8			

ND - none of	detected
--------------	----------

Surrogate Recoveries		
Chemical Name	IUPAC#	%
13C12-2-MoCB	1L	52
13C12-4,4'-DiCB	15L	44
13C12-2,2',6'-TrCB	19L	40
13C12-3,4,4'-TrCB	37L	56
13C12-2,2',6,6'-TeCB	54L	52
13C12-2,2',4,6,6'-PeCB	104L	48
13C12-2,2',4,4',6,6'-HxCB	155L	52
13C12-2,2',3,4',5,6,6'-HpCB	188L	44
13C12-2,2',3,3',5,5',6,6'-OcCB	202L	52
13C12-2,3,3',4,4',5,5',6-OcCB	205L	60
13C12-2,2',3,3',4,4',5,5',6-NoCB	206L	64
13C12-DeCB	209L	60

 Client:
 A. Lanfranco & Associates
 Contact:
 Mark Lanfranco

 Client ID:
 MV Unit 3 – DF - Run 2
 Date Extracted:
 30-Aug-21

 PRL ID:
 PR212734
 Date Analysed:
 10-Sep-21

Dioxin-like PCBs				Surrogate
			DL	Recoveries
Chemical Name	IUPAC#	ng	ng	%
3,4,4',5-TeCB	PCB 81	ND	0.02	60
3,3',4,4'-TeCB	PCB 77	ND	0.02	68
2,3',4,4',5'-PeCB	PCB 123	ND	0.02	52
2,3',4,4',5-PeCB	PCB 118	ND	0.02	48
2,3,4,4',5-PeCB	PCB 114	ND	0.02	52
2,3,3',4,4'-PeCB	PCB 105	ND	0.02	48
3,3',4,4',5-PeCB	PCB 126	ND	0.02	84
2,3',4,4',5,5'-HxCB	PCB 167	ND	0.02	92
2,3,3',4,4',5-HxCB	PCB 156	ND	0.02	92
2,3,3',4,4',5'-HxCB	PCB 157	ND	0.02	100
3,3',4,4',5,5'-HxCB	PCB 169	ND	0.02	96
2,3,3',4,4',5,5'-HpCB	PCB 189	ND	0.02	60
		Toxic Equ	uivalent (WHC	O-TEQ)

WHO-TE	WHO-TEQs (2005)			
(ND=0)	(ND=DL)			
ng	ng			
ND	6.00E-06			
ND	2.00E-06			
ND	6.00E-07			
ND	2.00E-03			
ND	6.00E-07			
ND	6.00E-07			
ND	6.00E-07			
ND	6.00E-04			
ND	6.00E-07			
0.00E+00	2.61E-03			

Total PCB				
		DL		
Homologs	ng	ng		
Monochlorobiphenyls	0.8	0.05		
Dichlorobiphenyls	156.4	0.05		
Trichlorobiphenyls	3.21	0.05		
Tetrachlorobiphenyls	0.55	0.05		
Pentachlorobiphenyls	0.33	0.05		
Hexachlorobiphenyls	0.07	0.05		
Heptachlorobiphenyls	0.07	0.05		
Octachlorobiphenyls	ND	0.05		
Nonachlorobiphenyls	ND	0.05		
Decachlorobiphenyl	ND	0.05		
Total PCB	161			

NID	`	nono	dot	ected
NL) -	none	ger	ectea

Surrogate Recoveries				
Chemical Name	IUPAC #	%		
13C12-2-MoCB	1L	32		
13C12-4,4'-DiCB	15L	36		
13C12-2,2',6'-TrCB	19L	32		
13C12-3,4,4'-TrCB	37L	52		
13C12-2,2',6,6'-TeCB	54L	48		
13C12-2,2',4,6,6'-PeCB	104L	40		
13C12-2,2',4,4',6,6'-HxCB	155L	48		
13C12-2,2',3,4',5,6,6'-HpCB	188L	64		
13C12-2,2',3,3',5,5',6,6'-OcCB	202L	76		
13C12-2,3,3',4,4',5,5',6-OcCB	205L	60		
13C12-2,2',3,3',4,4',5,5',6-NoCB	206L	64		
T3C12-DeCB	209L	72		

 Client:
 A. Lanfranco & Associates
 Contact:
 Mark Lanfranco

 Client ID:
 MV Unit 3 – DF - Run 3
 Date Extracted:
 30-Aug-21

 PRL ID:
 PR212735
 Date Analysed:
 10-Sep-21

Dioxin-like PCBs	Surrogate			
			DL	Recoveries
Chemical Name	IUPAC#	ng	ng	%
3,4,4',5-TeCB	PCB 81	ND	0.02	52
3,3',4,4'-TeCB	PCB 77	ND	0.02	60
2,3',4,4',5'-PeCB	PCB 123	ND	0.02	28
2,3',4,4',5-PeCB	PCB 118	ND	0.02	28
2,3,4,4',5-PeCB	PCB 114	ND	0.02	32
2,3,3',4,4'-PeCB	PCB 105	ND	0.02	28
3,3',4,4',5-PeCB	PCB 126	ND	0.02	44
2,3',4,4',5,5'-HxCB	PCB 167	ND	0.02	40
2,3,3',4,4',5-HxCB	PCB 156	ND	0.02	56
2,3,3',4,4',5'-HxCB	PCB 157	ND	0.02	56
3,3',4,4',5,5'-HxCB	PCB 169	ND	0.02	48
2,3,3',4,4',5,5'-HpCB	PCB 189	ND	0.02	44
Toxic Equivalent (WHO-TEQ)				

WHO-TEQs (2005)				
(ND=0)	(ND=DL)			
ng	ng			
ND	6.00E-06			
ND	2.00E-06			
ND	6.00E-07			
ND	2.00E-03			
ND	6.00E-07			
ND	6.00E-07			
ND	6.00E-07			
ND	6.00E-04			
ND	6.00E-07			
0.00E+00	2.61E-03			

Total PCB				
		DL		
Homologs	ng	ng		
Monochlorobiphenyls	ND	0.05		
Dichlorobiphenyls	4.7	0.05		
Trichlorobiphenyls	0.40	0.05		
Tetrachlorobiphenyls	ND	0.05		
Pentachlorobiphenyls	ND	0.05		
Hexachlorobiphenyls	ND	0.05		
Heptachlorobiphenyls	ND	0.05		
Octachlorobiphenyls	ND	0.05		
Nonachlorobiphenyls	ND	0.05		
Decachlorobiphenyl	ND	0.05		
Total PCB	5.12			

Surrogate Recoveries		
Chemical Name	IUPAC #	%
13C12-2-MoCB	1L	16
13C12-4,4'-DiCB	15L	36
13C12-2,2',6'-TrCB	19L	48
13C12-3,4,4'-TrCB	37L	44
13C12-2,2',6,6'-TeCB	54L	36
13C12-2,2',4,6,6'-PeCB	104L	44
13C12-2,2',4,4',6,6'-HxCB	155L	60
13C12-2,2',3,4',5,6,6'-HpCB	188L	48
13C12-2,2',3,3',5,5',6,6'-OcCB	202L	88
13C12-2,3,3',4,4',5,5',6-OcCB	205L	48
13C12-2,2',3,3',4,4',5,5',6-NoCB	206L	92
T3C12-DeCB	209L	112

 Client:
 A. Lanfranco & Associates
 Contact:
 Mark Lanfranco

 Client ID:
 BLANK
 Date Extracted:
 30-Aug-21

 PRL ID:
 PC210790B
 Date Analysed:
 10-Sep-21

Dioxin-like PCBs				Surrogate
			DL	Recoveries
Chemical Name	IUPAC#	ng	ng	%
3,4,4',5-TeCB	PCB 81	ND	0.02	48
3,3',4,4'-TeCB	PCB 77	ND	0.02	52
2,3',4,4',5'-PeCB	PCB 123	ND	0.02	36
2,3',4,4',5-PeCB	PCB 118	ND	0.02	44
2,3,4,4',5-PeCB	PCB 114	ND	0.02	48
2,3,3',4,4'-PeCB	PCB 105	ND	0.02	52
3,3',4,4',5-PeCB	PCB 126	ND	0.02	68
2,3',4,4',5,5'-HxCB	PCB 167	ND	0.02	76
2,3,3',4,4',5-HxCB	PCB 156	ND	0.02	80
2,3,3',4,4',5'-HxCB	PCB 157	ND	0.02	84
3,3',4,4',5,5'-HxCB	PCB 169	ND	0.02	68
2,3,3',4,4',5,5'-HpCB	PCB 189	ND	0.02	44
		Toxic Equ	uivalent (Wh	HO-TEQ)

WHO-TE	WHO-TEQs (2005)					
(ND=0)	(ND=DL)					
ng	ng					
ND	6.00E-06					
ND	2.00E-06					
ND	6.00E-07					
ND	6.00E-07					
ND	6.00E-07					
ND	6.00E-07					
ND	2.00E-03					
ND	6.00E-07					
ND	6.00E-07					
ND	6.00E-07					
ND	6.00E-04					
ND	6.00E-07					
0.00E+00	2.61E-03					

Total PCB		
		DL
Homologs	ng	ng
Monochlorobiphenyls	ND	0.05
Dichlorobiphenyls	ND	0.05
Trichlorobiphenyls	ND	0.05
Tetrachlorobiphenyls	ND	0.05
Pentachlorobiphenyls	ND	0.05
Hexachlorobiphenyls	ND	0.05
Heptachlorobiphenyls	ND	0.05
Octachlorobiphenyls	ND	0.05
Nonachlorobiphenyls	ND	0.05
Decachlorobiphenyl	ND	0.05
Total PCB	ND	

	_					
NI	\Box	n	\sim	401	tecte	\sim
ıv	IJ,	- 110	лн∺	(JE	120.16	, (1

Surrogate Recoveries		
Chemical Name	IUPAC#	%
13C12-2-MoCB	1L	28
13C12-4,4'-DiCB	15L	32
13C12-2,2',6'-TrCB	19L	32
13C12-3,4,4'-TrCB	37L	48
13C12-2,2',6,6'-TeCB	54L	40
13C12-2,2',4,6,6'-PeCB	104L	32
13C12-2,2',4,4',6,6'-HxCB	155L	32
13C12-2,2',3,4',5,6,6'-HpCB	188L	56
13C12-2,2',3,3',5,5',6,6'-OcCB	202L	84
13C12-2,3,3',4,4',5,5',6-OcCB	205L	48
13C12-2,2',3,3',4,4',5,5',6-NoCB	206L	76
T3CTZ-DeCB	209L	88

QC REPORT - SPIKE

 Client:
 A. Lanfranco & Associates
 Contact:
 Mark Lanfranco

 Client ID:
 SPIKE
 Date Extracted:
 30-Aug-21

 PRL ID:
 PC210791S
 Date Analysed:
 10-Sep-21

Dioxin-like PCBs			Accepta	Pass/Fail	
	LOF	Recovery	Min	Max	
Chemical Name	ng	%	%	%	
3,4,4',5-TeCB (81)	1	94	60	135	Pass
3,3',4,4'-TeCB (77)	1	82	60	135	Pass
2,3',4,4',5'-PeCB (123)	1	92	60	135	Pass
2,3',4,4',5-PeCB (118)	1	88	60	135	Pass
2,3,4,4',5-PeCB (114)	1	115	60	135	Pass
2,3,3',4,4'-PeCB (105)	1	90	60	135	Pass
3,3',4,4',5-PeCB (126)	1	85	60	135	Pass
2,3',4,4',5,5'-HxCB (167)	1	73	60	135	Pass
2,3,3',4,4',5-HxCB (156)	1	98	60	135	Pass
2,3,3',4,4',5'-HxCB (157)	1	93	60	135	Pass
3,3',4,4',5,5'-HxCB (169)	1	85	60	135	Pass
2,3,3',4,4',5,5'-HpCB (189)	1	96	60	135	Pass

