

Annual Trace Organics Emission Report
Waste-to-Energy Facility

August 2018 Survey
Operational Certificate 107051

CERTIFICATION

The field monitoring for this survey was conducted by certified stack test technicians as required by the British Columbia Ministry of Environment (BC MOE) Field Sampling Manual.

The field crew consisted of:

Mr. S. Harrington (certified), and Mr. Jeremy Gibbs.

The report was prepared by Mr. M. Lanfranco using reporting principles and guidelines generally acceptable to Metro Vancouver (MV).

The field crew and A. Lanfranco and Associates Inc. certify that the test methods used were BC MOE/MV approved reference methods for the parameters investigated.

Mark Lanfranco, CS' President | Owner

Table of Contents

TEST PROGRAM ORGANIZATION	
SUMMARY	2
1.0 INTRODUCTION	3
2.0 METHODOLOGY	3
2.1 Sampling and Analytical Methods	4
2.2 Calculations	10
2.2.1 Contaminant Concentration Calculations	10
2.2.2 Isokinetic Variation Calculations	12
2.2.3 Volumetric Flowrate Calculations	14
2.3 Quality Assurance/Quality Control (QA/QC) Techniques	14
3.0 TEST RESULTS	15
4.0 DISCUSSION	20

APPENDICES

Appendix 1 - Analytical Data

Appendix 2 - QA/QC Results

Appendix 3 - Computer Outputs of Measured and Calculated Data

Appendix 4 - Field Data Sheets

Appendix 5 - Calibration Data and Certification

TEST PROGRAM ORGANIZATION

Primary Stakeholders: Brent Kirkpatrick and Sarah Wellman

Metro Vancouver – Solid Waste Services Metrotower III - 4730 Kingsway

Burnaby, B.C. Canada

 $Email: brent.kirk patrick @\,metrovan couver.org$

Email: sarah.wellman@metrovancouver.org

Facility Coordinator: Stephen McKinney

Facility Manager

Covanta Burnaby Renewable Energy ULC

5150 Riverbend Drive

Burnaby, BC Canada V3N 4V3 Email: smckinney@covanta.com

Project Manager/Sampling

Contractor:

Mr. Mark L.A. Lanfranco President and Owner

A. Lanfranco and Associates Inc.

101 - 9488 189 St

Surrey, BC Canada V4N 4W7

Tel: (604) 881-2582

Email: mark.lanfranco@alanfranco.com

Sampling Crew:

Mr. M. Lanfranco – A. Lanfranco and Associates Inc.

Mr. C. Lanfranco – A. Lanfranco and Associates Inc.

Mr. S. Harrington – A. Lanfranco and Associates Inc.

Mr. M. Harrington – A. Lanfranco and Associates Inc.

Mr. S. Ferguson – A. Lanfranco and Associates Inc.

Mr. M. Goods – A. Lanfranco and Associates Inc.

SUMMARY

The following tables present the average of triplicate test results on Unit 1 for various trace organics on August 22-24, 2018. Additional emission parameters were measured by the facilities certified continuous emission monitoring system.

Parameter		Unit 1	Limit
PCDD/PCDF PCDD/PCDF Mass Emission	(TEQ ng/Sm ³ @ 11% O ₂) (TEQ g/day)	0.0013 2.61E-06	0.08
	, 10		
PAH	$(ug/Sm^3 @ 11\% O_2)$	0.0291	5.0
HCB	$(ug/Sm^3 @ 11\% O_2)$	0.0023	
Total CB	$(ug/Sm^3 @ 11\% O_2)$	0.3007	1.0
Total CP	$(ug/Sm^3 @ 11\% O_2)$	0.0718	1.0
Total PCB	(ug/Sm ³ @ 11% O ₂)	0.0011	1.0
Flowrate	(Sm ³ /min)	1250	
Temperature	(°C)	154.9	
O_2	(vol % dry)	9.8	

standard conditions of 20 deg C and 101.325 kPa (dry)

Note: PCDD/PCDF results are in <u>nanograms</u> per cubic meter and <u>grams/day</u>, PAH/HCB/CB/CP are reported in <u>micrograms</u> per cubic meter.

1.0 INTRODUCTION

Metro Vancouver (MV) commissioned an emissions monitoring survey at the Waste-to-Energy Facility (WTEF) in Burnaby, B.C. This report documents the results of a semi-volatile organics survey for dioxin/furan (PCDD/PCDF), polychlorinated biphenyl (PCB), polycyclic aromatic hydrocarbons (PAH), hexachlorobenzenes (HCB), chlorobenzenes (CB), and chlorophenols (CP) during normal operations at the facility.

This report includes detailed emission results, a brief outline of methods employed, equipment used, and a discussion of the survey. Supporting data is presented in the appendices section of this report.

For 2018, the individual source that was monitored is identified as Unit 1.

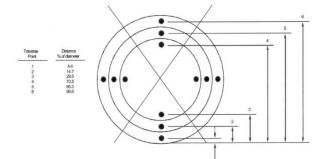
2.0 METHODOLOGY

All services provided by A. Lanfranco and Associates were conducted in accordance with approved reference methods as issued by:

- Metro Vancouver
- BC Ministry of Environment & Climate Change Strategy
- Environment Canada (EC)
- US Environmental Protection Agency (EPA)

2.1 Sampling and Analytical Methods

The following table lists the test methods used for the different parameters measured. The subsequent paragraphs briefly describe each method.


<u>Parameter</u>	Reference Method
Sample and Velocity traverse points	EPS 1/RM/8 A Determination of Sampling Site and Traverse Points
Velocity and flowrate	EPS 1/RM/8 B Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)
Gas molecular weight (O ₂ /CO ₂)	EPS 1/RM/8 C Determination of Molecular Weight by Gas Analysis
Flue gas Moisture	EPS 1/RM/8 D Determination of Moisture Content
Dioxin/Furan (sampling)	EPS 1/RM/2 Reference Method for Source Testing - Measurement of Releases of Semi-Volatile Organic Compounds from Stationary Sources
	EPA Method 23 Determination of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans from Stationary Sources supporting
Dioxin/Furan (analytical)	Methodology for Organic Analysis - A Method for the Analysis of
	Polychlorinated Dibenzopara-Dioxins (PCDD's), Polychlorinated
	Dibenzofurans (PCDF's) Environment Canada, December 1989

Primary:

Supporting:

Sampling Site and Traverse Points

This method is designed to aid in the representative measurement of pollutant emissions and/or total volumetric flow rate from a stationary source. A measurement site where the effluent stream is flowing in a known direction is selected, and the cross-section of the stack is divided into a number of equal areas. Traverse points are then located within each of these equal areas.

EPS 1/RM/8 Method A

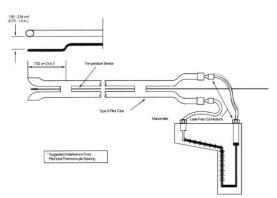

EPA Method 1

Figure 1. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points.

<u>Stack Gas Velocity</u> Primary: EPS 1/RM/8 Method B <u>and Volumetric Flow Rate</u> Supporting: EPA Method 2

The average gas velocity in a stack or duct is determined from the gas density and from the measurement of velocity pressure with an S-type pitot tube. A standard pitot tube may be used where plugging of the tube openings due to particulate matter and/or moisture is not likely to occur. Stack gas volumetric flow rate is determined from measurements of stack gas velocity, temperature, absolute pressure, dry gas composition, moisture content, and stack diameter.

Figure 2. Type S Pitot Tube Manometer Assembly

Molecular Weight by Gas Analysis Primary: EPS 1/RM/8 Method C

Supporting: EPA Method 3

An integrated or grab sample is extracted from a single point in the gas stream and analyzed for its components using a Fyrite analyzer, a gas chromatograph, or calibrated continuous analyzers.

Moisture Content Primary: EPS 1/RM/8 Method D

Supporting: EPA Method 4

A gas sample is extracted from a single point in the enclosed gas stream being sampled. The moisture is condensed and its weight measured. This weight, together with the volume of gas sampled, enables the stack gas moisture content to be calculated.

<u>Dioxins / Furans</u> Primary: EPS 1/RM/2, 1/RM/3, 1/RM/23

Supporting: EPA Method 23

This method is applicable to the determination of emissions of polychlorinated dibenzo-paradioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and other semi-volatile organic compounds from stationary sources. An integrated gas sample is isokinetically withdrawn from the stack similar to Method 5. Semi-volatile organic compounds associated with particulate matter are collected in the front half components with remaining compounds not collected by the filter, being absorbed in an Amberlite XAD-2 resin trap.

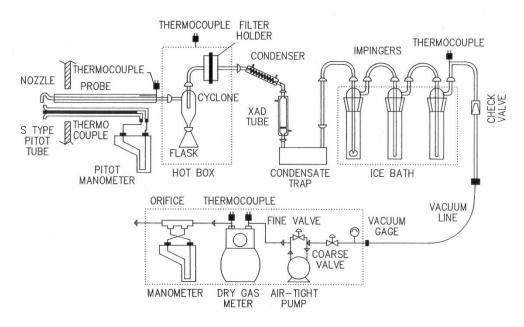
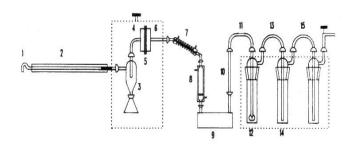


Figure 3 - Dioxin / Furan Sampling Train



Due to the sensitivity of this test method, extra care and precautions are used. All sample trains were cleaned professionally at an accredited laboratory. A solvent proof of the glassware and XAD was archived as suggested by the method.

The train was operated for duration of 240 minutes. Upon completion, it was removed to a clean area for recovery. The recovered sample consists of 6 individual components:

•	Filter Rinses	•	Front Half Rinses
•	XAD Trap	•	Soak
•	Impingers	•	Final Rinse

Complete sampling and recovery procedures can be supplied upon request.

Container or Sample	Component(s)	Recovery Procedure
1	1, 2, 3, 4	Wash and brush 3 times each with hexane (H) and acetone (A). Rinse 3 times each with H and A.
2	5	Remove carefully from holder. Place on pre- cleaned foil. Fold in half. Place in pre-cleaned glass petri dish.
3	6, 7	Soak 5 minutes each with H and A. Rinse 3 times each with H and A.
4	8	Cap ends and wrap in foil.
5	9, 12	Empty contents into container and rinse each 3 times with HPLC water.
6	6 to 15 except 8	Rinse 3 times each with H and A.

Mark liquid levels on all bottles.

All sample containers are pre-cleaned amber glass bottles with pre-cleaned Teflon lid

Figure 4 Recovery Procedures for Semi-Volatile Organics

Samples are analyzed on a high-resolution GS/MS at Pacific Rim Laboratories Inc. of Surrey, BC. Following is a description, in very simplified terms, of the basic procedures used to process the sample train and blank train components.

Initially the sample components are separated into liquid (containers 1, 4, 5 and 6) or solid phases (containers 2 and 3) and surrogate compounds (for recovery calculations) are injected into the solid phases of the front and back half samples. Liquid and solid samples are extracted with various solvents (usually benzene), sometimes under acid conditions. Figure 5 and Figure 6 demonstrate the step by step procedures used to extract the components of interest into a solvent phase which is ready for detailed splitting and clean-up. The concentrated extracts from Figure 5 are combined and are processed per procedures detailed in Figure 6.

When each target group has been isolated, as indicated in Figure 4, the extract volumes are dried, concentrated, and analysed by GC/MS analytical instrumentation. Prior to actual analysis, all samples were spiked with a performance standard for laboratory QA/QC purposes.

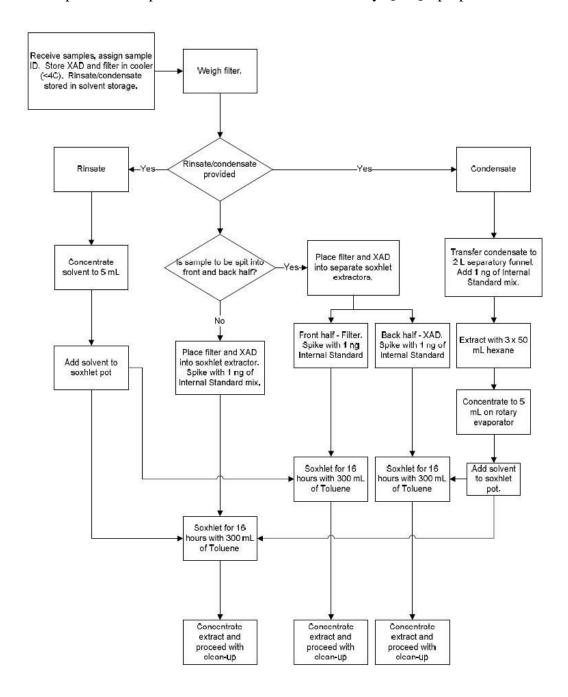


Figure 5 - Semi-Volatile Organics XAD and Filter Recovery Schematic

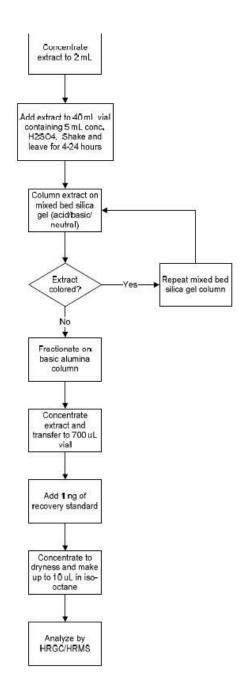


Figure 6 - Schematic of analytical methodology for dioxins and furans

2.2 Calculations

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-11 were used to calculate particulate concentration at standard conditions on a dry basis. Equations 12-26 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 27-29 were used to calculate the volumetric flowrate of the stack flue gas.

2.2.1 Contaminant Concentration Calculations

$$c = \frac{m}{V_{std}}$$
 Equation 1
$$m_{part} = m_{filter} + m_{pw}$$
 Equation 2
$$m_i = m_{ana,i} - m_{blank}$$
 Equation 3
$$m_{HF} = \frac{20.006}{18.998} (m_F - m_{blank})/1000$$
 Equation 4
$$V_{std} = \frac{V_{std(imp)}}{35.315}$$
 Equation 5
$$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$$
 Equation 6
$$V_{samp} = V_{final} - V_{init}$$
 Equation 7
$$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$$
 Equation 8
$$\Delta H_{ave} = \frac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}, \text{ where } n = \text{the number of points}$$
 Equation 9
$$OC = \frac{20.9 - \%O_{2c}}{20.9 - \%O_{2m}}$$
 Equation 10
$$\%O_{2m} = \frac{1}{n} \sum_{i=1}^{n} \%O_{2i}, \text{ where } n = \text{the number of } O_2 \text{ measurements}$$
 Equation 11

Where,

c = Contaminant concentration

m = Contaminant mass

 m_i = Net analytical mass (mg, ng, or μ g) $m_{ana,i}$ = Analytical mass (mg, ng, or μ g)

 m_{blank} = Blank analytical mass (mg, ng, or μ g)

 $V_{std(imp)}$ = Sample volume at standard conditions (ft³) V_{std} = Sample volume at standard conditions (m³) V_{samp} = Sample volume at actual conditions (ft³)

 V_{final} = Final gas meter reading (ft³) V_{init} = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) T_m = Gas meter temperature (°F)

 $T_{m(ave)}$ = Average gas meter temperature (°F) P_m = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg)

 ΔH_{ave} = Average of individual point orifice pressures (inches of H_2O) $\Delta H_{i(act)}$ = Individual recorded point orifice pressures (inches of H_2O)

OC = Oxygen correction factor (dimensionless)

 $\%O_{2c}$ = Oxygen concentration to correct to (% dry basis)

 $\%O_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant.

The dioxins/furans and other semi-volatile organic compounds were treated slightly different. The blank results for all trace organic species are used as a Quality Assurance check and are not used to correct the analytic results. Also, according to the terms of the service agreement, individual trace organic species were reported as "non-detect" (ND) if all three tests for that species are below the detection limit. If one (or more) of the triplicate samples has a reportable value, the corresponding ND samples from the other test runs were reported at half the detection limit. For calculating of summarized results (PCDD& PCDF TEQ, Total PAHs, Total Chlorobenzenes, Total Chlorophenols, and Total PCBs) the substitution of half DL for each individual species, as detailed above, was performed prior to calculating the sums.

All results are reported in the units outlined in the service agreement. The following unit conversions were used throughout:

1 mg =
$$10^{-3}$$
 g
1 µg = 10^{-6} g
1 ng = 10^{-9} g
1 tonne = 10^{6} g

Oxygen corrections were applied by multiplying the result of Equation 1 by the result of Equation 10 for each individual result.

2.2.2 Isokinetic Variation Calculations

$$\Delta H_i = \frac{2.62 \times 10^7 \times c_p \times A_n \times (1 - B_{wo}) \times M_D \times (T_m + 459.67) \times \Delta p_i}{k_o \times M_w \times (T_{Stk} + 459.67)} \qquad \text{Equation 12}$$

$$R_m = 85.49 \times c_p \times \sqrt{\Delta p_i} \times \sqrt{\frac{(T_{stk_i} + 459.67)}{M_w \times P_B}} \times 60 \times A_n \times \frac{(T_{m_i} + 459.67) \times (1 - B_{wo})}{(T_{stk_i} + 459.67) \times y} \qquad \text{Equation 13}$$

$$A_n = \pi \left(\frac{d_n}{24}\right)^2 \qquad \qquad \text{Equation 14}$$

$$M_w = M_D \times (1 - B_{wo}) + 18 \times B_{wo} \qquad \qquad \text{Equation 15}$$

$$M_D = 0.44 \times \% CO_2 + 0.32 \times \% O_2 + 0.28 \times (100 - \% CO_2 - \% O_2) \qquad \qquad \text{Equation 16}$$

$$T_{Stk} = \frac{1}{n} \sum_{i=1}^{n} T_{Stk_i}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation 17}$$

$$V_{cond} = 0.04707 \times V_{gain} \qquad \qquad \text{Equation 19}$$

$$Iso = \frac{1}{n} \sum_{i=1}^{n} Iso_i, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation 20}$$

$$Iso_i = \frac{v_{nzi}}{v_{i}} \qquad \qquad \text{Equation 21}$$

Equation 22

$$v_i = 85.49 \times c_p \times \sqrt{\Delta p_i} \times \sqrt{\frac{\left(T_{Stk_i} + 459.67\right)}{\left(P_{Stk} \times M_W\right)}}$$

$$v_{nzi} = \frac{(V_i - V_{i-1}) \times y \times (T_{Stk_i} + 459.67) \times (P_B + \frac{\Delta H_{i(act)}}{13.6})}{A_n \times t_i \times 60 \times (T_{m(i)} + 459.67) \times P_{stk} \times (1 - B_{wo})}$$
 Equation 23

$$P_{stk} = P_B + \frac{P_g}{13.6}$$
 Equation 24

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
 , where $n = the \ number \ of \ points$

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
, where $n =$ the number of points

Where,

 $A_n = Nozzle area (ft^2)$

 d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H_2O)

 P_g = Stack Static pressure (inches of H₂O) P_{stk} = Absolute stack pressure (inches of Hg) M_W = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

%CO₂ = Stack gas carbon dioxide concentration (% dry basis)

 $\%O_2$ = Stack gas oxygen concentration (% dry basis) B_{wo} = Stack gas water vapour, proportion by volume

 V_{cond} = Total volume of water vapor collected, corrected to standard conditions

 (ft^3)

 V_{gain} = Condensate gain of impinger contents (mL) P_{std} = Standard pressure (29.92 inches of Hg)

 v_{stk} = Average flue gas velocity (ft/sec)

 v_i = Individual point flue gas velocity (ft/sec)

 v_{nz} = Average velocity at nozzle(ft/sec)

 v_{nzi} = Individual point velocity at nozzle(ft/sec)

 $Iso_i = Individual point isokinetic variation (%)$

Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (ft^3 /min)

2.2.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$
 Equation 27
$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
 Equation 28
$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
 Equation 29

Where,

 $Q_A = Actual flowrate (Am^3/min)$

 $Qs = Flowrate (m^3/min)$ at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)

d = Diameter of stack (inches)

2.3 Quality Assurance/Quality Control (QA/QC) Techniques

QA/QC of this survey was accomplished by the following mechanisms.

- 1. Pre and Post-test leak checks.
- 2. Calibration of volume measuring and monitoring instrumentation.
- 3. Proofing of organic glassware and supplies.
- 4. Analysis of all blank solutions and materials.
- 5. Surrogate spiking of XAD using EPA protocols
- 6. Internal standard spiking and recovery analysis of organic trains to Env. Canada specs
- 7. Blank train sampling of leak check average volume

3.0 TEST RESULTS

Most of the results of stack emissions were calculated using a "STACK" computer program developed by A. Lanfranco and Associates for BC MOE/MV requirements.

Table 1 presents summarized trace organic results using the Hazardous Waste Regulation TEQ's, as well as additional organic species. Table 2 presents detailed PCDD/PCDF data and Table 3 presents trace organics results as a mass emission (not corrected for O₂). Detailed PAH and additional chlorinated organic species emission concentrations are presented in Table 4 and Appendix 2.

Trace organic results were recovery corrected according to surrogate recovery efficiencies determined for each organic analysis. Surrogates added and the recoveries determined are listed in the analytical data presented in the Appendices.

A stratification check was performed in 2018 and a cyclonic flow check was performed in 2006. Neither condition was present at the Unit 1 sampling location.

TABLE 1: UNIT 1 TRACE ORGANICS RESULTS TABLE

Parameter		Test 1	Test 2	Test 3	Average
Test Date		22-Aug-18	23-Aug-18	24-Aug-18	
Test Time		10:01 - 14:10	09:02 - 13:06	08:37 - 12:40	
Duration	(minutes)	240	240	240	240
PCDD & PCDF TEQ	(ng/Sm^3)	0.0009	0.0026	0.0009	0.0015
PCDD & PCDF TEQ	(ng/Sm ³ @ 11% O ₂)	0.0009	0.0022	0.0008	0.0013
Total PAH	$(\mu g/Sm^3)$	0.0287	0.0524	0.0172	0.0327
Total PAH	$(\mu g/S m^3 @ 11\% O_2)$	0.0262	0.0456	0.0154	0.0291
Total HCB	$(\mu g/Sm^3)$	0.0025	0.0030	0.0023	0.0026
Total HCB	$(\mu g/S m^3 @ 11\% O_2)$	0.0023	0.0026	0.0021	0.0023
Total CB	$(\mu g/Sm^3)$	0.4452	0.2430	0.3163	0.3348
Total CB	$(\mu g/S m^3 @ 11\% O_2)$	0.4070	0.2117	0.2835	0.3007
Total CP	$(\mu g/Sm^3)$	0.0865	0.0964	0.0584	0.0804
Total CP	$(\mu g/S m^3 @ 11\% O_2)$	0.0790	0.0839	0.0524	0.0718
Total PCB	$(\mu g/Sm^3)$	0.0021	0.0014	0.0002	0.0012
Total PCB	$(\mu g/Sm^3 @ 11\% O_2)$	0.0019	0.0012	0.0001	0.0011
Stack Temperature	(°C)	154	157	153	155
Flowrate	(Sm ³ /min)	1262	1227	1261	1250
Oxygen (O ₂)	(vol % dry)	10.1	9.5	9.9	9.8
Carbon Dioxide (CO ₂)	(vol % dry)	10.1	10.3	10.3	10.2
Moisture	(vol%)	14.4	15.4	14.1	14.6
Isokinetic Variation	(%)	102	104	102	103

standard conditions of 20 °C and 101.325 kPa (dry)

TABLE 2 <u>Detailed PCDD/PCDF Emission Results</u>

		Tes	t 1	Tes	t 2	Tes	st 3
Test Date:		22-Au	ıg-18	23-Au	ıg-18	24-A	ug-18
Test Time:		10:01 -	14:10	09:02 -	13:06	08:37	- 12:40
Component	TEF	Analyzed	TEQ	Analyzed	TEQ	Analyzed	TEQ
		(ng)	(ng)	(ng)	(ng)	(ng)	(ng)
2378 TCDD	1.0000	0.0000	ND	0.0000	ND	0.0000	ND
12378 PCDD	0.5000	0.0020	0.0010	0.0100	0.0050	0.0020	0.0010
123478 HxCDD	0.1000	0.0000	ND	0.0000	ND	0.0000	ND
123678 HxCDD	0.1000	0.0020	0.0002	0.0170	0.0017	0.0020	0.0002
123789 HxCDD	0.1000	0.0020	0.0002	0.0020	0.0002	0.0078	0.0008
1234678 HpCDD	0.0100	0.0950	0.0010	0.1300	0.0013	0.0760	0.00076
OCDD	0.0010	0.0075	0.00001	0.2800	0.00028	0.1900	0.00019
2378 TCDF	0.1000	0.0000	ND	0.0000	ND	0.0000	ND
12378 PCDF	0.0500	0.0000	ND	0.0000	ND	0.0000	ND
23478 PCDF	0.5000	0.0000	ND	0.0000	ND	0.0000	ND
123478 HxCDF	0.1000	0.0000	ND	0.0000	ND	0.0000	ND
123678 HxCDF	0.1000	0.0100	0.0010	0.0020	0.0002	0.0020	0.0002
234678 HxCDF	0.1000	0.0020	0.0002	0.0160	0.0016	0.0020	0.0002
123789 HxCDF	0.1000	0.0000	ND	0.0000	ND	0.0000	ND
1234678 HpCDF	0.0100	0.0480	0.00048	0.0540	0.00054	0.0470	0.00047
1234789 HpCDF	0.0100	0.0020	0.0000	0.0150	0.00015	0.0020	0.00002
OCDF	0.0010	0.0075	7.5E-06	0.0430	0.000043	0.0075	7.50E-06
Summed PCDD & PC	DF TEQ (ng)	0.0041		0.0110		0.0038
Sample Volume (dscm)		4.3596		4.2967		4.3628
PCDD & PCDF TEQ	ng/dscm		0.00093		0.00256		0.00088
PCDD & PCDF TEQ	ng/dscm @	11% O ₂	0.00085		0.00223		0.00079
PCDD & PCDF TEQ	grams/day		0.000002		0.000005		0.000002
Flowrate (dscm/min)			1262		1227		1261
Oxygen (Vol. %)			10.1		9.5		9.9
Carbon Dioxide (Vol.	%)		10.1		10.3		10.3
Moisture (Vol. %)			14.4		15.4		14.1
Temperature (oC)			154.2		157.2		153.3
Isokinetic Variation (%	(0)		102.3		103.6		102.4

TABLE 3: UNIT 1 TRACE ORGANICS MASS EMISSIONS RESULTS

Parameter		Test 1	Test 2	Test 3	Average
PCDD & PCDF TEQ	(g/sec)	1.96E-11	5.24E-11	1.84E-11	3.02E-11
PCDD & PCDF TEQ	(tonnes/annum)	6.19E-10	1.65E-09	5.81E-10	9.51E-10
Total PAH	(g/sec)	6.03E-07	1.10E-06	3.62E-07	6.89E-07
Total PAH	(tonnes/annum)	1.90E-05	3.47E-05	1.14E-05	2.17E-05
Total HCB	(g/sec)	5.31E-08	6.36E-08	4.82E-08	5.50E-08
Total HCB	(tonnes/annum)	1.67E-06	2.01E-06	1.52E-06	1.73E-06
Total CB	(g/sec)	9.37E-06	5.11E-06	6.65E-06	7.04E-06
Total CB	(tonnes/annum)	2.95E-04	1.61E-04	2.10E-04	2.22E-04
Total CP	(g/sec)	1.82E-06	2.03E-06	1.23E-06	1.69E-06
Total CP	(tonnes/annum)	5.74E-05	6.39E-05	3.88E-05	5.34E-05
Total PCB	(g/sec)	4.44E-08	2.99E-08	3.38E-09	2.59E-08
Total PCB	(tonnes/annum)	1.40E-06	9.42E-07	1.06E-07	8.16E-07

standard conditions of 20 $^{\circ}\text{C}$ and 101.325 kPa (dry)