Surrogate
Recoveries
%
36
44
44
40
36
40
60
52
48
60
48
52

Total PCB			Acceptab	Pass/Fail	
	LOF	Recovery	Min	Max	
Homologs	ng	%	%	%	
Monochlorobiphenyls	2	118			
Dichlorobiphenyls	4	93			
Trichlorobiphenyls	6	89			
Tetrachlorobiphenyls	12	97			
Pentachlorobiphenyls	13	114			
Hexachlorobiphenyls	15	87			
Heptachlorobiphenyls	11	119			
Octachlorobiphenyls	6	96			
Nonachlorobiphenyls	2	96			
Decachlorobiphenyl	1	105			
Total PCB	72	101	50	150	Pass

LOF - Level of Fortification

 Client:
 A. Lanfranco & Associates
 Date Extracted:
 30-Aug-21

 Contact:
 Mark Lanfranco
 Date Analysed:
 10-Sep-21

 Project:

	Client ID:		MV Unit 3 –	MV Unit 3 –	MV Unit 3 –	BLANK
	DDI ID	DF - Blank	DF - Run 1	DF - Run 2	DF - Run 3	DI 1040700D
	PRL ID:	PR212732	PR212733	PR212734	PR212735	PH210790B
NPRI PAH	DL					
	μg	μg	μg	μg	μg	μg
Acenaphthylene	0.05	ND	ND	ND	ND	ND
Acenaphthene	0.05	ND	ND	ND	ND	ND
Fluorene	0.02	ND	0.03	0.04	0.03	ND
Phenanthrene	0.02	0.05	0.14	0.18	0.11	0.04
Fluoranthene	0.01	0.01	0.04	0.07	0.03	ND
Pyrene	0.01	0.02	0.07	0.09	0.05	ND
Benz(a)anthracene	0.02	ND	ND	ND	ND	ND
Chrysene	0.02	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.01	ND	ND	0.01	ND	ND
Benzo(k)fluoranthene	0.01	ND	ND	ND	ND	ND
Benzo(a)pyrene	0.01	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.01	ND	ND	0.03	ND	ND
Dibenz(a,h)anthracene	0.01	ND	ND	ND	ND	ND
Benzo(ghi)perylene	0.01	0.04	0.03	0.25	0.01	ND
1-Nitropyrene	0.05	ND	ND	ND	ND	ND
5-Methylchrysene	0.05	ND	ND	ND	ND	ND
7,12-Dimethylbenz(a)anthr	0.05	ND	ND	ND	ND	ND
3-Methylcholanthrene	0.05	ND	ND	ND	ND	ND
Benzo(e)pyrene	0.01	0.01	0.03	0.06	ND	ND
Perylene	0.05	ND	ND	ND	ND	ND
Dibenz(a,h)acridine	0.05	ND	ND	ND	ND	ND
Dibenz(a,j)acridine	0.05	ND	ND	ND	ND	ND
7H-Dibenzo(c,g)carbazole	0.05	ND	ND	ND	ND	ND
Dibenzo(a,e)fluoranthene	0.05	ND	ND	ND	ND	ND
Dibenzo(a,e)pyrene	0.05	ND	ND	ND	ND	ND
Dibenzo(a,h)pyrene	0.05	ND	ND	ND	ND	ND
Dibenzo(a,l)pyrene	0.05	ND	ND	ND	ND	ND
Dibenzo(a,i)pyrene	0.05	ND	ND	ND	ND	ND
Quinoline	0.05	0.05	0.07	0.06	ND	ND
Other PAH						
Naphthalene	0.05	0.15	0.56	0.74	0.60	ND
Anthracene	0.05	ND	ND	ND	ND	ND
Chlorobenzenes						
Hexachlorobenzene	0.01	ND	ND	ND	ND	ND

 Client:
 A. Lanfranco & Associates
 Date Extracted:
 30-Aug-21

 Contact:
 Mark Lanfranco
 Date Analysed:
 10-Sep-21

 Project:

	Client ID:	MV Unit 3 – DF - Blank	MV Unit 3 – DF - Run 1	MV Unit 3 – DF - Run 2	MV Unit 3 – DF - Run 3	BLANK
	PRL ID:	PR212732	PR212733	PR212734	PR212735	PH210790B
NPRI PAH	DL					
Surrogate Recoveries (%)						
d8-Naphthalene		72	84	68	76	68
d10-Acenaphthylene		132	92	80	84	68
d10-Acenaphthene		112	84	80	84	72
d10-Fluorene		140	96	96	88	64
d10-Phenanthrene		124	100	72	68	44
d10-Fluoranthene		120	100	92	96	64
d10-Pyrene		116	100	92	96	72
d12-Chrysene		132	120	104	116	116
d12-Benzo(b)fluoranthene		124	116	108	112	120
d12-Benzo(a)pyrene		108	104	104	108	84
d14-Dibenz(a,h)anthracene)	128	112	124	108	92
13C6-Hexachlorobenzene		52	60	40	36	32

ND - none detected

Contact: A. Lanfranco & Associates
Contact: Mark Lanfranco
Project:

Date Extracted:30-Aug-21Date Analysed:10-Sep-21

Client ID: SPIKE PRL ID: PH210791S

NPRI PAH

	μg/g	LOF	Recovery	Acceptable I	Pass/Fail
Acenaphthene	0.90	1	90%	50-150%	pass
Acenaphthylene	0.88	1	88%	50-150%	pass
Benz(a)anthracene	0.78	1	78%	50-150%	pass
Benzo(a)pyrene	0.74	1	74%	50-150%	pass
Benzo(b)fluoranthene	0.80	1	80%	50-150%	pass
Benzo(ghi)perylene	0.86	1	86%	50-150%	pass
Benzo(k)fluoranthene	0.79	1	79%	50-150%	pass
Chrysene	0.80	1	80%	50-150%	pass
Dibenz(a,h)anthracene	0.79	1	79%	50-150%	pass
Fluoranthene	0.85	1	85%	50-150%	pass
Fluorene	0.88	1	88%	50-150%	pass
Indeno(1,2,3-cd)pyrene	0.86	1	86%	50-150%	pass
Phenanthrene	0.83	1	83%	50-150%	pass
Pyrene	0.85	1	85%	50-150%	pass
Dibenz(a,h)acridine	0.84	1	84%		
Dibenz(a,j)acridine	0.77	1	77%		
7H-Dibenzo(c,g)carbazole	0.79	1	79%		
Dibenzo(a,e)fluoranthene	0.68	1	68%		
Dibenzo(a,h)pyrene	0.62	1	62%		
Dibenzo(a,e)pyrene	0.73	1	73%		
Dibenzo(a,i)pyrene	0.52	1	52%		
Dibenzo(a,I)pyrene	0.51	1	51%		
7,12-Dimethylbenz(a)anthracene	0.63	1	63%		
3-Methylcholanthrene	0.53	1	53%		
5-Methylchrysene	0.81	1	81%		
1-Nitropyrene	0.90	1	90%		
Perylene	0.75	1	75%		
Other PAH					
Naphthalene	0.95	1	95%	50-150%	pass
Chlorobenzenes					
Hexachlorobenzene	1.25	1	125%	50-150%	pass

Client:A. Lanfranco & AssociatesDate Extracted:30-Aug-21Contact:Mark LanfrancoDate Analysed:14-Sep-21

	Client ID:			MV Unit 3 - DF - Run 2		BLANK
1	PRL ID:	PR212732	PR212733	PR212734	PR212735	CP210790B
Compound	DL					ua.
TZ-blood one	μg	μg	μg	μg	μg	μg
Trichlorobenzenes	0.05	ND	0.672	1.36	1.03	ND
Tetrachlorobenzenes	0.05	ND	0.165	0.312	0.275	ND
Pentachlorobenzene	0.05	ND	ND	ND	ND	ND
Hexachlorobenzene	0.01	ND	ND	ND	ND	ND
Surrogate Recoveries (%)						
13C6-Hexachlorobenzene		92	60	64	76	64

Compound	DL					
	μg	μg	μg	μg	μg	μg
Trichlorophenols	0.05	ND	ND	ND	ND	ND
Tetrachlorophenols	0.05	ND	ND	ND	ND	ND
Pentachlorophenol	0.05	ND	ND	ND	ND	ND
Surrogate Recoveries (%)					
13C6-Trichlorophenol		36	44	44	44	32
13C6-Tetrachlorophenol		32	32	48	48	40
13C6-Pentachlorophenol		52	28	48	40	28

ND - none detected

QC REPORT - SPIKE

Client:A. Lanfranco & AssociatesDate Extracted:30-Aug-21Contact:Mark LanfrancoDate Analysed:14-Sep-21

Client ID: SPIKE PRL ID: CP210791S

Compound	LOF		
	μg	μg	Recovery
Trichlorobenzenes	2.0	2.49	125%
Tetrachlorobenzenes	3.0	3.69	123%
Pentachlorobenzene	1.0	1.30	130%
Hexachlorobenzene	1.0	1.28	128%
Trichlorophenols	1.0	0.91	91%
Tetrachlorophenols	1.0	1.29	129%
Pentachlorophenol	1.0	0.69	69%

LOF - level of fortification

Acronyms used in reporting dioxins and furans:

TCDD = Tetrachlorodibenzo-p-dioxin	TCDF = Tetrachlorodibenzofuran
PeCDD = Pentachlorodibenzo- <i>p</i> -dioxin	PeCDF = Pentachlorodibenzofuran
HxCDD = Hexachlorodibenzo- <i>p</i> -dioxin	HxCDF = Hexachlorodibenzofuran
HpCDD = Heptachlorodibenzo-p-dioxin	HpCDF = Heptachlorodibenzofuran
OCDD = Octachlorodibenzo-p-dioxin	OCDF = Octachlorodibenzofuran

Acceptable recoveries for surrogates	EPA 1	613
	Min (%)	Max (%)
¹³ C ₁₂ -2,3,7,8-TCDD	25	164
¹³ C ₁₂ -1,2,3,7,8-PeCDD	25	181
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	32	141
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	28	130
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	23	140
¹³ C ₁₂ -OCDD	17	157
¹³ C ₁₂ -2,3,7,8-TCDF	24	169
¹³ C ₁₂ -1,2,3,7,8-PeCDF	24	185
¹³ C ₁₂ -2,3,4,7,8-PeCDF	21	178
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	26	152
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	26	123
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	29	147
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	28	136
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	28	143
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	26	138

Acceptable recoveries for Polycyclic Aromatic Hydrocarbon Standards in Environmental Samples

	Surrogate	Recovery
	Min (%)	Max (%)
Naphthalene-d8	0	135
Biphenyl-d10	15	135
Acenaphthene-d10	15	135
Fluorene-d10	30	135
Phenanthrene-d10	30	135
Fluoranthene-d10	30	135
Pyrene-d10	30	135
Chrysene-d12	30	150
Benzo(b)fluoranthene-d12	30	150
Benzo(a)pyrene-d12	15	150
Dibenz(a,h)anthracene-d14	30	150

Acronyms used in reporting Polychlorinated Biphenyls (PCBs)

MoCB = Monochlorobiphenyl
DiCB = Dichlorobiphenyl
TrCB = Trichlorobiphenyl
TeCB = Tetrachlorobiphenyl
PeCB = Pentachlorobiphenyl
DeCB = Decachlorobiphenyl
DeCB = Decachlorobiphenyl