 TABLE 4
 Detailed PCB/PAH/CB/CP Emission Results

		Test 1	Test 2	Test 3
Test Date:		22-Aug-18	23-Aug-18	24-Aug-18
Test Time:		10:01 - 14:10	09:02 - 13:06	08:37 - 12:40
Component		Analyzed	Analyzed	Analyzed
		(ug)	(ug)	(ug)
Benz(a)anth	racene	ND	ND	ND
Benzo(a)pyr		ND	ND	ND
Benzo(b,j) fl		ND	ND	ND
Benzo(e)pyr		0.005	0.005	0.010
Benzo(g,h,i)		ND	ND	ND
Benzo(k)fluc		ND	ND	ND
Chrysene		ND	ND	ND
Dibenz(a,j)ad	cridine	ND	ND	ND
Dibenz(a,h)a		ND	ND	ND
Dibenz(a,h)a	nthracene	ND	ND	ND
Dibenzo(a,i)	pyrene	ND	ND	ND
Fluoranthen		0.010	0.050	0.005
Indeno(1,2,3	-c,d)pyrene	ND	ND	ND
Phenanthren	ne	0.080	0.100	0.040
Pyrene		0.020	0.050	0.010
7H-dibenzo(c,g)carbazole	ND	ND	ND
Acenaphthe	ne	ND	ND	ND
Acenaphthy	lene	ND	ND	ND
Fluorene		0.010	0.020	0.010
Dibenzo(a,e)	fluoranthene	ND	ND	ND
3-Methylcho	olanthrene	ND	ND	ND
5-Methylchi	rysene	ND	ND	ND
7,12-Dimeth	nylbenz(a)anthracene	ND	ND	ND
Dibenzo(a,h))pyrene	ND	ND	ND
Dibenzo(a,e))pyrene	ND	ND	ND
Dibenzo(a,l)	pyrene	ND	ND	ND
Quinoline		ND	ND	ND
Total CP		0.3770	0.4140	0.2550
Total CB		1.9410	1.0440	1.3800
НСВ		0.0110	0.0130	0.0100
* ND = Less	than detection limit			
PCB Total (ng)	9.200	6.100	0.700
Total PAH (0,	0.125	0.225	0.075
Sample Volu	ume (dscm)	4.36	4.30	4.36
Oxygen		10.1	9.5	9.9
РАН	ug/dscm	0.0287	0.0524	0.0172
НСВ	ug/dscm	0.0025	0.0030	0.0023
CB Total	ug/dscm	0.4452	0.2430	0.3163
CP Total	ug/dscm	0.0865	0.0964	0.0584
PCB Total	ug/dscm	0.0021	0.0014	0.0002
РАН	ug/dscm @ 11% O ₂	0.0262	0.0456	0.0154
НСВ	ug/dscm @ 11% O ₂	0.0023	0.0026	0.0021
	-			
CB Total	ug/dscm @ 11% O ₂	0.4070	0.2117	0.2835
CP Total	ug/dscm @ 11% O ₂	0.0790	0.0839	0.0524
PCB Total	ug/dscm @ 11% O2	0.0019	0.0012	0.0001

4.0 DISCUSSION

The emissions monitoring for this survey was preformed during normal processing of municipal solid waste at the Waste-to-Energy facility. Three sample runs for each test parameter were conducted over three days to determine final results.

Results from this survey indicate that emissions are below the operational certificate limits for each pollutant.

Trace organics results are similar to data from 2016 and 2017; however, there was a notable decrease in PAH for 2018 and a notable increase in total CP.

Dioxin/Furan results are expressed using the International Toxic Equivalents (I-TEQ). In this report, individual species that were measured below detection limits were reported as zero or "non-detect" as long as there was no detection in any of the three test runs.

In the blank sample, no dioxin/furan congeners were detected, and minimal congeners were detected at levels only very slightly above the detection limit for PCB, PAH, CB and CP. In other words, the blank and the majority of all samples were below normal detection limits.

The QA/QC program showed very low or non-detectable levels of target contaminants in the blank sample, which used the same solid sorbent resin and clean-up solvents as those used for samples. Additionally, the proof analysis of the glassware and XAD (prior recent blanks) showed no significant PCDD/PCDF.

For all tests and the blank test, internal standard recoveries ranged from 40 to 120%.

EPA Method 23 surrogate recoveries ranged from 70 to 123% for each sample. The recovery QA/QC data is expected to meet EPA performance specifications (M23) of 70 to 130% for pre-

test spiked surrogates. The M23 spiking protocol is not required in Canada and is included in the sampling/analytical protocol for additional QA/QC and information purposes only.

There were no problems associated with sample collection or analysis. Sampling was conducted in accordance with the respective reference methods and passed all appropriate quality assurance and quality control criteria. It is therefore stated that these results are reported with a high degree of confidence and are an accurate representation of emission characteristics for the operating conditions maintained on the test dates.

APPENDIX 1 ANALYTICAL DATA

SAMPLE RECEIPT FORM / CHEMICAL ANALYSIS FORM

FILE #: PR182302

CLIENT:

A. Lanfranco & Associates Unit 101 9488 - 189 St.

Surrey, BC V4N 4W7

Phone: (604) 881-2582

Email: mark.lanfranco@alanfranco.com

RECEIVED BY: C. Hsieh

DATE/TIME:

August 24, 2018 (3:30 p.m.)

CONDITION: Okay, 8.5°C

# of Containers	Sample Type	Sample (Client Codes)	Lab Codes	Test Requested
5	XAD, filter, rinses	Blank Dioxin	PR182302	PCDD/F, PCB, PAH/HCB, CB, CP
5	XAD, filter, rinses	Run-1 – Dioxin	PR182303	PCDD/F, PCB, PAH/HCB, CB, CP
5	XAD, filter, rinses	Run-2 – Dioxin	PR182304	PCDD/F, PCB, PAH/HCB, CB, CP
5	XAD, filter, rinses	Run-3 – Dioxin	PR182305	PCDD/F, PCB, PAH/HCB, CB, CP

STORAGE:

XAD and filter stored at 4°C, rinses stored at ambient temperature.

ANALYTES:

HRGC/HRMS analysis for polychlorinated dibenzo(p)dioxins and dibenzofurans (PCDD/F),

polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH).

SPECIAL INSTRUCTIONS: none

METHODOLOGY

Reference Method:

PCDD/F: SOP LAB01; EPA Method 23, Environment Canada 1-RM-3

PCB: SOP LAB02F; EPA Method 1668C PAH/CB/CP: SOP LAB03; in house

Data summarized in Data Report Attached

Report sent to:

Mark Lanfranco

Date:

September 18, 2018

Comments:

Results relate only to items tested.

Digitally signed by Patrick

Pond

DN: cn=Patrick Pond,

o=Pacific Rim

Laboratories Inc.,

ou=CTO.

email=Pat@pacificrimlabs.

com, c=CA

Date: 2018.09.18 15:13:26

-07'00'

Patrick Pond, CTO

Client: Client ID: PRL ID: Lanfranco & Associates

Run-1 – Dioxin PR182303 Sample Date: Date Extracted: Date Analysed: Filter Wt.: 22-Aug-18 28-Aug-18 13-Sep-18 0.33 g

DIOXINS			
	ļ	DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDD	ND	2	
Total TCDD	ND	2	0
1,2,3,7,8-PeCDD	ND	4	
Total PeCDD	ND	4	0
1,2,3,4,7,8-HxCDD	ND	4	
1,2,3,6,7,8-HxCDD	ND	4	
1,2,3,7,8,9-HxCDD	ND	4	
Total HxCDD	170	4	1
1,2,3,4,6,7,8-HpCDD	95	4	
Total HpCDD	210	4	2
OCDD	ND	15	0
0000			oxin TEC

	I-TEQs				
(ND=0)	(ND=1/2DL)	(ND=DL)			
pg	pg	pg 2			
ND	1	2			
ND	1	2			
IND					
ND	0.2	0.4			
ND	0.2	0.4			
ND	0.2	0.4			
		~ ~ ~			
0.95	0.95	0.95			
ND	0.0075	0.015			
1.0	3.6	6.2			

FURANS			
	1	DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDF	ND	2	
Total TCDF	ND	2	0
1,2,3,7,8-PeCDF	ND	4	
2,3,4,7,8-PeCDF	ND	4	
Total PeCDF	ND	4	0
1,2,3,4,7,8-HxCDF	ND	4	
1,2,3,6,7,8-HxCDF	10	4	
1,2,3,7,8,9-HxCDF	ND	4	
2,3,4,6,7,8-HxCDF	ND	4	
Total HxCDF	95	4	2
1,2,3,4,6,7,8-HpCDF	48	4	
1,2,3,4,7,8,9-HpCDF	ND	4	
Total HpCDF	57	4	2
OCDF	ND	15	0
		Total F	uran TEQ

I-TEQs			
(ND=0)	(ND=1/2DL)	(ND=DL)	
pg	pg	pg	
ND	0.1	pg 0.2	
ND	0.1	0.2	
ND	1	2	
ND	0.2	0.4	
1	1	11	
ND	0.2	0.4	
ND	0.2	0.4	
0.48	0.48	0.48	
ND	0.02	0.04	

ND	0.0075	0.015	
1.5	3.3	5.1	

Total	PCDD/PCDF	Toxic Eq	uivalent (pg)

2.4	6.9	11.3

Surrogate Recoveries (%) ³⁷Cl₄ -2,3,7,8-TCDD

³⁷Cl₄ -2,3,7,8-TCDD 100 ¹³C₁₂ -2,3,4,7,8-PeCDF 103 ¹³C₁₂ -1,2,3,4,7,8-HxCDD 75 ¹³C₁₂ -1,2,3,4,7,8-HxCDF 97

¹³C₁₂ -1,2,3,4,7,8,9-HpCDF 89

Internal Standards (%)	
¹³ C ₁₂ -2,3,7,8-TCDD	47
¹³ C ₁₂ -1,2,3,7,8-PeCDD	5 5
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	73
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	80
¹³ C ₁₂ -OCDD	100
¹³ C ₁₂ -2,3,7,8-TCDF	41
¹³ C ₁₂ -1,2,3,7,8-PeCDF	53
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	72
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	77

Client: Client ID: PRL ID:

Lanfranco & Associates Run-2 – Dioxin

PR182304

Sample Date: Date Extracted: Date Analysed: Filter Wt.:

23-Aug-18 28-Aug-18 13-Sep-18 0.33 g

		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDD	ND	2	
Total TCDD	15	2	1
1,2,3,7,8-PeCDD	10	4	
Total PeCDD	62	4	2
1,2,3,4,7,8-HxCDD	ND	4	
1,2,3,6,7,8-HxCDD	17	4	
1,2,3,7,8,9-HxCDD	ND	4	
Total HxCDD	280	4	2
1,2,3,4,6,7,8-HpCDD	130	4	
Total HpCDD	250	4	2
OCDD	280	15	1
		Total Di	oxin TEQ

(115.0)	I-TEQs	(ND-D1)
(ND=0)	(ND=½DL)	(ND=DL)
pg	pg	pg 2
ND	1	2
5	5	5
ND	0.2	0.4
1.7	1.7	1.7
ND	0.2	0.4
1.3	1.3	1.3
0.28	0.28	0.28
8.3	9.7	11.1

		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDF	ND	2	
Total TCDF	ND	2	0
1,2,3,7,8-PeCDF	ND	4	
2,3,4,7,8-PeCDF	ND	4	
Total PeCDF	ND	4	0
1,2,3,4,7,8-HxCDF	ND	4	
1,2,3,6,7,8-HxCDF	ND	4	
1,2,3,7,8,9-HxCDF	ND	4	
2,3,4,6,7,8-HxCDF	16	4	
Total HxCDF	41	4	3
1,2,3,4,6,7,8-HpCDF	54	4	
1,2,3,4,7,8,9-HpCDF	15	4	
Total HpCDF	83	4	2
OCDF	43	15	1
		Total F	uran TEQ

I-TEQs			
(ND=0)	(ND=1/2DL)	(ND=DL)	
pg	pg	pg	
ND	0.1	0.2	
ND	0.1	0.2	
ND	1	2	
ND	0.2	0.4	
ND	0.2	0.4	
ND	0.2	0.4	
1.6	1.6	1.6	

0.54	0.54	0.54	
0.15	0.15	0.15	
0.043	0.043	0.043	
2.3	4.1	5.9	

Toyic Equivalent (na)

10.6	13.8	17.0

Surrogate Necoveries (70)	
³⁷ Cl ₄ -2,3,7,8-TCDD	98
¹³ C ₁₂ -2,3,4,7,8-PeCDF	111
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	79

Surrogate Pacayariae (%)

79 ¹³C₁₂ -1,2,3,4,7,8-HxCDF 94

¹³C₁₂ -1,2,3,4,7,8,9-HpCDF

Internal Standards (%)	
¹³ C ₁₂ -2,3,7,8-TCDD	47
¹³ C ₁₂ -1,2,3,7,8-PeCDD	54
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	68
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	67
¹³ C ₁₂ -OCDD	63
¹³ C ₁₂ -2,3,7,8-TCDF	41
¹³ C ₁₂ -1,2,3,7,8-PeCDF	51
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	66
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	53

Client: Client ID: PRL ID:

Lanfranco & Associates

Run-3 – Dioxin PR182303

Sample Date: **Date Extracted:** Date Analysed: Filter Wt.:

24-Aug-18 28-Aug-18 13-Sep-18 0.32 g

		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDD	ND	2	
Total TCDD	ND	2	0
1,2,3,7,8-PeCDD	ND	4	
Total PeCDD	68	4	2
1,2,3,4,7,8-HxCDD	ND	4	
1,2,3,6,7,8-HxCDD	ND	4	
1,2,3,7,8,9-HxCDD	7.8	4	
Total HxCDD	120	4	2
1,2,3,4,6,7,8-HpCDD	76	4	
Total HpCDD	160	4	2
OCDD	190	15	1
-		Total D	oxin TEC

(ND=0) pg	I-TEQs (ND=½DL) pg	(ND=DL) pg
ND	1	2

ND	1	2
ND	0.2	0.4
ND	0.2	0.4
0.78	0.78	0.78
0.76	0.76	0.76
		0.40
0.19	0.19	0.19
1.7	4.1	6.5

		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDF	ND	2	
Total TCDF	ND	2	0
1,2,3,7,8-PeCDF	ND	4	
2,3,4,7,8-PeCDF	ND	4	
Total PeCDF	ND	4	0
1,2,3,4,7,8-HxCDF	ND	4	
1,2,3,6,7,8-HxCDF	ND	4	
1,2,3,7,8,9-HxCDF	ND	4	
2,3,4,6,7,8-HxCDF	ND	4	
Total HxCDF	ND	4	0
1,2,3,4,6,7,8-HpCDF	47	4	
1,2,3,4,7,8,9-HpCDF	ND	4	
Total HpCDF	55	4	2
OCDF	ND	15	0

I-TEQs				
(ND=0)	(ND=½DL)	(ND≔DL)		
pg ND	pg	pg 0.2		
ND	0.1	0.2		
ND	0.1	0.2		
ND	1	2		
ND	0.2	0.4		
ND	0.2	0.4		
ND	0.2	0.4		
ND	0.2	0.4		
0.47	0.47	0.47		
ND	0.02	0.04		
ND	0.0075	0.015		
0.5	2.5	4.5		

Total	DCDD/D(DE Toyle	Equivalor	t (na)

2.2	6.6	11.1

Surrogate Recoveries (%) ³⁷Cl₄ -2,3,7,8-TCDD 88 ¹³C₁₂ -2,3,4,7,8-PeCDF 116 ¹³C₁₂ -1,2,3,4,7,8-HxCDD 70 ¹³C₁₂ -1,2,3,4,7,8-HxCDF 97 ¹³C₁₂ -1,2,3,4,7,8,9-HpCDF

Internal Standards (%)	
¹³ C ₁₂ -2,3,7,8-TCDD	53
¹³ C ₁₂ -1,2,3,7,8-PeCDD	58
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	79
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	70
¹³ C ₁₂ -OCDD	69
¹³ C ₁₂ -2,3,7,8-TCDF	42
¹³ C ₁₂ -1,2,3,7,8-PeCDF	51
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	58
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	61

Client: Client ID: PRL ID: Lanfranco & Associates

Run-1 – Dioxin
PR182303

Contact:
Date Extracted:
Date Analysed:

Mark Lanfranco 28-Aug-18 12-Sep-18

Dioxin-like PCBs				Surrogate
			DL	Recoveries
Chemical Name	IUPAC#	ng	ng	%
3,4,4',5-TeCB	PCB 81	ND	0.02	88
3,3',4,4'-TeCB	PCB 77	ND	0.02	88
2,3',4,4',5'-PeCB	PCB 123	ND	0.02	100
2,3',4,4',5-PeCB	PCB 118	0.15	0.02	88
2,3,4,4',5-PeCB	PCB 114	ND	0.02	92
2,3,3',4,4'-PeCB	PCB 105	ND	0.02	96
3,3',4,4',5-PeCB	PCB 126	ND	0.02	84
2,3',4,4',5,5'-HxCB	PCB 167	ND	0.02	88
2,3,3',4,4',5-HxCB	PCB 156	ND	0.02	92
2,3,3',4,4',5'-HxCB	PCB 157	ND	0.02	88
3,3',4,4',5,5'-HxCB	PCB 169	ND	0.02	72
2,3,3',4,4',5,5'-HpCB	PCB 189	ND	0.02	96
		Toxic Equ	uivalent (W	HO-TEQ)

WHO-TEQs (2005)			
(ND=0)	(ND=DL)		
ng	ng		
ND	6.00E-06		
ND	2.00E-06		
ND	6.00E-07		
4.37E-06	4.37E-06		
ND	6.00E-07		
ND	6.00E-07		
ND	2.00E-03		
ND	6.00E-07		
ND	6.00E-07		
ND	6.00E-07		
ND	6.00E-04		
ND	6.00E-07		
4.37E-06	2.62E-03		

Total PCB			
		DL	
Homologs	ng	ng	
Monochlorobiphenyls	0.74	0.05	
Dichlorobiphenyls	6.67	0.05	
Trichlorobiphenyls	1.30	0.05	
Tetrachlorobiphenyls	0.29	0.05	
Pentachlorobiphenyls	0.15	0.05	
Hexachlorobiphenyls	ND	0.05	
Heptachlorobiphenyls	ND	0.05	
Octachlorobiphenyls	ND	0.05	
Nonachlorobiphenyls	ND	0.05	
Decachlorobiphenyl	ND	0.05	
Total PCB	9.2		

ND - none detected

Surrogate Recoveries			
Chemical Name	IUPAC#	%	
13C12-2-MoCB	1L	60	
13C12-4,4'-DiCB	15L	56	
13C12-2,2',6'-TrCB	19L	56	
13C12-3,4,4'-TrCB	37L	140	
13C12-2,2',6,6'-TeCB	54L	68	
13C12-2,2',4,6,6'-PeCB	104L	80	
13C12-2,2',4,4',6,6'-HxCB	155L	56	
13C12-2,2',3,4',5,6,6'-HpCB	188L	80	
13C12-2,2',3,3',5,5',6,6'-OcCB	202L	64	
13C12-2,3,3',4,4',5,5',6-OcCB	205L	76	
13C12-2,2',3,3',4,4',5,5',6-NoCB	206L	80	
13C12-DeCB	209L	60	

Client: Client ID: PRL ID: Lanfranco & Associates

Run-2 – Dioxin PR182304 Contact:
Date Extracted:
Date Analysed:

Mark Lanfranco

28-Aug-18 12-Sep-18

Dioxin-like PCBs				Surrogate
	Т		DL	Recoveries
Chemical Name	IUPAC#	ng	ng	%
3,4,4',5-TeCB	PCB 81	ND	0.02	68
3,3',4,4'-TeCB	PCB 77	ND	0.02	64
2,3',4,4',5'-PeCB	PCB 123	ND	0.02	80
2,3',4,4',5-PeCB	PCB 118	ND	0.02	76
2,3,4,4',5-PeCB	PCB 114	ND	0.02	76
2,3,3',4,4'-PeCB	PCB 105	ND	0.02	72
3,3',4,4',5-PeCB	PCB 126	ND	0.02	68
2,3',4,4',5,5'-HxCB	PCB 167	ND	0.02	68
2,3,3',4,4',5-HxCB	PCB 156	ND	0.02	80
2,3,3',4,4',5'-HxCB	PCB 157	ND	0.02	72
3,3',4,4',5,5'-HxCB	PCB 169	ND	0.02	64
2,3,3',4,4',5,5'-HpCB	PCB 189	ND	0.02	96
		Toxic Equ	uivalent (W	/HO-TEQ)

WHO-TEQs (2005)					
(ND=0)	(ND=DL)				
ng	ng				
ND	6.00E-06				
ND	2.00E-06				
ND	6.00E-07				
ND	6.00E-07				
ND	6.00E-07				
ND	6.00E-07				
ND	2.00E-03				
ND	6.00E-07				
ND	6.00E-07				
ND	6.00E-07				
ND	6.00E-04				
ND	6.00E-07				
0.00E+00	2.61E-03				

Total PCB		
		DL
Homologs	ng	ng
Monochlorobiphenyls	0.53	0.05
Dichlorobiphenyls	5.1	0.05
Trichlorobiphenyls	0.45	0.05
Tetrachlorobiphenyls	ND	0.05
Pentachlorobiphenyls	ND	0.05
Hexachlorobiphenyls	ND	0.05
Heptachlorobiphenyls	ND	0.05
Octachlorobiphenyls	ND	0.05
Nonachlorobiphenyls	ND	0.05
Decachlorobiphenyl	ND	0.05
Total PCB	6.1	

ND - none detected

Surrogate Recoveries	1	
Chemical Name	IUPAC#	%
13C12-2-MoCB	1L	64
13C12-4,4'-DiCB	15L	56
13C12-2,2',6'-TrCB	19L	56
13C12-3,4,4'-TrCB	37L	128
13C12-2,2',6,6'-TeCB	54L	64
13C12-2,2',4,6,6'-PeCB	104L	68
13C12-2,2',4,4',6,6'-HxCB	155L	48
13C12-2,2',3,4',5,6,6'-HpCB	188L	56
13C12-2,2',3,3',5,5',6,6'-OcCB	202L	52
13C12-2,3,3',4,4',5,5',6-OcCB	205L	84
13C12-2,2',3,3',4,4',5,5',6-NoCB	206L	72
13C12-DeCB	209L	64

Client: Client ID: PRL ID: Lanfranco & Associates

Run-3 – Dioxin
PR182305

Contact:
Date Extracted:
Date Analysed:

Mark Lanfranco 28-Aug-18 12-Sep-18

Dioxin-like PCBs				Surrogate
			DL	Recoveries
Chemical Name	IUPAC#	ng	ng	%
3,4,4',5-TeCB	PCB 81	ND	0.02	76
3,3',4,4'-TeCB	PCB 77	ND	0.02	76
2,3',4,4',5'-PeCB	PCB 123	ND	0.02	84
2,3',4,4',5-PeCB	PCB 118	ND	0.02	88
2,3,4,4',5-PeCB	PCB 114	ND	0.02	92
2,3,3',4,4'-PeCB	PCB 105	ND	0.02	92
3,3',4,4',5-PeCB	PCB 126	0.040	0.02	88
2,3',4,4',5,5'-HxCB	PCB 167	ND	0.02	84
2,3,3',4,4',5-HxCB	PCB 156	ND	0.02	100
2,3,3',4,4',5'-HxCB	PCB 157	ND	0.02	96
3,3',4,4',5,5'-HxCB	PCB 169	ND	0.02	80
2,3,3',4,4',5,5'-HpCB	PCB 189	ND	0.02	92
		Toxic Eq	uivalent (WH	O-TEQ)

WHO-TE	Qs (2005)
(ND=0)	(ND=DL)
ng	ng
ND	6.00E-06
ND	2.00E-06
ND	6.00E-07
4.05E-03	4.05E-03
ND	6.00E-07
ND	6.00E-07
ND	6.00E-07
ND	6.00E-04
ND	6.00E-07
4.05E-03	4.66E-03

Total PCB		
		DL
Homologs	ng	ng
Monochlorobiphenyls	0.3	0.05
Dichlorobiphenyls	ND	0.05
Trichlorobiphenyls	0.33	0.05
Tetrachlorobiphenyls	0.05	0.05
Pentachlorobiphenyls	ND	0.05
Hexachlorobiphenyls	ND	0.05
Heptachlorobiphenyls	ND	0.05
Octachlorobiphenyls	ND	0.05
Nonachlorobiphenyls	ND	0.05
Decachlorobiphenyl	ND	0.05
Total PCB	0.7	

ND - none detected

Surrogate Recoveries	·	
Chemical Name	IUPAC#	%
13C12-2-MoCB	1L	72
13C12-4,4'-DICB	15L	60
13C12-2,2',6'-TrCB	19L	56
13C12-3,4,4'-TrCB	37L	108
13C12-2,2',6,6'-TeCB	54L	64
13C12-2,2',4,6,6'-PeCB	104L	64
13C12-2,2',4,4',6,6'-HxCB	155L	60
13C12-2,2',3,4',5,6,6'-HpCB	188L	76
13C12-2,2',3,3',5,5',6,6'-OcCB	202L	72
13C12-2,3,3',4,4',5,5',6-OcCB	205L	80
13C12-2,2',3,3',4,4',5,5',6-NoCB	206L	56
13C12-DeCB	209L	64

Client: Contact: Project:

Lanfranco & Associates

Mark Lanfranco MetroVancouver WTE

28-Aug-18 12-Sep-18 Date Extracted: Date Analysed:

	Client ID:	Blank Dioxin	Run-1 - Dioxin	Run-2 – Dioxin	Run-3 – Dioxin	BLANK
	PRL ID:	PR182302	PR182303	PR182304	PR182305	PH180668E
NPRI PAH	DL					
	μg	μg	μg	μg	μg	μg
Acenaphthylene	0.05	ND	ND	ND	ND	NĎ
Acenaphthene	0.05	ND	ND	ND	ND	ND
Fluorene	0.02	ND	ND	0.02	ND	ND
Phenanthrene	0.02	ND	0.08	0.10	0.04	ND
Fluoranthene	0.01	ND	0.01	0.05	ND	ND
Pyrene	0.01	ND	0.02	0.05	0.01	ND
Benz(a)anthracene	0.02	ND	ND	ND	ND	ND
Chrysene	0.02	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.01	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.01	ND	ND	ND	ND	ND
Benzo(a)pyrene	0.01	ND	ND	ND	ND ND	ND
Indeno(1,2,3-cd)pyrene	0.01	ND	ND	ND	ND ND	ND
	0.01	ND	ND	ND	ND ND	ND ND
Dibenz(a,h)anthracene Benzo(ghi)perylene	0.01	ND	ND	ND	ND ND	ND ND
	0.01	ND ND	ND	ND	ND ND	ND ND
1-Nitropyrene	0.05	ND ND	ND	ND ND	ND ND	ND ND
5-Methylchrysene		ND	ND	ND	ND ND	ND ND
7,12-Dimethylbenz(a)anthr	0.05 0.05	ND ND	ND	ND	ND ND	ND ND
3-Methylcholanthrene		ND ND	ND	ND	0.01	ND ND
Benzo(e)pyrene	0.01					ND
Perylene	0.05	ND	ND	ND	ND ND	ND ND
Dibenz(a,h)acridine	0.05	ND	ND	ND	ND ND	ND
Dibenz(a,j)acridine	0.05	ND	ND	ND	ND ND	
7H-Dibenzo(c,g)carbazole		ND	ND	ND	ND ND	ND
Dibenzo(a,e)fluoranthene	0.05	ND	ND	ND	ND ND	ND ND
Dibenzo(a,e)pyrene	0.05	ND	ND	ND	ND	ND ND
Dibenzo(a,h)pyrene	0.05	ND	ND	ND	ND ND	ND ND
Dibenzo(a,l)pyrene	0.05	ND	ND	ND	ND ND	ND ND
Dibenzo(a,i)pyrene	0.05	ND	ND	ND	ND	ND ND
Quinoline	0.05	ND	ND	ND	ND	ND ND
Other PAH						
Naphthalene	0.05	2.3	1	0.66	0.52	ND
Anthracene	0.05	ND	ND	ND	ND	ND
Surrogate Recoveries (%)					
d8-Naphthalene		68	68	76	72	72
d10-Acenaphthylene		60	72	76	76	48
d10-Acenaphthene		60	64	72	68	60
d10-Fluorene		88	100	108	100	72
d10-Phenanthrene		104	92	100	96	100
d10-Fluoranthene		92	84	88	96	88
d10-Pyrene	 	92	84	88	88	92
d12-Chrysene	 	88	84	104	100	92
d12-Benzo(b)fluoranthene		104	96	104	100	100
d12-Benzo(a)pyrene	 	96	100	108	100	88
d14-Dibenz(a,h)anthracen	<u> </u>	108	124	140	128	128