Acceptable recoveries for PCB Internal Standards - EPA 1668C

Chemical Name	IUPAC#	Min	Max
¹³ C ₁₂ -2-MoCB	1L	5	145
¹³ C ₁₂ -4-MoCB	3L	5	145
¹³ C ₁₂ -2,2'-DiCB	4L	5	145
¹³ C ₁₂ -4,4'-DiCB	15L	5	145
¹³ C ₁₂ -2,2',6'-TrCB	19L	5	145
¹³ C ₁₂ -3,4,4'-TrCB	37L	5	145
¹³ C ₁₂ -2,2',6,6'-TeCB	54L	5	145
¹³ C ₁₂ -3,4,4',5-TeCB	81L	10	145
¹³ C ₁₂ -3,3',4,4'-TeCB	77L	10	145
¹³ C ₁₂ -2,2',4,6,6'-PeCB	104L	10	145
¹³ C ₁₂ -2',3,4,4',5-PeCB	123L	10	145
¹³ C ₁₂ -2,3',4,4',5-PeCB	118L	10	145
¹³ C ₁₂ -2,3,4,4',5-PeCB	114L	10	145
¹³ C ₁₂ -2,3,3',4,4'-PeCB	105L	10	145
¹³ C ₁₂ -3,3',4,4',5-PeCB	126L	10	145
¹³ C ₁₂ -2,2',4,4',6,6'-HxCB	155L	10	145
¹³ C ₁₂ -2,3',4,4',5,5'-HxCB	167L	10	145
¹³ C ₁₂ -2,3,3',4,4',5-HxCB	156L	10	145
¹³ C ₁₂ -2,3,3',4,4',5'-HxCB	157L	10	145
¹³ C ₁₂ -3,3',4,4',5,5'-HxCB	169L	10	145
¹³ C ₁₂ -2,2',3,4',5,6,6'-HpCB	188L	10	145
¹³ C ₁₂ -2,3,3',4,4',5,5'-HpCB	189L	10	145
¹³ C ₁₂ -2,2',3,3',5,5',6,6'-OcCB	202L	10	145
¹³ C ₁₂ -2,3,3',4,4',5,5',6-OcCB	205L	10	145
¹³ C ₁₂ -2,2',3,3',4',5,5',6,6'-NoCB	208L	10	145
¹³ C ₁₂ -2,2',3,3',4,4',5,5',6-NoCB	206L	10	145
¹³ C ₁₂ -DeCB	209L	10	145
¹³ C ₁₂ -2,4,4'-TrCB	28L	5	145
¹³ C ₁₂ -2,3,3',5,5'-PeCB	111L	10	145
¹³ C ₁₂ -2,2',3,3',5,5',6-HpCB	178L	10	145

CHAIN OF CUSTODY RECORD / ANALYSIS REQUEST

CONTACT: Mark Lanfranco

Pacific Rim Laboratories Inc. #103, 19575 - 55A Avenue, Surrey, BC V3S 8P8 Tel: 604-532-8711 Fax: 604-532-8712

COMPANY: A. Lanfranco & Associates Inc.

		404 0 400 10	0.04. 1				-								
		101-9488 18 Surrey, BC C		1 4W	7	_	-	PHO	ONE:		604-	881-	2582	?	
PACIFIC RIM LABORATORIES INC	DATE:	20-Aug-21						EMA			mark.lanfranco@alanfranco.com				
	CLIENT:	Metro Vanco	uver WTE				×	SOL	JRCI	E: ,	Unit ·	- 3			
AMPLE ID	PRL ID	DATE SAMPLED	SAMPLE MATRIX	Jacks	/ 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5	Strate St.	\$ 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 mg/m	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/20	No. of Processing		/	3 COMMENTS	
//V Unit 3 - DF - Blank	PR21 2732	18-Aug-21		5	X	Х		Х	Х				Х		
//V Unit 3 - DF - Run 1	2733	18-Aug-21		5	X	Х		Х	Х				Х		
/IV Unit 3 - DF - Run 2	2734	19-Aug-21		5	Х	Х		Х	Х				Х		
//V Unit 3 - DF - Run 3	2735	19-Aug-21		5	Х	Х		Х	Х				Х		
impler's Signature	Relinquished by:		Company			Date			Time		F	Received	by:	ED	
omments	Method of Shipment		Waybilt No ≟			Rec'd fo	r PRL:)ate		3: Z <i>O</i>	
	Shipment Condition		Temp.:			Cooler C	Cooler Opened By:				- 5	ZOAUSZI			
					-	1 ((0	4) 500	0711	LE	((0.1)	533 O	710		:6" : 1.1	

APPENDIX 2

COMPUTER OUTPUTS OF MEASURED and CALCULATED DATA

Client: Metro Vancouver Date: 18-Aug-21 Jobsite: WTE (Burnaby, BC) Run: 1 PCDD-PCDF Source: Unit 3 **Run Time:** 08:30 - 12:32

Dioxin Concentration: 0.7 pg/dscm 0.0003 gr/dscf 0.4 **pg/dscm** 0.0002 gr/Acf

0.0003 gr/dscf (@ 11% O2)

0.6 pg/dscm (@ 11% O2)

Emission Rate: see D/F data Table 2

Sample Gas Volume: 3.2546 dscm 114.938 dscf

Total Sample Time: 240.0 minutes

Average Isokineticity: 102.4 %

Flue Gas Characteristics

15.03 % Moisture:

Temperature 150.0 oC 302.1 oF

Flow 1097.2 dscm/min 38749 dscf/min

18.29 dscm/sec 645.8 dscf/sec 1927.9 Acm/min 68083 Acf/min

41.39 f/sec Velocity 12.615 m/sec

Gas Analysis 8.86 % O2 10.88 % CO2

> 30.094 Mol. Wt (g/gmole) Dry $28.276\,$ Mol. Wt (g/gmole) Wet

* Standard Conditions: 20 deg C, 101.325 kPa Metric:

Imperial: 68 deg F, 29.92 in.Hg

 Client:
 Metro Vancouver
 Date:
 18-Aug-21

 Jobsite:
 WTE (Burnaby, BC)
 Run:
 1 PCDD-PCDF

 Source:
 Unit 3
 Run Time:
 08:30 - 12:32

Control Unit (Y) 0.9885		Gas Anal	ysis (Vol. %	o):	Condensate Collection:	
Nozzle Diameter (in.)	0.2463		CO2	O2	Impinger 1 (grams)	411.0
Pitot Factor	0.8461	Trav 1	10.75	9.00	Impinger 2 (grams)	4.0
Baro. Press. (in. Hg)	30.09	Trav 2	11.00	8.72	Impinger 3 (grams)	0.0
Static Press. (in. H2O)	-15.75				Impinger 4 (grams)	17.0
Stack Height (ft)	30				_	
Stack Diameter (in.)	70.9	Average	e = <u>10.88</u>	<u>8.86</u>		
Stack Area (sq.ft.)	27.417				Total Gain (grams)	432.0
Minutes Per Reading	5.0					

Collection:

10.0

Minutes Per Point

D/F TEQ (ng) <u>0.0023</u>

						Dry Ga	s Temperatur	e	Wall	
Traverse	Point	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Stack	Dist.	Isokin
		(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(oF)	(in.)	(%)
		0.0	657.888							
	1	5.0	660.720	0.480	1.09	71	71	296	1.5	102.3
		10.0	663.560	0.480	1.09	71	71	295	Dist. (in.) (9) 1.5 (in.) (9) 1.5 (in.) (9) 1.5 (in.) (9) 1.5 (in.) (9) 4.7 (in.) (1.6 (in.) (102.6
	2	15.0	666.490	0.510	Orifice ^H (in. H2O) Inlet (oF) Outlet (oF) Stack (oF) Dist. (in.) 1.09 71 71 71 296 1.5 1.09 71 71 295 1.5 1.16 71 71 295 4.7 1.15 71 71 296 4.7 1.02 72 72 295 8.4 1.02 72 72 295 8.4 1.02 72 72 295 8.4 1.02 72 72 295 8.4 0.93 73 73 294 12.5 0.94 74 74 294 12.5 0.91 75 75 296 17.7 0.96 76 76 296 25.2 0.59 76 76 296 25.2 0.59 78 78 299 45.6 0.57 79 79 299 53.2	102.7				
		20.0	669.410	0.510				296		102.4
	3	25.0	672.160	0.450						102.4
		30.0	674.910	0.450						102.4
	4	35.0	677.540	0.410	0.93			294	12.5	102.3
		40.0	680.180	0.410				294	12.5	102.5
	5	45.0	682.790	0.400	0.91	75	75	296	17.7	102.5
		50.0	685.400	0.400	0.91	75	75	296	17.7	102.5
	6	55.0	688.080	0.420	0.96	76	76	296	25.2	102.5
		60.0	690.760	0.420	0.96	76	76	297	25.2	102.6
	7	65.0	692.870	0.260	0.59	77	77	299	45.6	102.5
		70.0	694.980	0.260				299	45.6	102.3
	8	75.0	697.050	0.250						102.2
		80.0	699.120	0.250	0.57	79	79	299	53.2	102.2
	9	85.0	700.970	0.200	0.46	79	79	301	58.3	102.2
		90.0	702.830	0.200	0.46	80	80	301	58.3	102.6
	10	95.0	704.780	0.220	0.50	80	80	301	62.5	102.5
		100.0	706.730	0.220	0.50	80	80	301	62.5	102.5
	11	105.0	708.630	0.210	0.48	80	80	301	66.1	102.3
		110.0	710.530	0.210	0.48	81	81	301	66.1	102.1
	12	115.0	712.390	0.200	0.46	81	81	300	69.4	102.3
		120.0	714.250	0.200	0.46	81	81	300	69.4	102.3
		0.0	714.250							
2	1	5.0	716.340	0.250	0.58	83	83	300	1.5	102.5
		10.0	718.510	0.270	0.62	83	83	302	1.5	102.5
	2	15.0	720.590	0.250	0.57	83	83	303	4.7	102.2
		20.0	722.720	0.260	0.60	84	84	303	4.7	102.4
	3	25.0	724.810	0.250	0.57	84	84	304	8.4	102.6
		30.0	726.980	0.270	0.62	84	84	304	8.4	102.5
	4	35.0	729.110	0.260	0.60	84	84	305	12.5	102.6
		40.0	731.280	0.270	0.62	85	85	306	12.5	102.4
	5	45.0	733.410	0.260	0.59	85	85	308	17.7	102.6
		50.0	735.500	0.250	0.57	85	85	307	17.7	102.6
	6	55.0	737.670	0.270	0.62	86	86	307	25.2	102.3
		60.0	739.680	0.230	0.53	86	86	306	25.2	102.6
	7	65.0	742.480	0.450	1.03	86	86	306	45.6	102.3
		70.0	745.280	0.450	1.03	86	86	306	45.6	102.3
	8	75.0	748.260	0.510						102.4
		80.0	751.300	0.530				308		102.5
	9	85.0	754.310	0.520						102.3
		90.0	757.270	0.500						102.6
	10	95.0	760.280	0.520		87	87	309		102.3
		100.0	763.270	0.510						102.6
	11	105.0	766.290	0.520		_	-			102.6
		110.0	769.620	0.630						102.7
	12	115.0	772.920	0.620						102.7
		120.0	776.110	0.580						102.6
						-	1			
			Average:	0.364	0.831	81.0	81.0	302.1	_	102.4

Client: Metro Vancouver Date: 19-Aug-21 Jobsite: WTE (Burnaby, BC) Run: 2 PCDD-PCDF Source: Unit 3 **Run Time:** 08:36 - 12:38

Dioxin Concentration: 3.68 pg/dscm $0.0016\ gr/dscf$ 2.0 **pg/dscm** 0.0009 gr/Acf

> 3.18 pg/dscm (@ 11% O2) 0.0014 gr/dscf (@ 11% O2)

Emission Rate: see D/F data Table 2

Sample Gas Volume: 3.5888 dscm 126.737 dscf

Total Sample Time: 240.0 minutes

Average Isokineticity: 103.1 %

Flue Gas Characteristics

Moisture: 15.90 %

Temperature 152.8 oC 307.1 oF

Flow 1099.1 dscm/min 38815 dscf/min 18.32 dscm/sec 646.9 dscf/sec

70154 Acf/min 1986.5 Acm/min

Velocity 12.999 m/sec 42.65 f/sec

Gas Analysis 9.46 % O2 10.18 % CO2

> 30.006 Mol. Wt (g/gmole) Dry 28.098 Mol. Wt (g/gmole) Wet

* Standard Conditions: 20 deg C, 101.325 kPa Metric:

Imperial: 68 deg F, 29.92 in.Hg

Client:Metro VancouverDate:19-Aug-21Jobsite:WTE (Burnaby, BC)Run:2 PCDD-PCDFSource:Unit 3Run Time:08:36 - 12:38

Control Unit (Y) 0.9885		Gas Anal	ysis (Vol. %	o):	Condensate Collection:	
Nozzle Diameter (in.)	0.2575		CO2	O2	Impinger 1 (grams)	484.0
Pitot Factor	0.8461	Trav 1	10.25	9.42	Impinger 2 (grams)	8.0
Baro. Press. (in. Hg)	30.00	Trav 2	10.10	9.50	Impinger 3 (grams)	0.0
Static Press. (in. H2O)	-19.00				Impinger 4 (grams)	16.9
Stack Height (ft)	30				_	
Stack Diameter (in.)	70.9	Average	e = <u>10.18</u>	<u>9.46</u>		
Stack Area (sq.ft.)	27.417				Total Gain (grams)	508.9
Minutes Per Reading	5.0					

Collection:

10.0

Minutes Per Point

D/F TEQ (ng) <u>0.0132</u>

							is Temperatu		Wall	
Γraverse	Point	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Stack	Dist.	Isokin.
		(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(oF)	(in.)	(%)
		0.0	782.250							
Γraverse	1	5.0	785.100	0.400	1.08	70	70	300	1.5	104.7
		10.0	788.020	0.420	1.14	71	71	301	1.5	104.6
	2	15.0	790.870	0.400	1.08	72	72	301	4.7	104.4
		20.0	793.660	0.380	1.03	72	72	301	4.7	104.8
	3	25.0	796.650	0.440	1.19	74	74	300	8.4	104.0
		30.0	799.690	0.450	1.22	74	74	300	8.4	104.5
	4	35.0	802.620	0.420	1.14	75	75	300	12.5	104.1
		40.0	805.540	0.420	1.14	76	76	300	12.5	103.5
	5	45.0	808.730	0.500	1.36	77	77	302	17.7	103.7
		50.0	811.990	0.520	1.41	78	78	303	17.7	103.8
	6	55.0	815.120	0.480	1.30	78	78	304	25.2	103.7
		60.0	818.240	0.480	1.30	79	79	305	25.2	103.3
	7	65.0	820.790	0.320	0.87	80	80	307	45.6	103.2
		70.0	823.260	0.300	0.81	80	80	309	45.6	103.4
	8	75.0	825.520	0.250	0.68	80	80	308	53.2	103.5
		80.0	827.680	0.230	0.62	81	81	309	53.2	103.0
	9	85.0	829.800	0.220	0.60	81	81	309	58.3	103.4
		90.0	831.920	0.220	0.60	82	82	308	58.3	103.1
	10	95.0	833.940	0.200	0.54	82	82	307	62.5	103.0
		100.0	835.960	0.200	0.54	83	83	307	62.5	102.8
	11	105.0	837.980	0.200	0.54	83	83	307	66.1	102.8
		110.0	839.950	0.190	0.51	83	83	307	66.1	102.8
	12	115.0	841.920	0.190	0.51	84	84	308	69.4	102.7
		120.0	843.830	0.180	0.49	84	84	308	69.4	102.3
		0.0	843.830							
2	1	5.0	846.220	0.280	0.76	83	83	308	1.5	102.9
		10.0	848.790	0.320	0.87	84	84	309	1.5	103.4
	2	15.0	851.130	0.270	0.73	84	84	309	4.7	102.5
		20.0	853.600	0.300	0.81	85	85	308	4.7	102.4
	3	25.0	856.160	0.320	0.87	84	84	311	8.4	103.1
		30.0	858.720	0.320	0.87	83	83	310	8.4	103.2
	4	35.0	861.200	0.300	0.81	83	83	311	12.5	103.4
		40.0	863.770	0.320	0.87	84	84	312	12.5	103.6
	5	45.0	866.160	0.280	0.76	84	84	310	17.7	102.8
		50.0	868.630	0.300	0.81	85	85	311	17.7	102.6
	6	55.0	871.110	0.300	0.81	85	85	311	25.2	103.0
		60.0	873.590	0.300	0.81	86	86	310	25.2	102.7
	7	65.0	876.660	0.460	1.25	85	85	311	45.6	103.1
		70.0	879.790	0.480	1.30	86	86	311	45.6	102.7
	8	75.0	883.170	0.560	1.52	85	85	311	53.2	102.9
		80.0	886.620	0.580	1.57	86	86	312	53.2	103.1
	9	85.0	890.110	0.600	1.63	85	85	313	58.3	102.8
		90.0	893.620	0.600	1.63	86	86	313	58.3	103.2
	10	95.0	897.060	0.580	1.57	86	86	314	62.5	102.9
		100.0	900.430	0.560	1.52	87	87	314	62.5	102.4
	11	105.0	903.740	0.540	1.46	86	86	308	66.1	102.2
		110.0	906.990	0.520	1.41	86	86	305	66.1	102.1
	12	115.0	910.080	0.470	1.27	87	87	300	69.4	101.5
		120.0	913.110	0.450	1.22	87	87	299	69.4	101.6
			1		+		1.	+		1
		_	Average:	0.375	1.017	81.7	81.7	307.1		103.1

Client: Metro Vancouver Date: 19-Aug-21 Jobsite: WTE (Burnaby, BC) Run: 3 - PCDD-PCDF Source: Unit 3 **Run Time:** 12:57 - 17:00

Dioxin Concentration: 3.2 pg/dscm 0.0014 gr/dscf 1.7 pg/Acm 0.0008 gr/Acf

> 2.8 pg/dscm (@ 11% O2) 0.0012 gr/dscf (@ 11% O2)

Emission Rate: see D/F data Table 2

Sample Gas Volume: 3.6826 dscm 130.051 dscf

Total Sample Time: 240.0 minutes

Average Isokineticity: 104.1 %

Flue Gas Characteristics

Moisture: 16.22 %

Temperature 154.1 oC 309.5 oF

Flow 1117.7 dscm/min 39472 dscf/min 18.63 dscm/sec 657.9 dscf/sec

71968 Acf/min 2037.9 Acm/min

Velocity 13.335 m/sec 43.75 f/sec

Gas Analysis 9.74 % O2 9.80 % CO2

> 29.957 Mol. Wt (g/gmole) Dry 28.018 Mol. Wt (g/gmole) Wet

* Standard Conditions: 20 deg C, 101.325 kPa Metric:

Imperial: 68 deg F, 29.92 in.Hg

 Client:
 Metro Vancouver
 Date:
 19-Aug-21

 Jobsite:
 WTE (Burnaby, BC)
 Run:
 3 - PCDD-PCDF

 Source:
 Unit 3
 Run Time:
 12:57 - 17:00

Control Unit (Y)	0.9885	Gas Anal	ysis (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.2575		CO2	O2	Impinger 1 (grams)	510.0
Pitot Factor	0.8450	Trav 1	10.42	8.88	Impinger 2 (grams)	8.0
Baro. Press. (in. Hg)	29.99	Trav 2	9.17	10.60	Impinger 3 (grams)	0.0
Static Press. (in. H2O)	-19.60				Impinger 4 (grams)	16.8
Stack Height (ft)	30					
Stack Diameter (in.)	70.9	Average	e = <u>9.80</u>	<u>9.74</u>		
Stack Area (sq.ft.)	27.417				Total Gain (grams)	534.8
Minutes Per Reading	5.0					

Collection:

10.0

Minutes Per Point

D/F TEQ (ng) <u>0.0117</u>

						Dry Ga	s Temperature	:	Wall	
Traverse	Point	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Stack	Dist.	Isokin.
		(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(oF)	(in.)	(%)
		0.0	913.650							
1	1	5.0	916.880	0.500	1.37	86	86	305	1.5	103.9
		10.0	920.100	0.500	1.35	86	86	314	1.5	104.2
	2	15.0	923.380	0.520	1.41	86	86	315	4.7	104.1
		20.0	926.660	0.520	1.41	86	86	315	4.7	104.1
	3	25.0	929.820	0.480	1.30	86	86	311	8.4	104.1
		30.0	932.980	0.480	1.30	86	86	310	8.4	104.0
	4	35.0	936.050	0.450	1.23	87	87	309	12.5	104.1
		40.0	939.150	0.460	1.26	87	87	308	12.5	103.9
	5	45.0	942.260	0.460	1.26	87	87	306	17.7	104.1
		50.0	945.410	0.470	1.29	88	88	305	17.7	104.1
	6	55.0	948.490	0.450	1.24	88	88	306	25.2	104.1
		60.0	951.530	0.440	1.21	88	88	307	25.2	103.9
	7	65.0	954.040	0.300	0.82	88	88	306	45.6	103.8
-		70.0	956.590	0.310	0.85	88	88	307	45.6	103.8
-	8	75.0	958.930	0.260	0.72	89	89	306	53.2	103.7
-		80.0	961.270	0.260	0.72	89	89	306	53.2	103.7
	9	85.0	963.470	0.230	0.63	89	89	306	58.3	103.6
		90.0	965.720	0.240	0.66	89	89	305	58.3	103.7
	10	95.0	968.020	0.250	0.69	89	89	306	62.5	103.9
-		100.0	970.320	0.250	0.69	89	89	306	62.5	103.9
	11	105.0	972.470	0.220	0.60	89	89	307	66.1	103.6
		110.0	974.630	0.220	0.61	89	89	306	66.1	104.0
	12	115.0	976.690	0.200	0.55	90	90	307	69.4	103.9
	-	120.0	978.750	0.200	0.55	90	90	306	69.4	103.8
							1			
		0.0	978.750							+
2	1	5.0	981.290	0.300	0.84	90	90	298	1.5	104.1
		10.0	983.890	0.320	0.88	90	90	309	1.5	103.9
	2.	15.0	986.400	0.300	0.82	89	89	311	4.7	103.9
	- F	20.0	988.910	0.300	0.82	90	90	312	4.7	103.8
	3	25.0	991.460	0.310	0.85	90	90	312	8.4	103.7
		30.0	994.170	0.350	0.96	90	90	313	8.4	103.8
-	4	35.0	996.590	0.280	0.76	90	90	314	12.5	103.7
	· ·	40.0	999.100	0.300	0.82	90	90	314	12.5	103.9
	5	45.0	1001.610	0.300	0.82	90	90	314	17.7	103.9
-		50.0	1004.160	0.310	0.84	90	90	315	17.7	103.9
-	6	55.0	1004.100	0.280	0.76	90	90	314	25.2	103.7
-	0	60.0	1008.970	0.270	0.74	91	91	312	25.2	104.0
	7	65.0	1012.090	0.410	1.26	91	91	312	45.6	110.3
	,	70.0	1015.650	0.600	1.64	91	91	313	45.6	104.2
	8	75.0	1019.170	0.590	1.61	91	91	315	53.2	104.2
	0	80.0	1022.660	0.570	1.58	92	92	306	53.2	104.0
	9	85.0	1022.000	0.570	1.59	92	92	311	58.3	104.1
	9	90.0	1026.170	0.570	1.59	92	92	311	58.3	104.1
	10	95.0	1033.220	0.600	1.65	92	92	312	62.5	104.1
-	10	100.0	1033.220	0.590	1.62	92	92	312	62.5	104.2
	11	105.0	1040.310	0.590	1.54	92	92	312	66.1	104.2
	11	110.0	1040.310	0.560	1.54	92	92	312	66.1	107.2
	12	115.0	1043.440	0.490	1.38	93	93	309	69.4	100.7
-	1.2	120.0	1046.710	0.500	1.38	93	93	309	69.4	104.1
		120.0	1049.000	0.470	1.30	93	93	300	09.4	104.0
		_	+.		1.0=0	00.1	00.4		1	1011
	1		Average:	0.392	1.078	89.4	89.4	309.5	1	104.1

APPENDIX 3 FIELD DATA SHEETS

A. Lanfranco and Associates Inc.

THE	'			NOZZLE (17455	DIAMET	DIAMETER, IN. 6,3463	894	IMPINGER!	INITIAL	FINAL	TOTAL GAIN	GAIN	
Megra	Var W	7		PROBE	72	O	Cp 0.846	191	VOLUMES	(mL)	(mL)	(mL)		
SOURCE	3								Imp. #1	0	11.65			
PARAMETER / RUN No	No DIE BUN			PORT LENG	NGTH				Imp. #2	100	10%			
DATE 19	NO 202			STATIC PRE	STATIC PRESSURE, IN. H2O	H20 -15	5, 75		Imp. #3	0	0			
OPERATOR: /	A +C			STACK DIAI	METER	ik.)		Imp. #4	(rec)				
CONTROL UNIT C	CAE ALL	Y 0.9885	35	STACK HEIG	EIGHT				lmp. #5					
		AH@ 1,879) 0						lmp. #6					
BAROMETRIC PRESSURE, IN. Hg	IN. Hg 3/	00		INITIAL LEAK TEST	K TEST	0.002015	D15 W		Upstream Diameters	ameters				
ASSUMED MOISTURE, Bw		5%		FINAL LEAK TEST	TEST				Downstream Diameters	Diameters				
											197	Texton1		•
Clock Time	Dry Gas Meter ff	Pitot ∆P	Orifice AH			Temperature °F	f*		Pump Vac.	Fyr	Fyrites	1	00	×
Point 839	637,888	IN. H2O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	Z 2	25	Jam Jam
	660.72	0.4%	60-1	71	296	281	250	55	F				Т	,
	98,899		100	71	295	0			Ò	10.0	0.01	80	36	ナ
~	649.40	-	1.16	1	295	223	253	at	S.					
~	669.41	0.5		71	956))							
n	672.16	0,45	1.02	72	395	253	252	53	R					
er	,	0.45	1.02	22	25%				١	18 5	98	63	20	B
Ł	10	0.4	0,93	73	294	253	727	83	o	0				ļ
4	650.18	0.75	700	74	20 F	١)							
اعا	1	0.70	160		900	33	253	w	r.					
1 0	7	B4 0	0,91	ノバ	966					7.0	8,1	9	B	F
P	6.88.08	043	0,96	9	950	232	252	53	N					
9	4	20.02	0.96	76	201	į		,						
1		0.25	020	77	5	(SE)	200	27	t	K	K			
2	694,68	0.36	0.59	78	299		1			9.1	0,0	28	1	£
2	Co 7, ON	200	0.57	79	200	253	232	22	£					i
S		200	7 50	79	290			\						
	Ž.	30,30	200	7 9	200	252	28	20	7				T	,
5. 5	2000	00,00	200	000	8,	-	000		7.	0	200	200	55	Ŕ
95	170	2000	200	200	200	43	200	0	+					
2	7	2000	200	200	n Su	120	N.	17	ż				Ī	
/3	1"	74.0	25.5	3	36		000	200	7	2	8	89	77	4
~	73.39		0,50	R	2000	787	つない	2	4	79 + 17			T	11.
13 1930	アングナブ	0000	1	B	Doc				,					
													Γ	

Int UC Stant : 656,820

A. Lanfranco and Associates Inc.

TIME!	0 4	6		NOZZLE		DIAME	DIAMETER, IN.	2	IMPINGER	INITIAL	FINAL	TOTAL GAIN	GAIN	
- 1	Messa Van	<u>V</u>		PROBE			cb		VOLUMES	(mL)	(mL)	(mJ)	L)	
SOURCE	53								Imp. #1					
PARAMETER / RUN No	0/10	Run Co	cant	PORT LENG	PORT LENGTH				lmp. #2					
DATE	Aug 302			STATIC PRE	ESSURE, IN.	H2O			lmp. #3					
OPERATOR:	124 C 40			STACK DIAMETER	METER				Imp. #4					
CONTROL UNIT		>		STACK HEK	됐				lmp. #5					
		0HΩ							lmp. #6					
BAROMETRIC PRESSURE, IN. Hg	ESSURE, IN. Hg			INITIAL LEAK TES	EAK TEST				Upstream Diameters	iameters				
ASSUMED MOISTURE, BW	URE, Bw			FINAL LEAK	200	0.001 @15"			Downstream Diameters	Diameters				
											N	Sorte		
Clock Time	ne Dry Gas Meter ft	Pitot ∆P	Orifice AH			Temperature °F	伍		Pump Vac.	Fyi	Fyrites	\$	00	SOLD
Point 1833	714.35	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Box	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	X XX	_	S & A
	1 1	0.25	0.58	83	300	254	25/	5.6	4					3
	7/8,5	0.27	Z9'Q	63	302									
cs	720.59	0.25	0.57	83	303	253	250	26	Ь	0.	2.6	25	20	
~<	723,72	0.26	0.00	18	303									
r	1248	0.25	051	84	304	33	250	27	Ъ					41
6	726,98	0.37	7.9.0	84	304	K			7					
2	779	35.0	09.70	18	30%	251	251	96	5	0	8.4	18	20	5
5 1	131.48	740	101	32	206		100	0						
S.U		0.46 0.16	000	de de	202	750	751	20	೧					-
7	120 20		2.7.2	200	200	7.5	121	2	1	0	20	10	1011	7
7	729 64	024	つった	43	707	2	48	-	2	ý	0.2	0	Τ	7
1	-1	0 47	60-	18	306	250	30	(O)	J					
7	745,18	0.45	1 03	98	308									
x	748,26	0.51	1.17	7,8	307	251	25	5	9	0.11	16	16	33	47
9	751.30	0.53	121	2.8	, 50%									2
0	754.3	0.52	1.19	187	309	251	251	28	9					
5	757.41	0.50	1.15	87	200									
16	(40,00	400	2 4	97	300	255	25	58	9	0,1	2	85	29	2
3	767.4	0.2	/	2	30°		5	100						
	166.49	12,0	9	27	508	575	921	99	9					
200	769.65	69.0	45	88	30%		*				- 1			
-0	773.7	0.6	145	98	3/0	240	750	57		0/ 1	7.5	2	59	<i>}</i>
1834	119/1	0.58	133	88	310								1	
	8													
			2											
		,	11 111											

Fry look chark enditte

W51 03712H

					4		0	2515					
CLIENT M.1 6	6			NOZZLE		DIAME	DIAMETER, IN.	717	MPINGER	INITIAL	FINAL	TOTAL GAIN	GAIN
a di lo	140			PROBE	7		00		VOLUMES	(mL)	(mr)	(mr)	
SOUNCE STATES OF THE STATES OF	された	100						A STATE OF THE STA	Imp. #1	0	194	124	
PARAMETER / RUN NO	100 A 53 3	FOT.		PORT LENGTH	СТН		X	Sec. 3	Imp. #2	100	98	00	
WAIE	1 1 (Jan 1)	C		STATICPR	STATIC PRESSURE, IN. H20	H20 1	<i>§</i>	,	Imp. #3	0	1	1	
OPERATOR:	ころしょう	12	7	STACK DIAMETER	METER	9	× 6		lmp. #4				
CONTROL UNIT	47	× 250	52	STACK HEIGHT	GHT	90.			1mp. #5				
STORY OF THE PROPERTY OF THE P	1	OH(C)						9	lmp. #6				
SAROME INIC PRESSURE, IN. HO		8.00		INITIAL LEAK TEST	AK TEST	0,000	0	100	Upstream Diameters	ameters:			
ASSUMED MOISTORE, BW	AE, BW	90		FINAL LEAK TEST		0000	0		Downstream Diameters	Diameters			
-1	, A												
	Dry Gas Meter II	Pitot AP	Orifice AH			Temperature °F	IL.		Pump Vac.	Fyr	Fyrites		ſ
10000 B 30	782.250	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	N. Hg	CO ₂	O ₂	\$	
	01 03	140	30,	P.	300	300	80	200	1			TAR	
50	28.63	74%	Ž.	7	18							+	T
	40.04	170	B	7	30	350	320	9	*	00	001	#	I
2 3	1	8	000	1	30			,					T
200	478 60	1.	2	17	8	220	930	9	7			#X	Total Control
2.3	211.07	22	100	4	8								
7 72	10 100	144	7.1	F	380	320	8,80	28	2			14	
27	2000	The state of the s	72	4	8					00	00	(a)	
12.00	200		8	1	RA	9	2	20	1			TO	T
一方が	27.00	The T	147	8	380	-		1	,			();	
250	200 84		18	120	180	88	88	2	2			42	
700	B 000	- Ch	R	18	dr.	The second	1	B	1	1	9		
7 8	883.46	1.	a	2	24	8	3	1	9	0	n n	10	
25 00	825.52	135	83	8	300	Str	1	25	1			-	I
× 1	827 00	ني 12	729	0	380	1						+	Ī
3	000 2000	193	8	Ø	300	880	320	58	2			#	T
5	からくのの	1000	8	Digital Control	100 100 100 100 100 100 100 100 100 100					00	0	 - 	T
100	200	0.70	H	d	18	88	320	58	1			#	Ī
0.	27.72	140	8	20	184								Ī
00	dr 100	000	N.	63	188	380	88	57	4			12	Ī
22	20 100	1		and	184	-	V	0		1			Ī
	なれる		1.33	200	200	8	000	2	1	02	0	124	
					3							,	
	846.97	138	18	83	308	300	250	28	7			111	T
	120 F	122	27	g g	305		1			0	0		1
¥	85/13	180	33	22	304	000	200	100	1		1		1
14	853 60	8	191	200	388				-	Ī		01-21	T

A. Lanfranco and Associates Inc.

14.51 271AH

TOTAL GAIN	(mL)											4		T			1		200				I					T								"沙"、沙石堡	
Ţ				_		ļ.	_				_	XAD	F	1	#		#	-	1/2	ľ	*		4		14		1	1	1	12				L		1	10
FINAL	(mL)										Fyrites	Vol. %		0			Sherika.	0.0				0	4			0)			0							
INITIAL	(mr)							meters	Diameters		F.	CO ₂		0.0	1			0,0					00			(2			0.0							
IMPINGER,	VOLUMES	Imp. #1	Imp. #2	Imp. #3	imp. #4	Imp. #5	lmp. #6	Upstream Diameters	Downstream Diameters		Pump Vac.	IN. Hg	7		Z		4		7		2) !	C	,	0	7	1	7	,	7						1	T
147		Contraction of the second	100	2 2 2			-	ם	100			Impinger Exit	EF.		55	, ,	56		200	Ι,	8	-	20	1	8	200	7	8	,	8		1	T		1	1	+
R. IN. 18	,846			8	.)			10	2	AITS		Вох	2		350		188		1000		250		300		8	0	2	350		000						1	
DIAMETER, IN.	පි		0	20 -14,	40.2	g.		CCR	7	MEC	Temperature °F	Probe	A.		350		88		350 !		320	-	200		8	· Com	2	A CAR		07/20		1				1	
345	K		E	STATIC PRESSURE, IN. H20	ETER	HT		TEST D	TEST A	5	T	Stack	7	200	31	202	310	311	311	510	7	2	25	200	カカ	カカカ	NO.	308	305	88	7.5	1			1	1	
NOZZLE (5	PROBE		PORT LENGTH	STATIC PRE	STACK DIAMETER	STACK HEIGHT	Total Control	INITIAL LEAK TEST	FINAL LEAK TEST			Dry Gas Outlet	130	8	\mathcal{B}	27	立	200	22	28	222	8	8	8	B	86	1	30	200	2	d	1					
						^					Orifice ΔH	IN. H ₂ O	48		80	127	99	(X)	ā	180	(35	8	22	127	22	32	2	46	14	184	133						
			F Cont		1000	、なめめひ	0H0	8	2		Pitot AP	IN. H ₂ O	Z.	13%	8	ý	220	8	58	30	146	148	- 25	200	000	1 XX	北	Į,	423.	17.7	122	1				1	
	\ I.	7 # り		10/2	こったら、万	AL1		11			Dry Gas Meter ft	853.60	91.958	858:42	86188	25.77	200	868 63	11 179	めなど	876.66	の打力	£82 1±.	286 63	25.00.20	2008	ACC AX	965 班	2000	2000	412.11						
	2/2	C C	PARAMETER / RUN No	Ha.	TOR: しく	OL UNIT		BAROMETRIC PRESSURE, IN. Hg	ASSUMED MOISTURE, BW		Clock Time	CAUTINUED												1						2000	27.2					1	
CLENT		SOURCE	PARAM	QATE	OPERATOR:	CONTROL UNIT	1	BAROM	ASSUM			Point (u	2	7	7	2	2	9	9	4	7	S	20	5	, <u>s</u>	2			-	A		<u></u>			7/1/2	1