Client: Contact: Lanfranco & Associates

Mark Lanfranco

Date Extracted:

28-Aug-18

Date Analysed: 12-Sep-18

	Client ID:		Run-1 –	Run-2 –	Run-3	
		Blank Dioxin	Dioxin	Dioxin	Dioxin	BLANK
ı	PRL ID:	PR182302	PR182303	PR182304	PR182305	
Compound	DL	VI day				
	μg	μg	μg	μg	μg	μg
Trichlorobenzenes	0.05	ND	1.47	0.684	1.04	ND
Tetrachlorobenzenes	0.05	ND	0.396	0.290	0.27	ND
Pentachlorobenzene	0.05	ND	0.064	0.057	0.06	ND
Hexachlorobenzene	0.01	ND	0.011	0.013	0.01	ND
Surrogate Recoveries (%)						
13C6-Tetrachlorobenzene		64	144	124	136	64
13C6-Pentachlorobenzene		72	152	160	140	84
13C6-Hexachlorobenzene		76	128	164	136	132

Compound	DL		Lineania			
	μg	μg	μg	μg	μg	μд
Trichlorophenols	0.05	ND	0.210	0.163	0.112	ND
Tetrachlorophenols	0.05	ND	ND	ND	ND	ND
Pentachlorophenol	0.05	ND	0.167	0.251	0.143	ND
Surrogate Recoveries (%)						
13C6-Trichlorophenol		48	96	108	84	68
13C6-Tetrachlorophenol		60	76	108	84	80
13C6-Pentachlorophenol		20	68	100	80	36

APPENDIX 2 QA/QC RESULTS

Client: Client ID: PRL ID:

Lanfranco & Associates Blank Dioxin

PR182302

Sample Date: Date Extracted: Date Analysed: Filter Wt.:

22-Aug-18 28-Aug-18 13-Sep-18 0.32 g

DIOXINS		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDD	ND	2	
Total TCDD	ND	2	0
1,2,3,7,8-PeCDD	ND	4	
Total PeCDD	ND	4	0
1,2,3,4,7,8-HxCDD	ND	4	
1,2,3,6,7,8-HxCDD	ND	4	
1,2,3,7,8,9-HxCDD	ND	4	
Total HxCDD	ND	4	0
1,2,3,4,6,7,8-HpCDD	ND	4	
Total HpCDD	ND	4	0
OCDD	ND	15	0
0000	NU	Total Di	

I-TEQs			
(ND=0)	(ND=½DL)	(ND=DL)	
pg	pg	pg	
ND	1	2	
ND	1	2	
ND	<u> </u>		

ND	0.2	0.4	
ND	0.2	0.4	
ND	0.2	0.4	
	2.00		
ND	0.02	0.04	

ND	0.0075	0.015	
0.0	2.6	5.3	

FURANS			
		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDF	ND	2	
Total TCDF	ND	2	0
1,2,3,7,8-PeCDF	ND	4	
2,3,4,7,8-PeCDF	ND	4	
Total PeCDF	ND	4	0
1,2,3,4,7,8-HxCDF	ND	4	
1,2,3,6,7,8-HxCDF	ND	4	
1,2,3,7,8,9-HxCDF	ND	4	
2,3,4,6,7,8-HxCDF	ND	4	
Total HxCDF	ND	4	0
1,2,3,4,6,7,8-HpCDF	ND	4	
1,2,3,4,7,8,9-HpCDF	ND	4	
Total HpCDF	ND	4	0
OCDF	ND	15	0
•		Total F	ıran TEQ

I-TEQs			
(ND=0)	(ND=1/2DL)	(ND=DL)	
pg	pg	pg	
ND	0.1	0.2	
ND	0.1	0.2	
ND	1	2	
ND	0.2	0.4	
ND	0.02	0.04	
ND	0.02	0.04	

ND	0.0075	0.015	
0.0	2.0	4.1	

Total	PCDD	/PCDF	Toxic E	Equivalent	t (pg)

0.0	4.7	9.4

Surrogate Recoveries (%)	
³⁷ Cl ₄ -2,3,7,8-TCDD	88
¹³ C ₁₂ -2,3,4,7,8-PeCDF	103
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	82
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	89
¹³ C ₄₂ -1.2.3.4.7.8.9-HpCDF	88

	ND -	none	detected
--	------	------	----------

Internal Standards (%)	
¹³ C ₁₂ -2,3,7,8-TCDD	53
¹³ C ₁₂ -1,2,3,7,8-PeCDD	58
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	77
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	74
¹³ C ₁₂ -OCDD	59
¹³ C ₁₂ -2,3,7,8-TCDF	43
¹³ C ₁₂ -1,2,3,7,8-PeCDF	58
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	76
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	76

METHOD 23/1-RM-3 DATA REPORT

Client: Client ID: PRL ID:

Lanfranco & Associates BLANK

Contact: Date Extracted: DF180668B Date Analysed:

Mark Lanfranco 28-Aug-18 13-Sep-18

		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDD	ND	2	
Total TCDD	ND	2	0
1,2,3,7,8-PeCDD	ND	4	
Total PeCDD	ND	4	0
1,2,3,4,7,8-HxCDD	ND	4	
1,2,3,6,7,8-HxCDD	ND	4	
1,2,3,7,8,9-HxCDD	ND	4	
Total HxCDD	ND	4	0
1,2,3,4,6,7,8-HpCDD	ND	4	
Total HpCDD	ND	4	0
OCDD	ND	15	0
		Total D	oxin TEC

I-TEQs				
(ND=0)	(ND=½DL) (ND=DL			
pg	pg	pg		
ND	1	2		
ND	1	2		
ND	0.2	0.4		
ND	0.2	0.4		
ND	0.2	0.4		
ND	0.02	0.04		
ND	0.0075	0.015		
0.0	2.6	5.3		

FURANS			
		DL	# of
Congeners	pg	pg	peaks
2,3,7,8-TCDF	ND	2	
Total TCDF	ND	2	0
1,2,3,7,8-PeCDF	ND	4	
2,3,4,7,8-PeCDF	ND	4	
Total PeCDF	ND	4	0
1,2,3,4,7,8-HxCDF	ND	4	
1,2,3,6,7,8-HxCDF	ND	4	
1,2,3,7,8,9-HxCDF	ND	4	
2,3,4,6,7,8-HxCDF	ND	4	
Total HxCDF	ND	4	0
1,2,3,4,6,7,8-HpCDF	ND	4	
1,2,3,4,7,8,9-HpCDF	ND	4	
Total HpCDF	ND	4	0
OCDF	ND	15	0
ООВ	ND		uran TEQ

I-TEQs				
(ND=0)	(ND=1/2DL)	(ND=DL)		
pg	pg	pg 0.2		
ND	0.1	0.2		
ND	0.1	0.2		
ND	1	2		
ND	0.2	0.4		
ND	0.2	0.4		
ND	0.2	0.4		
ND	0.2	0.4		
ND	0.02	0.04		
ND	0.02	0.04		
ND	0.0075	0.015		
0.0	2.0	4.1		

Total PCDD/PCDF Toxic Equivalent (pg)

0.0	4.7	9.4

ND - none detected

Internal Standards (%)	
¹³ C ₁₂ -2,3,7,8-TCDD	46
¹³ C ₁₂ -1,2,3,7,8-PeCDD	57
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	67
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	70
¹³ C ₁₂ -OCDD	120
¹³ C ₁₂ -2,3,7,8-TCDF	41
¹³ C ₁₂ -1,2,3,7,8-PeCDF	57
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	69
¹³ C ₁₂ -1.2.3.4.6.7.8-HpCDF	72

QC REPORT - SPIKE

 Client:
 Lanfranco & Associates
 Contact:
 Mark Lanfranco

 Client ID:
 MATRIX SPIKE
 Date Extracted:
 28-Aug-18

 PRL ID:
 DF180669S
 Date Analysed:
 13-Sep-18

DIOXINS		Acceptable Recovery			Pass/Fail
	LOF	Recovery	Min	Max	
Congeners	pg	%	%	%	
2,3,7,8-TCDD	200	86	80	120	Pass
1,2,3,7,8-PeCDD	200	102	80	120	Pass
1,2,3,4,7,8-HxCDD	400	80	80	120	Pass
1,2,3,6,7,8-HxCDD	400	113	80	120	Pass
1,2,3,7,8,9-HxCDD	400	99	80	120	Pass
1,2,3,4,6,7,8-HpCDD	400	120	80	120	Pass
OCDD	1000	116	80	120	Pass

Int. Std	
Recoveries	
%	
50	
63	
-	
74	
-	
94	
92	
	Recoveries % 50 63 - 74 - 94

FURANS			Acceptable Recovery		Pass/Fail
	LOF	Recovery	Min	Max	
Congeners	pg	%	%	%	
2,3,7,8-TCDF	200	86	80	120	Pass
1,2,3,7,8-PeCDF	200	105	80	120	Pass
2,3,4,7,8-PeCDF	200	83	80	120	Pass
1,2,3,4,7,8-HxCDF	400	93	80	120	Pass
1,2,3,6,7,8-HxCDF	400	107	80	120	Pass
1,2,3,7,8,9-HxCDF	400	85	80	120	Pass
2,3,4,6,7,8-HxCDF	400	85	80	120	Pass
1,2,3,4,6,7,8-HpCDF	400	94	80	120	Pass
1,2,3,4,7,8,9-HpCDF	400	83	80	120	Pass
OCDF	1000	82	80	120	Pass

Int. Std Recoveries % 42
/0
42
63
-
-
80
-
-
91
-

LOF - Level of Fortification

DATA REPORT

Client: Client ID: PRL ID: Lanfranco & Associates

Blank Dioxin
PR182302

Contact:
Date Extracted:
Date Analysed:

Mark Lanfranco 28-Aug-18 12-Sep-18

Dioxin-like PCBs				Surrogate
			DL	Recoveries
Chemical Name	IUPAC#	ng	ng	%
3,4,4',5-TeCB	PCB 81	ND	0.02	72
3,3',4,4'-TeCB	PCB 77	ND	0.02	76
2,3',4,4',5'-PeCB	PCB 123	ND	0.02	80
2,3',4,4',5-PeCB	PCB 118	ND	0.02	72
2,3,4,4',5-PeCB	PCB 114	ND	0.02	72
2,3,3',4,4'-PeCB	PCB 105	ND	0.02	84
3,3',4,4',5-PeCB	PCB 126	ND	0.02	76
2,3',4,4',5,5'-HxCB	PCB 167	ND	0.02	84
2,3,3',4,4',5-HxCB	PCB 156	ND	0.02	92
2,3,3',4,4',5'-HxCB	PCB 157	ND	0.02	92
3,3',4,4',5,5'-HxCB	PCB 169	ND	0.02	72
2,3,3',4,4',5,5'-HpCB	PCB 189	ND	0.02	92
		Toxic Equivalent (WHO-TEQ)		

WHO-TE	Qs (2005)
(ND=0)	(ND=DL)
ng	ng
ND	6.00E-06
ND	2.00E-06
ND	6.00E-07
ND	2.00E-03
ND	6.00E-07
ND	6.00E-07
ND	6.00E-07
ND	6.00E-04
ND	6.00E-07
0.00E+00	2.61E-03

Total PCB		
		DL
Homologs	ng	ng
Monochlorobiphenyls	ND	0.05
Dichlorobiphenyls	6.88	0.05
Trichlorobiphenyls	0.28	0.05
Tetrachlorobiphenyls	0.07	0.05
Pentachlorobiphenyls	ND	0.05
Hexachlorobiphenyls	ND	0.05
Heptachlorobiphenyls	ND	0.05
Octachlorobiphenyls	ND	0.05
Nonachlorobiphenyls	ND	0.05
Decachlorobiphenyl	ND	0.05
Total PCB	7.24	

ND - none detected

Surrogate Recoveries		
Chemical Name	IUPAC#	%
13C12-2-MoCB	1L	60
13C12-4,4'-DiCB	15L	56
13C12-2,2',6'-TrCB	19L	68
13C12-3,4,4'-TrCB	37L	112
13C12-2,2',6,6'-TeCB	54L	72
13C12-2,2',4,6,6'-PeCB	104L	72
13C12-2,2',4,4',6,6'-HxCB	155L	68
13C12-2,2',3,4',5,6,6'-HpCB	188L	76
13C12-2,2',3,3',5,5',6,6'-OcCB	202L	92
13C12-2,3,3',4,4',5,5',6-OcCB	205L	84
13C12-2,2',3,3',4,4',5,5',6-NoCB	206L	72
13C12-DeCB	209L	88

DATA REPORT

Client: Client ID: PRL ID: Lanfranco & Associates

BLANK PC180668B Contact:
Date Extracted:
Date Analysed:

Mark Lanfranco 28-Aug-18 13-Sep-18

Dioxin-like PCBs				Surrogate
			DL	Recoveries
Chemical Name	IUPAC#	ng	ng	%
3,4,4',5-TeCB	PCB 81	ND	0.02	64
3,3',4,4'-TeCB	PCB 77	ND	0.02	64
2,3',4,4',5'-PeCB	PCB 123	ND	0.02	80
2,3',4,4',5-PeCB	PCB 118	ND	0.02	76
2,3,4,4',5-PeCB	PCB 114	ND	0.02	80
2,3,3',4,4'-PeCB	PCB 105	ND	0.02	76
3,3',4,4',5-PeCB	PCB 126	ND	0.02	76
2,3',4,4',5,5'-HxCB	PCB 167	ND	0.02	76
2,3,3',4,4',5-HxCB	PCB 156	ND	0.02	76
2,3,3',4,4',5'-HxCB	PCB 157	ND	0.02	72
3,3',4,4',5,5'-HxCB	PCB 169	ND	0.02	68
2,3,3',4,4',5,5'-HpCB	PCB 189	ND	0.02	84
		Toxic Equ	uivalent (W	/HO-TEQ)

WHO-TEQs (2005)			
(ND=0)	(ND=DL)		
ng	ng		
ND	6.00E-06		
ND	2.00E-06		
ND	6.00E-07		
ND	2.00E-03		
ND	6.00E-07		
ND	6.00E-07		
ND	6.00E-07		
ND	6.00E-04		
ND	6.00E-07		
0.00E+00	2.61E-03		

Total PCB		
		DL
Homologs	ng	ng
Monochlorobiphenyls	ND	0.05
Dichlorobiphenyls	0.21	0.05
Trichlorobiphenyls	ND	0.05
Tetrachlorobiphenyls	ND	0.05
Pentachlorobiphenyls	ND	0.05
Hexachlorobiphenyls	ND	0.05
Heptachlorobiphenyls	ND	0.05
Octachlorobiphenyls	ND	0.05
Nonachlorobiphenyls	ND	0.05
Decachlorobiphenyl	ND	0.05
Total PCB	0.21	I

ND - none detected

Surrogate Recoveries		
Chemical Name	IUPAC#	%
13C12-2-MoCB	1L	52
13C12-4,4'-DiCB	15L	44
13C12-2,2',6'-TrCB	19L	52
13C12-3,4,4'-TrCB	37L	92
13C12-2,2',6,6'-TeCB	54L	60
13C12-2,2',4,6,6'-PeCB	104L	60
13C12-2,2',4,4',6,6'-HxCB	155L	64
13C12-2,2',3,4',5,6,6'-HpCB	188L	68
13C12-2,2',3,3',5,5',6,6'-OcCB	202L	76
13C12-2,3,3',4,4',5,5',6-OcCB	205L	76
13C12-2,2',3,3',4,4',5,5',6-NoCB	206L	72
13C12-DeCB	209L	64

QC REPORT - SPIKE

 Client:
 Lanfranco & Associates
 Contact:
 Mark Lanfranco

 Client ID:
 SPIKE
 Date Extracted:
 28-Aug-18

 PRL ID:
 PC180669S
 Date Analysed:
 14-Sep-18

Dioxin-like PCBs	7.200		Accepta	ble Recovery	Pass/Fail
	LOF	Recovery	Min	Max	
Chemical Name	ng	%	%	%	
3,4,4',5-TeCB (81)	1	126	50	150	Pass
3,3',4,4'-TeCB (77)	1	92	50	150	Pass
2,3',4,4',5'-PeCB (123)	1	104	50	150	Pass
2,3',4,4',5-PeCB (118)	1	118	50	150	Pass
2,3,4,4',5-PeCB (114)	1	96	50	150	Pass
2,3,3',4,4'-PeCB (105)	1	102	50	150	Pass
3,3',4,4',5-PeCB (126)	1	109	50	150	Pass
2,3',4,4',5,5'-HxCB (167)	1	73	50	150	Pass
2,3,3',4,4',5-HxCB (156)	1	99	50	150	Pass
2,3,3',4,4',5'-HxCB (157)	1	96	50	150	Pass
3,3',4,4',5,5'-HxCB (169)	1	103	50	150	Pass
2,3,3',4,4',5,5'-HpCB (189)	1	85	50	150	Pass

S	urroga	te
R	ecoveri	ies
	%	
	56	
	56	
	68	
	60	***************************************
	68	
	72	
	68	
	76	
	68	
	72	
	64	
	92	

Total PCB			Acceptab	Pass/Fail	
	LOF	Recovery	Min	Max	
Homologs	ng	%	%	%	
Monochlorobiphenyls	2	100			
Dichlorobiphenyls	4	96			
Trichlorobiphenyls	6	61			
Tetrachlorobiphenyls	12	109			
Pentachlorobiphenyls	13	106			
Hexachlorobiphenyls	15	91			
Heptachlorobiphenyls	11	104			
Octachlorobiphenyls	6	91			
Nonachlorobiphenyls	2	95			
Decachlorobiphenyl	1	122			
Total PCB	72	97	50	150	Pass

LOF - Level of Fortification

DATA REPORT

Client: Contact: Lanfranco & Associates

t: Mark Lanfranco

Project:

MetroVancouver WTE

 Date Extracted:
 28-Aug-18

 Date Analysed:
 12-Sep-18

Client ID: SPIKE PRL ID: PH180669S

NPRI PAH

	μg/g	LOF	Recovery	Acceptable F	'ass/Fai
Acenaphthene	0.94	1	94%	50-150%	pass
Acenaphthylene	0.98	1	98%	50-150%	pass
Benz(a)anthracene	0.74	1	74%	50-150%	pass
Benzo(a)pyrene	0.93	1	93%	50-150%	pass
Benzo(b)fluoranthene	0.81	1	81%	50-150%	pass
Benzo(ghi)perylene	0.81	1	81%	50-150%	pass
Benzo(k)fluoranthene	0.89	1	89%	50-150%	pass
Chrysene	0.92	1	92%	50-150%	pass
Dibenz(a,h)anthracene	0.81	1	81%	50-150%	pass
Fluoranthene	0.78	1	78%	50-150%	pass
Fluorene	0.92	1	92%	50-150%	pass
ndeno(1,2,3-cd)pyrene	0.82	1	82%	50-150%	pass
Phenanthrene	1.18	1	118%	50-150%	pass
Pyrene	0.73	1	73%	50-150%	pass
Dibenz(a,h)acridine	0.78	1	78%		
Dibenz(a,j)acridine	1.12	1	112%		
7H-Dibenzo(c,g)carbazole	0.77	1	77%		
Dibenzo(a,e)fluoranthene	1.00	1	100%		
Dibenzo(a,h)pyrene	1.39	1	139%		
Dibenzo(a,e)pyrene	0.97	1	97%		
Dibenzo(a,i)pyrene	1.37	1	137%		
Dibenzo(a,l)pyrene	1.20	1	120%		
7,12-Dimethylbenz(a)anthracene	0.94	1	94%		
3-Methylcholanthrene	0.90	1	90%		
5-Methylchrysene	1.18	1	118%		
1-Nitropyrene	1.18	1	118%		
Perylene	1.22	1	122%		
Other PAH					
Naphthalene	0.98	1	98%	50-150%	pass

Form Name: DOC23 Data Report PAH 22-Mar-08 DGH

QC REPORT - SPIKE

Client: Contact: Lanfranco & Associates
Mark Lanfranco

Date Extracted: 28-Aug-18
Date Analysed: 12-Sep-18

Client ID: SPIKE PRL ID: CB180669S

Compound	LOF μg	μg	Recovery
Trichlorobenzenes	2.0	1.78	89%
Tetrachlorobenzenes	3.0	3.24	108%
Pentachlorobenzene	1.0	1.11	111%
Hexachlorobenzene	1.0	1.39	139%
Trichlorophenols	5.0	6.02	120%
Tetrachlorophenols	5.0	5.50	110%
Pentachlorophenol	5.0	6.01	120%

LOF - level of fortification

Acronyms used in reporting dioxins and furans:

TCDD = Tetrachlorodibenzo-p-dioxin PeCDD = Pentachlorodibenzo-p-dioxin HxCDD = Hexachlorodibenzo-p-dioxin HpCDD = Heptachlorodibenzo-p-dioxin	TCDF = Tetrachlorodibenzofuran PeCDF = Pentachlorodibenzofuran HxCDF = Hexachlorodibenzofuran HpCDF = Heptachlorodibenzofuran
HpCDD = Heptachlorodibenzo-p-dioxin OCDD = Octachlorodibenzo-p-dioxin	HpCDF = Heptachlorodibenzofuran OCDF = Octachlorodibenzofuran

Acceptable recoveries for surrogates	EPA Method 23			
	Min (%)	Max (%)		
³⁷ Cl ₄ -2,3,7,8-TCDD	70	130		
¹³ C ₁₂ -2,3,4,7,8-PeCDF	70	130		
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	70	130		
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	70	130		
¹³ C ₁₂ -1.2.3.4.7.8.9-HpCDF	70	130		

Acceptable recoveries for Internal Standards

	EPA Met	thod 23	Env. Can. 1-RM-3		
	Min (%)	Max (%)	Min (%)	Max (%)	
¹³ C ₁₂ -2,3,7,8-TCDD	40	130	40	130	
¹³ C ₁₂ -1,2,3,7,8-PeCDD	40	130	40	130	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	40	130	40	130	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	25	130	40	130	
¹³ C ₁₂ -OCDD	25	130	40	130	
¹³ C ₁₂ -2,3,7,8-TCDF	40	130	40	130	
¹³ C ₁₂ -1,2,3,7,8-PeCDF	40	130			
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	40	130			
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	25	130			

Acronyms used in reporting Polychlorinated Biphenyls (PCBs)

MoCB = Monochlorobiphenyl

DiCB = Dichlorobiphenyl

TrCB = Trichlorobiphenyl

TeCB = Tetrachlorobiphenyl

PeCB = Pentachlorobiphenyl

DeCB = Decachlorobiphenyl

DeCB = Decachlorobiphenyl

Acceptable recoveries for PCB Internal Standards - EPA 1668C

Chemical Name	IUPAC #	Min	Max
¹³ C ₁₂ -2-MoCB	1L	5	145
¹³ C ₁₂ -4-MoCB	3L	5	145
¹³ C ₁₂ -2,2'-DiCB	4L	5	145
¹³ C ₁₂ -4,4'-DiCB	15L	5	145
¹³ C ₁₂ -2,2',6'-TrCB	19L	5	145
¹³ C ₁₂ -3,4,4'-TrCB	37L	5	145
¹³ C ₁₂ -2,2',6,6'-TeCB	54L	5	145
¹³ C ₁₂ -3,4,4',5-TeCB	81L	10	145
¹³ C ₁₂ -3,3',4,4'-TeCB	77L	10	145
¹³ C ₁₂ -2,2',4,6,6'-PeCB	104L	10	145
¹³ C ₁₂ -2',3,4,4',5-PeCB	123L	10	145
¹³ C ₁₂ -2,3',4,4',5-PeCB	118L	10	145
¹³ C ₁₂ -2,3,4,4',5-PeCB	114L	10	145
¹³ C ₁₂ -2,3,3',4,4'-PeCB	105L	10	145
¹³ C ₁₂ -3,3',4,4',5-PeCB	126L	10	145
¹³ C ₁₂ -2,2',4,4',6,6'-HxCB	155L	10	145
¹³ C ₁₂ -2,3',4,4',5,5'-HxCB	167L	10	145
¹³ C ₁₂ -2,3,3',4,4',5-HxCB	156L	10	145
¹³ C ₁₂ -2,3,3',4,4',5'-HxCB	157L	10	145
¹³ C ₁₂ -3,3',4,4',5,5'-HxCB	169L	10	145
¹³ C ₁₂ -2,2',3,4',5,6,6'-HpCB	188L	10	145
¹³ C ₁₂ -2,3,3',4,4',5,5'-HpCB	189L	10	145
¹³ C ₁₂ -2,2',3,3',5,5',6,6'-OcCB	202L	10	145
¹³ C ₁₂ -2,3,3',4,4',5,5',6-OcCB	205L	10	145
¹³ C ₁₂ -2,2',3,3',4',5,5',6,6'-NoCB	208L	10	145
¹³ C ₁₂ -2,2',3,3',4,4',5,5',6-NoCB	206L	10	145
¹³ C ₁₂ -DeCB	209L	10	145
¹³ C ₁₂ -2,4,4'-TrCB	28L	5	145
¹³ C ₁₂ -2,3,3',5,5'-PeCB	111L	10	145
¹³ C ₁₂ -2,2',3,3',5,5',6-HpCB	178L	10	145

Acceptable recoveries for Polycyclic Aromatic Hydrocarbon Standards in Environmental

Samples

	Surrogate	Recovery
	Min (%)	Max (%)
Naphthalene-d8	0	135
Biphenyl-d10	15	135
Acenaphthene-d10	15	135
Fluorene-d10	30	135
Phenanthrene-d10	30	135
Fluoranthene-d10	30	135
Pyrene-d10	30	135
Chrysene-d12	30	150
Benzo(b)fluoranthene-d12	30	150
Benzo(a)pyrene-d12	15	150
Dibenz(a,h)anthracene-d14	30	150

APPENDIX 3

COMPUTER OUTPUTS OF MEASURED AND CALCULATED DATA

Client: Metro Vancouver 22-Aug-18 Date: **Jobsite:** WTE (Burnaby, BC) 1 PCDD-PCDF Run: **Source:** Unit 1 **Run Time:** 10:01 - 14:10