A. Lanfranco and Associates Inc.

E NE	1			NOZZLE	Q	DIAMETER, IN.	ER, IN.	2575	IMPINGER,	INITIAL	FINAL	TOTAL GAIN	GAIN	
	Metra Van Wit			PROBE AL	J21-77	o	Cp 0,84	20	VOLUMES	(mL)	(mL)	(mL)		
SOURCE (An	ĸ								lmp. #1	B	20			
PARAMETER / RUN No	No DF	Rwn 3		PORT LENG	NGTH		ш		Imp. #2	100	108			
61	Aug 3621			STATIC PRE	STATIC PRESSURE, IN. H20	H20	19.6		lmp. #3	0				
7	A TC			STACK DIAMETER	⁄/ETER				lmp. #4	Pel				
CONTROL UNIT	AF AW	V 6.488	85	STACK HEIGHT	SHT				lmp. #5					
		2H@ 1,879	۲, (lmp. #6					
BAROMETRIC PRESSURE, IN. Hg	, IN. Hg	6 39		INITIAL LEAK TEST	K TEST	00.00	002@15	/ 1	Upstream Diameters	ameters				
ASSUMED MOISTURE, Bw		5 %		FINAL LEAK TEST	TEST				Downstream Diameters	Diameters				
Clock Time	Dry Gas Meter ff	Pitot AP	Orifice AH			Temperature ^o F			Pilmp Vac	Furitee	itee	W .	T	4
Point	1	IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Вох	Impinger	IN. Hg	CO2	02	×5%		1 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1257	413,650			Outlet				Exit		Vol. %	Vol. %	Colors	وردي	ft.
	-	0.50	1.37	98	305	956	333	09	9				П	Ŧ
	976.10	0,50	1.35	80	776	,	(3	1	00	8,5	77	57	
, sc	243,26	20,00	4.	26	es i	22	250	>						F
2 00		180	1	000	D N	0110	020	1 0	1					14
70	2007,00	0.40	120	200	2100	421	700	20	-	0 0	7	11	70	-
25		0 Th	1,23	202	302	25.1	120	27	1	77.77	5		7	42
3	١,	0.46	1.26	87	309		,	, ,						
S)	943,36	94.0	1.26	63	908	25	250	56	7					Ł
V o	1	ノセン	200	45	305)		0.5	8,50	89	44	
a a	~ I	_1	7	88	306	250	23/	20	7)			F
2	431.53	54.0	1.00	8C	347									0
1-1		08.80	6.83	\$00 \$00 \$00 \$00	300	38	250	12	1	V V	1	4		4
7	2000000	500	グロス	909	200	1	0	5	1	K 7. W	,	9	5	ļ
ta	2	200	010	A.C.	300	D.	400	CZ.						2
ò	963,47	0.33	0,63	80	306	251	230	09	9					1
5	965.73	7,000	99.0	80	205					10.0	4,5	63	53	•
0	633	625	69.0	80	306	989	350	0	9	-)			ナン
9.	270	30	590	500	2000	(000	1						4
	014 47	0.93	300	280	2000	Ø200	450	0	O	10 8	06	11	07	<u>-</u>
- \	916. 69	0 27	2000 CAN	90	207	250	781	7	ß	0 0	3	\$	0	
1457	978.75	0,20	0.35	9.0	206									
)		5									
-														

Initial LC start: 913,444

A. Lanfranco and Associates Inc.

PRODUCE PROD	C IEN	1111	/	,		NOZZLE		DIAME	DIAMETER, IN.		IMPINGER	INITIAL	FINAL	TOTAL GAIN	GAIN
19 Au		Medic	/ Ow	12		PROBE		١	dS		VOLUMES		(mL)	(mL)	
The part Point Pencine Imp #2 Point Pe	SOUR	CE L	·								Imp. #1				
15 App. 2024 SINATCA DAMESTER HTTPAL LEAK TEST Tomportus	PARA	METER / RUN	DF	3 (14)	PORT LENG	этн				Imp. #2)
N. Hg STACK BIANTER Imp. #4	DATE	16	3021			STATIC PRE	ESSURE, IN.	H20			Imp. #3				
N	OPER	1	2			STACK DIAI	METER				Imp. #4				
N. Hg	CONT	ROL UNIT		\		STACK HEI	GHT				lmp. #5				
Ni high				ΔH@							lmp. #6				
FINAL LEAK TEST 0 (2) 2 (5) 1 (1) 1	BARO	METRIC PRES	SSURE, IN. Hg			INITIAL LEA	K TEST				Upstream D.	iameters			
5'Closk Time Dry Gas Meter II Prints AP Dry Gas Stack Probe Box Impringer IN Hg Co. Order May Stack Probe Box Impringer IN Hg Co. Order May Stack Stack Probe Box Impringer IN Hg Co. Order May Stack St	ASSU	MED MOISTUR	RE, Bw			FINAL LEAK	(TEST 0		50		Downstream	Diameters			
		Clock Time	Dry Gas Meter ft	Ditot AD	Orifice AU			Tomoroumo T			D.m. Vec				
5.00 97.57 W. H. D.		L			Oline All			l'emperature	1		rump vac.	ryr		3	B
1,000 1,00	Point		978.75	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	E	M
15.00 15.0			941.29	0.30	0.54	06	8	35	242	58	7	Ø	10,9	73	65
15th to 10.25 549 311 354 349 57 7 755 10.25 10.	-		983.89	0.32	0 88	26	0								
944.4	58		04.756	05:00	0.82	89	311	1251	6ht	57	1				
17:00 19:48 0.35 9:00 312 352 352 353 7 9:05 10.2	ત્ર		1998.91	0.50	-C8.0	90	312			-					
\$99417 0.35 0.96 90 31.3 351 250 55 6 90 31.4 351 347 55 6 90 31.4 351 347 55 6 90 31.4 351 347 55 6 90 90 31.4 351 347 55 6 90 90 90 90 90 90 90	6		941.46	0.31	0.85	96	312	252	757	58	7	50	10,2	87	17
17:00 49:45 6.35	9		694.17	0.35	96:0	96	3,3								
\$601.61 0.30 0.47 55 6 9 10.77 5 500.61 10.77 5 5 6 9 10.77 5 5 6 9 10.77 5 5 6 9 10.77 5 5 6 9 10.77 5 5 6 9 10.77 5 5 6 9 10.77 5 5 6 9 10.77 5 5 6 9 10.77 5 5 6 9 10.77 5 5 6 9 10.77 5 6 10.77 5 6 10.77 5 6 10.77 5 6 10.77 5 6 10.77 5 6 10.77 5 6 10.77 5 6 10.77 5 6 10.77 5 6 10.77 5 6 10.77 5 6 10.77 5 6 10.77 5	t		648 59	0.38	74.0	06	1914	25	250	5.8	9				
1001,6 0.30 0.54 90 314 35 347 55 6 4 10.7 7 10.0 10.5	+		01.856	0.30	78.0	06	314								
1,	N		13001	0.30	0.87	90	314	251	247	53	9	6	10.7	73	44
\$55% 0.34 0.74 90 314 251 252 59 6 \$5.97 0.34 0.74 90 313 \$2.03 0.44 0.50 0.50 0.50 0.50 0.50 0.50 0.50	เง		7 16	6.31	0,34	Ç,	315	,				-			
\$ 37 0.07 0.74 91 3.12 2.51 245 55 9 9.55 10.2 7.5 10.2 7.5 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0	y		6.58	0.34	92.0	8	314	351	75%	53	9				
13.09, 074 1.36 91 372 351 34 55 7 9 9.5 0.2 7 5.65 054 1.54 92 315 352 245 55 9 9 11.0 7 5.65 055 1.54 92 311 351 351 55 9 9 11.0 7 5.65 055 1.55 92 31 351 251 55 9 9 11.0 7 5.65 055 1.55 92 31 351 251 55 9 9 10.4 5 5.65 055 1.55 92 320 351 351 551 55 9 9 10.4 5 5.65 055 1.55 92 320 351 351 551 551 551 951 551 551 551 551 551 5	9		8,97	0.37	0.74	6	312							ŧ	
5.65 6.57	1		\neg	7		16	312	25(S.	58	2	9.5	6.2	70	65
13.66 0.59 1.41 91 315 352 346 55 9 32.66 0.57 1.58 92 306 351 351 556 9 9 11.0 7 31.65 0.56 1.57 92 31 351 351 55 9 9 11.0 7 35.72 0.59 1.57 92 310 251 351 56 9 9 10.7 8 45.44 0.49 1.35 93 309 351 349 56 9 9 10.7 8 45.44 0.49 1.35 93 309 351 341 57 8	7		15.65	800	\exists	0	313								
73.66 0.57 1.58 92 306 251 256 9 91.0 7 32.65 0.57 1.54 93 31 251 251 55 9 91.0 7 33.22 0.56 1.65 91 31 253 251 55 9 91.0 7 33.23 0.56 1.57 91 31 251 251 55 9 910.9 8 41.44 0.99 1.35 93 309 351 351 551 8 41.44 0.99 1.35 93 309 351 351 551 8 41.44 0.99 1.35 93 309 351 351 551 8	8		0.10	0.59	13.1	6	315	252	348	4.5	6				
33.27 0.57 1.54 93 31 351 556 9 9 11.0 7 31.1 351 351 55 9 9 11.0 7 31.1 35 35.2 35 9 9 10.4 8 10.4	8		22.66	0.57	.58	76	30%)					
36.75 0.50 1.65 97 31 253 251 55 9 9 10.4 8 36.76 0.50 1.65 97 312 251 249 56 9 9 10.4 8 40.3 40.3 1.35 93 30 351 241 57 8	0		27.95	0.52	1.59	45	3(1	351	35	5.6	ъ	0.	11.0	78	71
35.77 0,60 1.65 97 312 253 251 55 9 9 10.9 40.51 1.54 97 312 251 251 249 55 9 9 10.9 1.55 95 30 351 251 251 55 9 9 10.9 10.9 10.9 10.9 10.9 10.9 10.9	8		29.65	0.5	5	7.6	311							5	
36.76 0.29 1.67 97 312 1.49 56 9 90.71 1.09 4 10.7 1 1.20 4 3.2 3.09 3.51 3.40 5.7 8 9 9 10.7 1 1.20 4 9.3 3.09 3.51 3.40 5.7 8 9 9 10.7 1 1.20 4 9.3 3.09 3.51 3.40 5.7 8	9		33.22	0,60	1.65	47	312	353	25/	55	6				H
17:00 49:48 0.49 1:35 93 309 351 349 56 9 9 10.4 17:00 49:48 0.49 1:35 93 309 351 346 57 8 17:00 49:48 0.49 1:36 93 309 351 346 57 8	9		36.76	0,29	797	45	312	,							
17:00 49:45 93 300 351 357 17:00 49:45 0:47 1:35 93 309 351 357 57	=		40.3	95.0	1.54	47	45	1251	1749	56	6	6	10.9	84	940
17:00 46:48 0.47 1.30 43 30° 35° 35° 17:00 46:48 0.47 1.30 43 30° 35° 35° 35° 35° 35° 35° 35° 35° 35° 35	=		13.44	0.49	1.35.	32	310								
17:00 49.48 0.47 1.30 43 308	1		12.27	10.50	1.38	83	309	1351	28	57	B				
	3	12:00	0	7,47	1,30	93	308								
						>									
												-			

Final 18ak Check 56,266

APPENDIX 4 CALIBRATION DATA and CERTIFICATION

	E	BAROMETER	R CALIBRATION	FORM		
		Pbar E	nv Canada	Device (inc	hes of Hg)	Difference
					Elevation	
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)
LA	29-Jun-21	100.7	29.74	29.61	29.68	0.06
DS	29-Jun-21	100.7	29.74	29.62	29.69	0.05
CL	29-Jun-21	100.7	29.74	29.63	29.70	0.04
ML	29-Jun-21	100.7	29.74	29.60	29.67	0.07
SB	29-Jun-21	100.7	29.74	29.62	29.69	0.05
SH	29-Jun-21	100.7	29.74	29.60	29.67	0.07
MG	29-Jun-21	100.7	29.74	29.65	29.72	0.02
SF	29-Jun-21	100.7	29.74	29.60	29.67	0.07
JG	29-Jun-21	100.7	29.74	29.65	29.72	0.02
JC	29-Jun-21	100.7	29.74	29.62	29.69	0.05
LF		101.8	30.07	30.08	30.15	-0.09

Calibrated by: Jeremy Gibbs Signature: 29-Jun-21

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74_metric_e.html

A.Lanfranco & Associates inc.

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: CAE AL1 29-Jun-21 Serial #:

0028-070611-1 Barometric Pressure: 29.63 (in. Hg) Theoretical Critical Vacuum: 13.98 (in. Hg)

!!!!!!!!!

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

			DRY GA	S METER READIN	NGS	-				-C	RITICAL ORIF	ICE READING	GS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Te Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Initial (deg F)	nbient Temperati Final (deg F)	Average (deg F)
3.75	30.00	554.900	587.654	32.754	86.0	86.0	88.0	88.0	73	0.8185	18.0	81.0	93.0	87.0
1.90	31.00	588.300	612.913	24.613	88.0	88.0	90.0	90.0	63	0.5956	20.5	91.0	86.0	88.5
1.20	24.00	613.200	628.140	14.940	90.0	90.0	91.0	91.0	55	0.4606	22.0	89.0	90.0	89.5
0.68	41.00	628.400	647.782	19.382	91.0	91.0	91.0	91.0	48	0.3560	24.0	92.0	92.0	92.0
0.35	29.00	648.000	657.411	9.411	91.0	91.0	91.0	91.0	40	0.2408	25.0	95.0	93.0	94.0
	S METER			**************************************		KES	DRY GA	S METER				ORIFICE		
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR		CAL	.IBRATION FA dH@	CTOR		
CORRECTED CORRECTED CORRECTED NOMINAL Vm(std) Vm(std) Vcr(std) Vcr Value (cu ft) (liters) (cu ft) (number)							Variation (number)		Value (in H2O)	Value (mm H2O)	Variation (in H2O)		Ko (value)	
31.589	894.6		31.108	881.0	32.556		0.985	-0.004		1.875	47.63	-0.003		0.701
23.543	666.7		23.359	661.5	24.514		0.992	0.004		1.793	45.53	-0.086		0.713
14.227	402.9		13.973	395.7	14.690		0.982	-0.006		1.891	48.04	0.013		0.702
18.417	521.6		18.408	521.3	19.440		1.000	0.011		1.801	45.74	-0.078		0.708
8.935	253.0		8.791	249.0	9.318		0.984	-0.005		2.033	51.64	0.154		0.677
					Avera	age Y>	0.9885	Avera	ge dH@>	1.879	47.7	Av	verage Ko>	0.700

Т	EMPERATURE CALIBRAT	ION	
Calibration Standard>	Omega Model CL23A S/N:T-2	18768	
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Rev Variation (degF)	sults Percent of Absolute
32	32	0	0.00%
100	100	0	0.00%
300	300	0	0.00%
500	500	0	0.00%
1000	1000	0	0.00%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.
For Orfifce Calibration Factor 0Hig, the orfice differential pressure in inches of H20 that equates to 0.75 cfm of air at 8F and 292 girches of Hg, acceptable tolerance of individual values from the average is +-0.2.
For Temperature Device, the reading must be within 1.5% of certified calibration standard (absolute temperature) be acceptable.

Signature:

Calibrated by: Scott Ferguson

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

GLASS NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Justin Ching Date: June 28, 2021

Signature:

difference

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
Α	0.1250	0.1240	0.1245	0.0010	0.1245	0.0000845
G-165	0.1640	0.1655	0.1660	0.0020	0.1652	0.0001488
G-178	0.1780	0.1780	0.1790	0.0010	0.1783	0.0001735
J	0.1880	0.1880	0.1880	0.0000	0.1880	0.0001928
E	0.1880	0.1895	0.1882	0.0015	0.1886	0.0001939
Q	0.2070	0.2050	0.2060	0.0020	0.2060	0.0002315
L	0.2112	0.2120	0.2105	0.0015	0.2112	0.0002434
G-218	0.2112	0.2175	0.2190	0.0015	0.2182	0.0002434
G-223	0.2220	0.2173	0.2225	0.0010	0.2225	0.0002330
G-2231	0.2230	0.2230	0.2225	0.0005	0.2228	0.0002708
G-225	0.2245	0.2250	0.2240	0.0010	0.2245	0.0002749
G-2251	0.2230	0.2260	0.2245	0.0030	0.2245	0.0002749
P-18	0.2375	0.2370	0.2380	0.0030	0.2375	0.0002743
G-245	0.2373	0.2450	0.2350	0.0010	0.2447	0.0003070
G-245 G-247	0.2440	0.2470	0.2430	0.0010	0.2447	0.0003203
G-253	0.2525	0.2520	0.2525	0.0020	0.2523	0.0003310
P	0.2525	0.2570	0.2575	0.0010	0.2575	0.0003473
P-2	0.2387	0.2370	0.2373	0.0010	0.2787	0.0003010
G-280	0.2780	0.2800	0.2703	0.0030	0.2797	0.0004266
G-282	0.2760	0.2820	0.2840	0.0030	0.2823	0.0004200
G-282 G-287	0.2870	0.2820	0.2840	0.0030	0.2870	0.0004348
G-207 G-292	0.2970	0.2000	0.2926	0.0020	0.2923	0.0004493
G-292 G-304	0.2922	0.2920	0.2926	0.0006	0.2923	0.0004659
MV-01	0.3050	0.3045	0.3055	0.0010	0.3050	0.0005074
G-3072		0.3043	0.3080		0.3073	
G-3072 G-309	0.3070 0.3110	0.3070	0.3080	0.0010 0.0030	0.3090	0.0005152 0.0005208
G-309 G-310	0.3110	0.3060	0.3095	0.0030	0.3090	0.0005208
G-310	0.3090	0.3105	0.3095	0.0015	0.3110	0.0005230
G-316	0.3120	0.3160	0.3170	0.0020	0.3163	0.0005458
V-06	0.3200	0.3210	0.3210	0.0010	0.3207	0.0005438
P-27	0.3200	0.3210	0.3210	0.0010	0.3207	0.0005008
G-344	0.3440	0.3450	0.3390	0.0003	0.3443	0.0006258
G-345	0.3450	0.3450	0.3450	0.0000	0.3450	0.0006492
G-346	0.3450	0.3460	0.3460	0.0010	0.3457	0.0006517
G-366	0.3650	0.3400	0.3460	0.0010	0.3657	0.0006517
G-367	0.3675	0.3650	0.3670	0.0025	0.3665	0.0007233
P-14	0.3910	0.3935	0.3920	0.0025	0.3922	0.0007326
G-437	0.4350	0.3935	0.3920	0.0023	0.4350	0.0010321
G-437 G-468	0.4330	0.4343	0.4333	0.0010	0.4672	0.0010321
P-29	0.4677	0.4670	0.4670	0.0007	0.4683	0.0011967
P-29 P-7	0.4680	0.4680	0.4690	0.0010	0.4945	0.0011963
P-7 B	0.4965	0.4940	0.4930	0.0035		0.0013337
В G-540	0.5015				0.5023	
G-540	0.5405	0.5400	0.5405	0.0005	0.5403	0.0015924
-	1					

Where:

(a) D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.

(b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.

(c) Average = average of D1, D2 and D3

Pitot Tube Calibration

 Date:
 07-Jul-21
 Temp (R): 530

 Pbar (in.Hg):
 29.92
 Dn (in.): 0.25

Pitot ID:	7A-1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	15.5	0.8478	0.0017
0.125	0.170	23.4	0.8489	0.0028
0.250	0.340	33.1	0.8489	0.0028
0.450	0.620	44.4	0.8434	0.0027
0.650	0.900	53.4	0.8413	0.0047
•		Average:	0.8461	0.0030

Pitot ID:	ST 8A			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.085	0.115	19.3	0.8511	0.0078
0.120	0.165	22.9	0.8443	0.0010
0.175	0.240	27.7	0.8454	0.0021
0.430	0.600	43.4	0.8381	0.0052
0.680	0.950	54.6	0.8376	0.0057
-		Average:	0.8433	0.0044

Pitot ID:	7A			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.050	0.070	14.8	0.8367	0.0045
0.125	0.170	23.4	0.8489	0.0078
0.300	0.420	36.3	0.8367	0.0045
0.490	0.680	46.3	0.8404	0.0008
0.660	0.910	53.8	0.8431	0.0019
		Average:	0.8412	0.0039

Pitot ID:	ST 8B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.040	0.055	13.2	0.8443	0.0037
0.105	0.145	21.5	0.8425	0.0019
0.150	0.210	25.6	0.8367	0.0039
0.330	0.450	38.0	0.8478	0.0072
0.480	0.680	45.9	0.8318	0.0088
		Average:	0.8406	0.0051

Pitot ID:	AL GVRD 1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.040	0.055	13.2	0.8443	0.0007
0.125	0.170	23.4	0.8489	0.0039
0.250	0.340	33.1	0.8489	0.0039
0.360	0.500	39.7	0.8400	0.0050
0.580	0.800	50.4	0.8430	0.0021
		Average:	0.8450	0.0031

Pitot ID:	ST 8C			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.065	0.090	16.9	0.8413	0.0027
0.150	0.210	25.6	0.8367	0.0019
0.270	0.370	34.4	0.8457	0.0071
0.465	0.650	45.1	0.8373	0.0013
0.650 0.920		53.4	0.8321	0.0065
		Average:	0.8386	0.0039

F	Pitot ID:	7C			
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)		(in H2O)	(ft/s)	Ср	
	0.040	0.055	13.2	0.8443	0.0019
	0.130	0.180	23.9	0.8413	0.0048
	0.250	0.345	33.1	0.8427	0.0034
	0.450	0.620	44.4	0.8434	0.0027
	0.670	0.890	54.2	0.8590	0.0128
_			Average:	0.8461	0.0051

Pitot ID:				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average:	•	

Calibrated by: Michael Goods Signature: ______ Date: July 7, 2021

^{*} Average absolute deviation must not exceed 0.01.