0.9 pg/dscm 0.0004 gr/dscf **Dioxin Concentration:** 0.5 **pg/dscm**

0.0002 gr/Acf

0.9 pg/dscm (@ 11% O2) 0.0004 gr/dscf (@ 11% O2)

see D/F data Table 2 **Emission Rate:**

4.3596 dscm 153.961 dscf **Sample Gas Volume:**

Total Sample Time: 240.0 minutes

Average Isokineticity: 102.3 %

Flue Gas Characteristics

Moisture: 14.36 %

Temperature 154.2 oC 309.6 oF

Flow 1262.1 dscm/min 44572 dscf/min

> 21.04 dscm/sec 742.9 dscf/sec 2261.6 Acm/min 79867 Acf/min

Velocity 14.798 m/sec 48.55 f/sec

Gas Analysis 10.07 % O2 10.06 % CO2

> 30.012 Mol. Wt (g/gmole) Dry 28.288 Mol. Wt (g/gmole) Wet

* Standard Conditions: 20 deg C, 101.325 kPa Metric:

Imperial: 68 deg F, 29.92 in.Hg

Client:Metro VancouverDate:22-Aug-18Jobsite:WTE (Burnaby, BC)Run:1 PCDD-PCDFSource:Unit 1Run Time:10:01 - 14:10

Control Unit (Y) 0.9997		Gas Anal	ysis (Vol. %) :	Condensate Collection:		
Nozzle Diameter (in.)	0.2660		CO2	O2	Impinger 1 (grams)	512.0	
Pitot Factor	0.8489	Trav 1	9.92	10.12	Impinger 2 (grams)	19.0	
Baro. Press. (in. Hg)	29.86	Trav 2	10.20	10.02	Impinger 3 (grams)	4.0	
Static Press. (in. H2O)	-19.50				Impinger 4 (grams)	13.4	
Stack Height (ft)	30						
Stack Diameter (in.)	70.9	Average	e = <u>10.06</u>	<u>10.07</u>			
Stack Area (sq.ft.)	27.417				Total Gain (grams)	548.4	
Minutes Per Reading	5.0						

Collection:

10.0

Minutes Per Point

Filter (grams)	0.0000
Washings (grams)	0.0000
Impinger (grams)	0.0000
D/F TEO (ng)	0.0041

						Dry Ga	s Temperat	ure	Wall	
Traverse	Point	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Stack	Dist.	Isokin.
		(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(oF)	(in.)	(%)
		0.0	827.008							
1	1	5.0	830.550	0.550	1.55	78	78	305	1.5	102.0
		10.0	834.130	0.560	1.57	78	78	306	1.5	102.3
	2	15.0	837.310	0.440	1.25	79	79	307	4.7	102.3
		20.0	840.560	0.460	1.29	79	79	307	4.7	102.3
	3	25.0	843.780	0.450	1.27	80	80	307	8.4	102.2
		30.0	846.950	0.440	1.24	80	80	307	8.4	101.8
	4	35.0	850.260	0.470	1.33	81	81	307	12.5	102.7
		40.0	853.600	0.480	1.36	82	82	307	12.5	102.3
	5	45.0	857.120	0.530	1.50	83	83	307	17.7	102.5
		50.0	860.680	0.550	1.56	84	84	307	17.7	101.6
	6	55.0	864.260	0.550	1.56	85	85	308	25.2	102.0
		60.0	867.820	0.540	1.54	86	86	309	25.2	102.3
	7	65.0	871.520	0.580	1.65	88	88	310	45.6	102.3
		70.0	875.300	0.600	1.71	88	88	310	45.6	102.7
	8	75.0	878.990	0.570	1.64	90	90	310	53.2	102.5
		80.0	882.650	0.560	1.60	90	90	310	53.2	102.6
	9	85.0	886.220	0.530	1.54	90	90	309	58.3	102.7
		90.0	889.720	0.510	1.46	90	90	309	58.3	102.7
	10	95.0	893.050	0.460	1.32	91	91	309	62.5	102.6
		100.0	896.310	0.440	1.27	92	92	309	62.5	102.5
	11	105.0	899.500	0.420	1.21	92	92	310	66.1	102.7
		110.0	902.640	0.410	1.18	92	92	311	66.1	102.4
	12	115.0	905.750	0.400	1.15	92	92	311	69.4	102.7
		120.0	908.920	0.420	1.21	92	92	310	69.4	102.1
		0.0	908.920							
2	1	5.0	911.860	0.360	1.05	91	91	309	1.5	102.4
		10.0	914.870	0.380	1.10	92	92	309	1.5	101.8
	2	15.0	917.810	0.360	1.03	94	94	313	4.7	102.1
		20.0	920.750	0.360	1.03	94	94	312	4.7	102.0
	3	25.0	923.610	0.340	0.98	95	95	313	8.4	102.0
-		30.0	926.470	0.340	0.98	94	94	311	8.4	102.0
	4	35.0	929.370	0.350	1.00	94	94	312	12.5	102.0

_			Average:	0.472	1.353	90.4	90.4	309.6		102.3
		120.0	987.340	0.480	1.39	96	96	310	69.4	102.3
	12	115.0	983.920	0.480	1.39	96	96	310	69.4	102.3
		110.0	980.500	0.460	1.33	96	96	311	66.1	102.8
	11	105.0	977.140	0.450	1.30	96	96	311	66.1	102.0
		100.0	973.840	0.570	1.65	96	96	311	62.5	102.0
	10	95.0	970.130	0.550	1.59	96	96	312	62.5	102.2
		90.0	966.480	0.680	1.97	96	96	308	58.3	102.6
	9	85.0	962.400	0.650	1.90	96	96	308	58.3	102.3
		80.0	958.420	0.590	1.71	95	95	309	53.2	102.5
	8	75.0	954.630	0.570	1.66	95	95	310	53.2	102.1
		70.0	950.920	0.450	1.30	95	95	309	45.6	102.4
	7	65.0	947.610	0.450	1.29	95	95	312	45.6	102.0
		60.0	944.320	0.400	1.15	95	95	313	25.2	101.9
	6	55.0	941.220	0.390	1.12	95	95	313	25.2	101.9
		50.0	938.160	0.360	1.03	95	95	312	17.7	101.8
	5	45.0	935.220	0.350	1.01	95	95	312	17.7	101.8
		40.0	932.320	0.360	1.04	95	95	311	12.5	102.1

Client: Metro Vancouver Date: 23-Aug-18 **Jobsite:** WTE (Burnaby, BC) 2 PCDD-PCDF Run: Source: **Run Time:** Unit 1 09:02 - 13:06

2.56 pg/dscm **Dioxin Concentration:** 0.0011 gr/dscf

1.4 pg/dscm 0.0006 gr/Acf

2.23 pg/dscm (@ 11% O2) 0.0010 gr/dscf (@ 11% O2)

Emission Rate: see D/F data Table 2

Sample Gas Volume: 4.2967 dscm 151.738 dscf

Total Sample Time: 240.0 minutes

Average Isokineticity: 103.6 %

Flue Gas Characteristics

Moisture: 15.45 %

Temperature 157.2 oC 314.9 oF

Flow 1227.2 dscm/min 43339 dscf/min

> 20.45 dscm/sec 722.3 dscf/sec 2235.3 Acm/min 78940 Acf/min

Velocity 14.627 m/sec 47.99 f/sec

Gas Analysis 9.54 % O2 10.26 % CO2

> 30.023 Mol. Wt (g/gmole) Dry 28.166 Mol. Wt (g/gmole) Wet

* Standard Conditions: 20 deg C, 101.325 kPa Metric:

Imperial: 68 deg F, 29.92 in.Hg

Client:Metro VancouverDate:23-Aug-18Jobsite:WTE (Burnaby, BC)Run:2 PCDD-PCDFSource:Unit 1Run Time:09:02 - 13:06

Control Unit (Y)	0.9997	Gas Anal	Gas Analysis (Vol. %):		Condensate Collection:	
Nozzle Diameter (in.)	0.2660	<u> </u>	CO2	O2	Impinger 1 (grams)	565.0
Pitot Factor	0.8489	Trav 1	10.10	9.85	Impinger 2 (grams)	7.0
Baro. Press. (in. Hg)	29.95	Trav 2	10.42	9.22	Impinger 3 (grams)	4.0
Static Press. (in. H2O)	-19.50				Impinger 4 (grams)	12.9
Stack Height (ft)	30	<u> </u>				
Stack Diameter (in.)	70.9	Average	e = <u>10.26</u>	<u>9.54</u>		
Stack Area (sq.ft.)	27.417				Total Gain (grams)	588.9
Minutes Per Reading	5.0					

Collection:

10.0

Minutes Per Point

 Filter (grams)
 0.0000

 Washings (grams)
 0.0000

 Impinger (grams)
 0.0000

 D/F TEQ (ng)
 0.0110

						Dry Ga	as Temperatu	re	Wall	
Traverse	Point	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Stack	Dist.	Isokin.
		(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(oF)	(in.)	(%)
		0.0	988.610							
1	1	5.0	991.820	0.470	1.20	69	69	316	1.5	103.6
		10.0	994.990	0.460	1.17	69	69	318	1.5	103.6
	2	15.0	998.090	0.440	1.12	69	69	318	4.7	103.5
		20.0	1001.150	0.430	1.09	69	69	318	4.7	103.4
	3	25.0	1004.260	0.440	1.13	70	70	314	8.4	103.4
		30.0	1007.400	0.450	1.19	70	70	314	8.4	103.3
	4	35.0	1010.620	0.460	1.22	71	71	313	12.5	104.5
		40.0	1013.860	0.470	1.22	71	71	312	12.5	103.9
	5	45.0	1016.910	0.420	1.22	73	73	312	17.7	103.1
		50.0	1019.930	0.410	1.10	74	74	311	17.7	103.0
	6	55.0	1023.300	0.510	1.36	74	74	313	25.2	103.3
		60.0	1026.770	0.540	1.44	74	74	313	25.2	103.4
	7	65.0	1030.280	0.550	1.47	75	75	313	45.6	103.4
		70.0	1033.770	0.540	1.45	75	75	313	45.6	103.8
	8	75.0	1037.250	0.540	1.44	75	75	315	53.2	103.6
		80.0	1040.790	0.560	1.49	75	75	316	53.2	103.6
	9	85.0	1044.230	0.530	1.42	76	76	317	58.3	103.3
		90.0	1047.660	0.520	1.39	76	76	317	58.3	104.0
	10	95.0	1050.950	0.480	1.28	76	76	318	62.5	103.9
		100.0	1054.310	0.500	1.33	76	76	319	62.5	104.0
	11	105.0	1057.540	0.460	1.23	77	77	318	66.1	104.0
		110.0	1060.700	0.440	1.17	77	77	318	66.1	104.0
	12	115.0	1063.770	0.420	1.12	76	76	318	69.4	103.6
		120.0	1066.730	0.390	1.04	76	76	318	69.4	103.6
		0.0	1066.730							
2	1	5.0	1069.350	0.310	0.86	77	77	320	1.5	102.8
		10.0	1072.020	0.320	0.85	77	77	320	1.5	103.1
	2	15.0	1074.660	0.310	0.82	77	77	320	4.7	103.5
		20.0	1077.260	0.300	0.80	77	77	319	4.7	103.6
	3	25.0	1079.680	0.260	0.69	78	78	317	8.4	103.2
		30.0	1082.160	0.270	0.72	78	78	317	8.4	103.8
	4	35.0	1085.100	0.380	1.02	76	76	316	12.5	104.1
		40.0	1087.950	0.360	0.96	76	76	316	12.5	103.7

_			Average:	0.459	1.225	75.3	75.3	314.9		103.6
		120.0	1141.870	0.510	1.37	77	77	313	69.4	103.9
	12	115.0	1138.460	0.540	1.45	77	77	313	69.4	103.7
		110.0	1134.960	0.630	1.70	77	77	310	66.1	103.8
	11	105.0	1131.170	0.610	1.65	77	77	310	66.1	103.8
		100.0	1127.440	0.590	1.60	77	77	309	62.5	102.9
	10	95.0	1123.800	0.570	1.54	77	77	309	62.5	103.9
		90.0	1120.190	0.500	1.35	77	77	308	58.3	103.4
	9	85.0	1116.820	0.510	1.37	77	77	310	58.3	103.4
		80.0	1113.420	0.570	1.54	77	77	313	53.2	103.3
	8	75.0	1109.840	0.580	1.56	77	77	313	53.2	103.8
		70.0	1106.210	0.600	1.61	78	78	313	45.6	103.8
	7	65.0	1102.510	0.570	1.53	78	78	314	45.6	104.0
		60.0	1098.900	0.340	0.91	77	77	315	25.2	103.8
	6	55.0	1096.120	0.300	0.80	77	77	315	25.2	104.1
		50.0	1093.500	0.340	0.91	77	77	316	17.7	103.9
	5	45.0	1090.720	0.340	0.91	77	77	316	17.7	103.5

Client:Metro VancouverDate:24-Aug-18Jobsite:WTE (Burnaby, BC)Run:3 - PCDD-PCDF

Source: Unit 1 **Run Time:** 08:37 - 12:40

Dioxin Concentration: 0.9 pg/dscm 0.0004 gr/dscf

0.5 pg/Acm 0.0002 gr/Acf

Emission Rate: see D/F data Table 2

Sample Gas Volume: 4.3628 dscm 154.072 dscf

Total Sample Time: 240.0 minutes

Average Isokineticity: 102.4 %

Flue Gas Characteristics

Moisture: 14.10 %

Temperature 153.3 oC 307.9 oF

Flow 1261.1 dscm/min 44535 dscf/min

 21.02 dscm/sec
 742.2 dscf/sec

 2240.8 Acm/min
 79133 Acf/min

Velocity 14.662 m/sec 48.10 f/sec

Gas Analysis 9.86 % O2 10.29 % CO2

 $30.041 \ Mol. \ Wt \ (g/gmole) \ Dry \\ 28.343 \ Mol. \ Wt \ (g/gmole) \ Wet$

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client:Metro VancouverDate:24-Aug-18Jobsite:WTE (Burnaby, BC)Run:3 - PCDD-PCDF