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

QUARTZ NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Justin Ching Date: June 28, 2021

Signature:

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
Q-218	0.2180	0.2185	0.2180	0.0005	0.2182	0.0002596
Q-254	0.2540	0.2540	0.2550	0.0010	0.2543	0.0003528
Q-279	0.2790	0.2790	0.2800	0.0010	0.2793	0.0004256
Q-312	0.3125	0.3125	0.3120	0.0005	0.3123	0.0005321
Q-314	0.3120	0.3150	0.3150	0.0030	0.3140	0.0005378
Q-345	0.3445	0.3450	0.3450	0.0005	0.3448	0.0006486
Q-379	0.3800	0.3795	0.3795	0.0005	0.3797	0.0007862
Q-401	0.4020	0.4020	0.4000	0.0020	0.4013	0.0008785
Q-408	0.4070	0.4095	0.4090	0.0025	0.4085	0.0009101
Q-409	0.4105	0.4090	0.4095	0.0015	0.4097	0.0009154
Q-4091	0.4080	0.4090	0.4100	0.0020	0.4090	0.0009124
Q-433	0.4340	0.4320	0.4330	0.0020	0.4330	0.0010226
Q-440	0.4395	0.4400	0.4400	0.0005	0.4398	0.0010551
Q-442	0.4420	0.4430	0.4420	0.0010	0.4423	0.0010672
Q-500	0.5000	0.5005	0.5005	0.0005	0.5003	0.0013654

Where:

- (a) D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.
- (b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.
- (c) Average = average of D1, D2 and D3

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Calibrated by: Justin Ching
Date: 07-Jul-21

Signature:

TEMPERATURE DEVICE CALIBRATIONS

Reference Device				Temperature Settings (degrees F)													
Model CL23A Calib	rator		32		100		2	200		300		500		800		1700	
Device	ALA#	Serial #	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	
Omega HH11A	3	300132	32.3	0.06%	99.3	-0.13%	200	0.00%	301	0.13%	498	-0.21%	798	-0.16%	1698	-0.09%	
Omega HH11A	4	200167		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%	
Omega HH11A	6	600059	33.1	0.22%	100	0.00%	202	0.30%	302	0.26%	499	-0.10%	798	-0.16%	1697	-0.14%	
TPI 341K	7	2.0315E+10	30.5	-0.31%	98.3	-0.30%	198.1	-0.29%	298	-0.26%	497	-0.31%	796.4	-0.29%	1693	-0.32%	
TPI 341K	8	2.0313E+10	32.1	0.02%	99.3	-0.13%	200.5	0.08%	299.9	-0.01%	499.3	-0.07%	798.7	-0.10%	1696	-0.19%	
Cont Cmpny	10	102008464	30.2	-0.37%	97.5	-0.45%	197.8	-0.33%	297.7	-0.30%	497.7	-0.24%	795.9	-0.33%	1693.8	-0.29%	
Omega HH11	14	409426		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-78.72%	
TPI 341K	16	400120029	30.7	-0.26%	99	-0.18%	199.4	-0.09%	299.2	-0.11%	499.6	-0.04%	800.2	0.02%	1703	0.14%	
TPI 341K	18	2.0329E+10	31	-0.20%	98.9	-0.20%	198.9	-0.17%	298.7	-0.17%	498.5	-0.16%	798.4	-0.13%	1698	-0.09%	
TPI 341K	20	2.0329E+10	30	-0.41%	98.2	-0.32%	198.1	-0.29%	297.7	-0.30%	497.2	-0.29%	797.1	-0.23%	1696	-0.19%	
TPI 341K	22	2.0329E+10	30.5	-0.31%	98.6	-0.25%	198.5	-0.23%	298.3	-0.22%	497.7	-0.24%	797.4	-0.21%	1696	-0.19%	
Reference device is	a NIST ca	rtified digital th	ermocounle	calibrator													

Reference device is a NIST certified digital thermocouple calibrator

Variation expressed as a percentage of the absolute temperature must be within 1.5 %

Calibration Certificate

 Date:
 02-Aug-21
 Insrtument Calibrated:
 Testo 1 (330-2LL)

 Calibrated by:
 Louis Agassiz
 Serial #:
 03101345

 Authorizing Signature:
 Customer:
 ALA

Ambient Conditions: Temperature: 25 °C Barometric Pressure: 101.42 kPa Relative Humidity: 62%

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months.

O_2		Initial Evaluation	on						
Gas	Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (vol %)	% Calibration Error	Pass/Fail	Notes	Certified Value (vol %)
Zero O_2 Ambient	0.6 11.5 20.9	0.60 0.50 0.05	Pass Pass Pass		0.3 11.5 21.0	0.30 0.50 0.05	Pass Pass Pass		0 11.00 20.95

Performance Specification: +/- 1% O₂ (absolute diff)

СО			After Calibration						
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero	0	0.0%	Pass		0	0.0%	Pass		0
1 Gas	500	6.0%	Fail	Recalibrated w	472	0.1%	Pass		472
2 Gas	1785	6.4%	Fail	2, 3, and 4	1910	0.2%	Pass		1907
3 Gas	1000	0.5%	Pass	gas	995	0.0%	Pass		995
4 Gas	267	11.1%	Fail	3	240	0.1%	Pass		240

Performance Specification: +/- 5% of Certified Gas Value

NO		Initial Evaluation	uation After Calibration						
Gas	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Instrument Reading (ppm)	% Calibration Error	Pass/Fail	Notes	Certified Value (ppm)
Zero	0	0.0%	Pass		0	0.0%	Pass		0
1 Gas	452	4.5%	Pass	Recalibrated w	473	0.1%	Pass		473
2 Gas	104	3.6%	Pass	2 and 3 gas	100	0.4%	Pass		100.4
3 Gas	253	0.8%	Pass	ū	255	0.0%	Pass		255
4 Gas	49	7.4%	Fail		46	0.8%	Pass		45.64

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure (PSI)	O ₂ (Vol. %)	CO (ppm)	NO (ppm)
Zero Gas (N ₂)	2735278Y	27-Jul-2020	26-Jul-2025	1000	0	0	0
1 Gas	SG9107852B	6-May-2021	5-May-2024	1780	-	471.5	473.4
2 Gas	XC004912B	10-Jun-2021	11-Jun-2029	1900	-	1907	100.4
3 Gas	DT0017994	10-Mar-2017	10-Mar-2025	300	-	995	255
4 Gas	CC428385	7-Apr-2021	8-Apr-2029	1600	-	240.3	45.64
O ₂ /CO ₂	SX30844	16-Mar-2021	17-Mar-2029	1400	11.00	-	-

Note: National Institute of Standards and Technology traceable certificates are available upon request.

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Doclaration

<u> </u>	Deciaration	
1 Carter Lanfranco	as a member of _Air and Waste Management Association	
declare		
Select one of the following:		
Absence from conflict of interest		
Other than the standard fee I will receive	re for my professional services, I have no financial or	
other interest in the outcome of this P	oroject . I further declare that should a	
conflict of interest arise in the future during the course of this work, I will fully disclose the		
circumstances in writing and without de Mr. Sajid Barlas	elay to, erring on the side of caution.	

Real or perceived conflict of interest
Description and nature of conflict(s):
I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.
In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:
Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.
onflict of interest disclosure statement is collected under section 26(c) of the Freedom of nation and Protection of Privacy Act for the purposes of increasing government

This of . Info transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name: Conter

Witnessed by:

Mark Lanfranco Print name:

Date: Dec. 16, 2020

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration I Daryl Sampson , as a member of Air and Waste Management Association declare Select one of the following: Absence from conflict of interest Other than the standard fee I will receive for my professional services, I have no financial or other interest in the outcome of this project . I further declare that should a conflict of interest arise in the future during the course of this work, I will fully disclose the circumstances in writing and without delay to Mr. Sajid Barlas , erring on the side of caution.

\square Real or perceived conflict of interest	i.		
Description and nature of conflict(s)	Description and nature of conflict(s):		
I will maintain my objectivity, condu and standards of practice.	cting my work in accordance with my Code of Ethics		
In addition, I will take the following shave disclosed, to ensure the public	steps to mitigate the real or perceived conflict(s) I interest remains paramount:		
•	closure may be interpreted as a threat to my d by the statutory decision maker accordingly.		
Information and Protection of Privacy Act transparency and ensuring professional et statement you consent to its publication a valid from the date submitted and cannot	ent is collected under section 26(c) of the <i>Freedom of</i> for the purposes of increasing government thics and accountability. By signing and submitting this and its disclosure outside of Canada. This consent is be revoked. If you have any questions about the nal information please contact the Ministry of y Headquarters Office at 1-800-663-7867.		
Signature:	Witnessed by:		
X Daryl Sampson	Mark Lanfranco		
Print name: Daryl Sampson	Print name:		
Date: Dec.18, 2020			

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

\square Real or perceived conflict of interest	
Description and nature of conflict(s):	
I will maintain my objectivity, conducting and standards of practice.	my work in accordance with my Code of Ethics
In addition, I will take the following steps have disclosed, to ensure the public interest	to mitigate the real or perceived conflict(s) I est remains paramount:
Further, I acknowledge that this disclosure	e may be interpreted as a threat to my
independence and will be considered by the	he statutory decision maker accordingly.
This conflict of interest disclosure statement is of Information and Protection of Privacy Act for the	e purposes of increasing government
transparency and ensuring professional ethics a statement you consent to its publication and its valid from the date submitted and cannot be re-	
collection, use or disclosure of your personal inf	• • • • • • • • • • • • • • • • • • • •
Environment and Climate Change Strategy Head	quarters Office at 1-800-663-7867.
Signature:	Witnessed by;
x P	x
Print name: Mark Lanfranco	Print name: Carter LanGanco
Date: Dec.16, 2020	

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional Carter Lankon
	Title Chief operations officer (au
2.	Are you a registered member of a professional association in B.C.?
	Name of Association:Registration #
3.	Brief description of professional services:
pro pu ca pe	ofessional ethics and accountability. By signing and submitting this statement you consent to its blication and its disclosure outside of Canada. This consent is valid from the date submitted and mnot be revoked. If you have any questions about the collection, use or disclosure of your resonal information please contact the Ministry of Environment and Climate Change Strategy adquarters Office at 1-800-663-7867.
	<u>Declaration</u>
	m a qualified professional with the knowledge, skills and experience to provide expert formation, advice and/or recommendations in relation to the specific work described above.
X	witnessed by: x Must faithful
	int Name: <u>Carter Lastrance</u> Pribt Name: // Jhalin Harrington
Da	ite signed: Dec. T/2020

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional <u>Daryl S</u>	ampson		
	Title Senior Environmental Technician/Project Manager			
2.	Are you a registered member of a profess	ional association in B.C.? ☐ Yes ☒ No		
	Name of Association:	Registration #		
3.	3. Brief description of professional services:			
	Environmental consulting, specializing in a	ir and atmospheric sciences		
This declaration of competency is collected under section 26(c) of the <i>Freedom of Information and Protection of Privacy Act</i> for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.				
	<u>D</u> (<u>eclaration</u>		
I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.				
Sig	nature:	Witnessed by:		
<u>x 2</u>	Daryl Sampson	x Zen Com		
Pri	Daryl Sampson nt Name: <u>Daryl Sampson</u>	Print Name: Louis Agassiz		
Da	te signed: November 23, 2020			

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional	Mark Lanfranco			
	Title	President Owner			
2.	Are you a registered member of a	professional association in B.C.?	☐ Yes ☒ No		
	Name of Association:	Registration #			
3.	B. Brief description of professional services: Environmental consulting, specializing in air and atmospheric sciences				
Pro pro pul car per	otection of Privacy Act for the purpo ofessional ethics and accountability. olication and its disclosure outside connot be revoked. If you have any qu	cted under section 26(c) of the Freedonses of increasing government transparates by signing and submitting this statement Canada. This consent is valid from the estions about the collection, use or displaying the matter of Environment and Climates.	rency and ensuring ent you consent to its ne date submitted and sclosure of your		
		<u>Declaration</u>			
		nowledge, skills and experience to prodations in relation to the specific work	-		
Sigi	nature:	Witnessed by:			
<u>x~</u>		x max			
Prir	nt Name: Mark Lanfranco	Print Name: Melis	ssa Watking		
Dat	re signed: Nov.16, 2020				

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{}f 1}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

MOUNT ROYAL COLLEGE

Faculty of Continuing Education and Extension

Carter Lanfranco

has successfully completed

Stack Sampling

May 2009

Date

Door

Faculty of Continuing Education and Extension

Faculty of Continuing Education and Extension

Daryl Sampson

has successfully completed

The program of studies and is awarded the certificate in

STACK SAMPLING

May 2005

Date

Dear

Faculty of Continuing Education and Protection