Source: Unit 1 **Run Time:** 08:37 - 12:40

Control Unit (Y)	Gas Anal	ysis (Vol. %	o):	Condensate Collection:				
Nozzle Diameter (in.)	0.2660		CO2	O2	Impinger 1 (grams)	510.0		
Pitot Factor	0.8489	Trav 1	10.00	10.18	Impinger 2 (grams)	12.0		
Baro. Press. (in. Hg)	29.95	Trav 2	10.58	9.53	Impinger 3 (grams)	2.0		
Static Press. (in. H2O)	-19.50				Impinger 4 (grams)	13.4		
Stack Height (ft)	30							
Stack Diameter (in.)	70.9	Average	Average = 10.29		rage = 10.29 9.86		•	
Stack Area (sq.ft.)	27.417				Total Gain (grams)	537.4		
Minutes Per Reading	5.0							

Collection:

10.0

Minutes Per Point

 Filter (grams)
 0.0000

 Washings (grams)
 0.0000

 Impinger (grams)
 0.0000

 D/F TEQ (ng)
 0.0038

						Dry Ga	as Temperatu	re	Wall	
Traverse	Point	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Stack	Dist.	Isokin.
		(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(oF)	(in.)	(%)
		0.0	142.136							
1	1	5.0	145.320	0.460	1.23	67	67	305	1.5	102.3
		10.0	148.350	0.420	1.12	67	67	307	1.5	101.9
	2	15.0	151.400	0.420	1.12	67	67	308	4.7	102.7
		20.0	154.490	0.430	1.14	67	67	308	4.7	102.8
	3	25.0	157.650	0.450	1.20	68	68	306	8.4	102.5
		30.0	160.840	0.460	1.23	68	68	307	8.4	102.4
	4	35.0	163.880	0.410	1.10	69	69	305	12.5	103.0
		40.0	166.870	0.400	1.07	70	70	305	12.5	102.4
	5	45.0	170.150	0.480	1.28	71	71	306	17.7	102.4
		50.0	173.480	0.500	1.35	71	71	307	17.7	102.0
	6	55.0	176.800	0.490	1.31	71	71	308	25.2	102.7
		60.0	180.250	0.530	1.42	71	71	308	25.2	102.7
	7	65.0	183.710	0.540	1.45	71	71	308	45.6	102.0
		70.0	187.130	0.520	1.39	71	71	307	45.6	102.7
	8	75.0	190.790	0.600	1.60	73	73	310	53.2	102.2
		80.0	194.390	0.580	1.55	74	74	311	53.2	102.1
	9	85.0	197.530	0.440	1.18	74	74	310	58.3	102.1
		90.0	200.860	0.490	1.31	74	74	309	58.3	102.5
	10	95.0	204.160	0.480	1.30	75	75	309	62.5	102.5
		100.0	207.420	0.470	1.27	75	75	309	62.5	102.3
	11	105.0	210.800	0.500	1.35	75	75	308	66.1	102.8
		110.0	214.140	0.490	1.32	75	75	308	66.1	102.6
	12	115.0	217.230	0.420	1.13	76	76	308	69.4	102.3
		120.0	220.210	0.390	1.05	76	76	308	69.4	102.3
		0.0	220.210							
2	1	5.0	223.200	0.390	1.05	76	76	308	1.5	102.7
		10.0	226.060	0.360	0.97	76	76	307	1.5	102.1
	2	15.0	228.870	0.350	0.94	76	76	308	4.7	101.8
		20.0	231.650	0.340	0.92	76	76	308	4.7	102.2
	3	25.0	234.350	0.320	0.86	76	76	306	8.4	102.2
		30.0	237.150	0.340	0.92	76	76	306	8.4	102.8
	4	35.0	240.020	0.360	0.98	76	76	306	12.5	102.4
		40.0	242.710	0.320	0.86	77	77	308	12.5	101.8

_			Average:	0.467	1.259	74.6	74.6	307.9		102.4
		120.0	297.540	0.460	1.25	80	80	309	69.4	102.8
	12	115.0	294.270	0.490	1.33	80	80	310	69.4	101.5
		110.0	290.940	0.640	1.75	79	79	310	66.1	102.7
	11	105.0	287.100	0.620	1.68	79	79	309	66.1	102.6
		100.0	283.320	0.630	1.71	79	79	309	62.5	102.3
	10	95.0	279.520	0.650	1.76	79	79	309	62.5	102.4
		90.0	275.660	0.600	1.63	79	79	309	58.3	102.6
	9	85.0	271.940	0.570	1.54	78	78	308	58.3	102.6
		80.0	268.320	0.550	1.50	78	78	309	53.2	102.5
	8	75.0	264.770	0.580	1.57	78	78	309	53.2	102.3
		70.0	261.130	0.560	1.52	78	78	308	45.6	102.3
	7	65.0	257.550	0.540	1.47	78	78	308	45.6	102.8
		60.0	254.020	0.340	0.92	78	78	307	25.2	102.5
	6	55.0	251.220	0.350	0.95	78	78	307	25.2	102.8
		50.0	248.370	0.360	0.98	77	77	308	17.7	102.0
	5	45.0	245.510	0.340	0.92	77	77	309	17.7	102.8

APPENDIX 4 FIELD DATA SHEETS

Chritish CVOL = 0.36 Junal L.C.Vol = 0.18 FINAL TOTAL GAIN S.H.

CLIENT	11/1/1			NOZZLE		DIAMETER, IN.	ER, IN. 00	1,660	IMPINGER,	INITIAL	FINAL	TOTAL GAIN	AIN
V. //	N/C		,	PROBE		2-C Cp	0.0	682	VOLUMES	(m)	(mL)	(mL)	
SOURCE (1)	mt1 11	¢	100			•			lmp. #1	0			
NETER / RUN	No 1 Cond	201	10011001		TH		•		lmp. #2	001			
DATE QUANT	22/18			STATIC PRE	STATIC PRESSURE, IN. H2O	н20 <i>—/ 7</i>	<i>1</i>		lmp. #3	0			
OPERATOR: 0			0	STACK DIAMETER	NETER 40.	2,2			lmp. #4	200			
CONTROL UNIT	140	15 0, 422	1	STACK HEIGHT	SHT .				lmp. #5				
	ľ	ΩHΩ ©V							lmp. #6				
BAROMETRIC PRESSURE, IN. Hg	SURE, IN. Hg 79	ģ		INITIAL LEAK TEST	K TEST 2	1110	15 11		Upstream Diameters	ameters	:		
ASSUMED MOISTURE, BW	(E, Bw /5 770			FINAL LEAK TEST	TEST 0.	102 00	16		Downstream Diameters	Diameters			
Curl Tool	Dry Gas Meter #3	Ditect AD	Orition ALI			Tomanorous of			Duma Voc	1	4.00		T
Point Clock Hille	The Care made in	N H.O	IN H.O	Dray Gas	Stack	Drobe	Box	Impinoar	rump vac.	ryı	ryilles		
111111	908.92	1120	12. 1.20	Outlet	Stack	3001	Pos	Exit	911 .YII	Vol. %	Vol. %	XRO	
	911.86	0.36	7.05	12	309	149	150	5 /	٩	10.0	10.2	52	
/	1.41	2.38	1.10	7%	309	,		57	Į			17/2	
7	ŗ	05.0	1,03	50	3/3	250	122	37	Ø			53	
7	, St. '02b	0.30	1,63	qų	312			27	Z			5.3	
~	923,61	35	, d&	S C C C C C C C C C C C C C C C C C C C	713	250	25/	57	¥	/ 10.b	10,1	58	
3	0,76,47	0.34	, 93	95	311			54	7	2	•	5%	
h		7.35	<u>8</u>	ું ખેટ	3.00	251	.250	45	Œ			5%	
h	932:32	0.36	ار ان	0. N	711			57	ĵ~			_ E5	
√,	6 35, 27	0, 35	<u></u>	2 55	6)	250	.750	5.4	Ø	1'01'	9,01	.1/5	
5	9.3% 1.4%) 3 (1,03	56	215			25	7			53	
9	12, 14,6	8	7.5	કું કુ	213	750	751	200	<u>م</u> و ت			53	
0	1	0 40	5	25	353			26				7,7	
7	Sant to			250	2/2	250	251	7	d'iv	6.0	7,7	100 m	
Į,	れたったか		1,20	22	202	1 / 1	0/1/	1	م. ت:			2/3	Ī
	20.4.60	25	2001	X	2/10	107	120	4	ĵ			120	
	27 120	A CONTRACTOR	1, 70	2	36/4	10%	0124	7	0	100	0	12	
	11 130 H	400	1,0,1	200	2866	62 /	7	No.	b	0.00	1	1	
	インググラ	え れ	500	250	JAN 1	120	250	N.	20			1 B	T
2/	の大角		\{\circ\}_{\circ}^{\circ}	36	3/1	7		N	V			777	
	41.140	S 45	200	20	1/0	120	151	200	K	701	20	かん	
	9F0, <0	Q 460	1.33	26	1/2			イン	6			10 V	
2	61.5	5. A	クグン	20	310	100	12/	55	No.			50	
12/4/90	487.34	0,48	1.39	26	310			28	4			56	
				•						2		É	
													T

Christal LC. Vol=0.21 Juna 1 L. C Vol=0.18

				NOZZLE		DIAMETER, IN	R. IN.	7227	IMPINGER	INITIAL	FINAL	TOTAL GAIN
CLIENI	1. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			PROBE	1	do)	0 83	62/	VOLUMES	(mľ.)	(mľ.)	(mL)
SOURCE	1-1m		,						lmp. #1	0	565	563
PARAMETER / RUN No	200	1001	1/000/	PORT LENGTH	E		,		Imp. #2	1001	187	C'£
DATE GULD	. 23/18			STATIC PRESSURE, IN. H2O	SSURE, IN. F	/— ozi	7.3		lmp. #3	0	1.	Ъ
OPERATOR: 0	,			STACK DIAMETER	ETER 📈	2.90			lmp. #4	200		
CONTROL UNIT	15-15 Har	666°0 ×	£,	STACK HEIGHT	노				lmp. #5			
		, , <u>@</u> Hv							lmp. #6			
BAROMETRIC PRESSURE, IN. Hg	56	.45		INITIAL LEAK TEST	TEST 0 0	Co 701	15"		Upstream Diameters	ameters		
ASSUMED MOISTURE, Bw	E, Bw 15 1/5			FINAL LEAK TEST	0.0 IS31	Cr 70	15"		Downstream Diameters	Diameters		
											1	
Clock Time	Dry Gas Meter ft3	Pitot ∆P	Orifice AH			Temperature °F			Pump Vac.	Fyrites,	× '1	1
Point 09:07	19,836	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	XAO
	991.17	140	1.20	65	3/6	122	194	57.	Q	0.01	001	49
	66766	940	1.1.1	22	318			37	6			6/6
W.	60 366	15.6	1:12	52	3/1	250	250	75	O			64
2	1001. 15	0.43	501	200	310			24	2		9	49
3	1004, 20	01.44	1,13	202	3/4	251	250	N. Y.	9	0.0	2, 7	20
[]	707.4	0, 45	6/"/	20	3/14)		52	2			22
6	1010, 6 4.	0.46	1221	7/	.3i3 I	750	250	57	7			46
	1013,96	27.0	1,75	72	312	,		57	7			22
3	2.0	75 0	27	75	37	R	385	; }	7.5	0,01	c/01	17 17
₹	6	0.41	0]	3	317			27	7			4/2
\$	1023, 30	0,5/	1.35	7	25,	250	752	5.7	1			7)7
9	او	0.54	1361	17	313			7	£		- 1	8/7
12	10.30,28	0.55	1.17	33	313	250	250	T T	4	1,01	10 N	5.0
110	19 33 77	01.5%	1,42	12	7/7		,	7	1			2/1
\$	1034 22	9, 29	1,77	200	3/5	150	250	n	de de			o',
	107111 43	ロケンク	11/1/1		22	1	010	7	\$		100	7/2
26	1424	4.5.3	1.20	g	1/1	430	122	1	7	C:///	١	100
	00 0 70/	20.00	34.1	200	1/6	130	198	N. V.	0			100
63/	16 4501	0 20	26:1	NON	6/4			V	6			100
	1054 34	0.46	1.23	tt	316	150	567	3	6	0'01	101	1/8
	1060: 70	ph 0	1.17	77	3/6	,		55	5			3
7	1963.77	<u> </u>	61.1	70	316	121	150	38	T.			25
77	1066.73	136 39	1:04	76	311							32

			NO771 F		DIAMET	1 N N 3	182	MPINGER	INITIAI	FINAI	TOTAL GAIN	
CLIENT M.	2		PROBE		かった	C C 1 79	60	VOLUMES		(mL)	(mL)	2
SOURCE	Wait -1	,					+	Imp. #1	0	202	563	#(:\)
PARAMETER / RUN No	1	CNO 1190	PORT LENGTH	E	•	•		Imp. #2	001	10K	7	? >
DATE CHLG.	9.2.2118		STATIC PRE	PRESSURE, IN. H2O	6/~	ý		lmp. #3	0	16	4	
			STACK DIAMETER	ETER 14	0.4"			lmp. #4	200			
CONTROL UNIT	174-15 V 0.2	4416	STACK HEIG			,		mp. #5				
BAROMETRIC PRESSURE, IN. Hg	19		INITIAL LEAK	LEAK TEST 7	00200	1		Upstream Diameters	ameters			
ASSUMED MOISTURE, BW	3		FINAL LEAK TEST	TEST 00	00200	13		Downstream Diameters	Diameters			
										1		
Clock Time	Dry Gas Meter ft Pitot ΔP	Orifice AH			Temperature °F			Pump Vac.		Fyrites/10/10		
Point	1066.73 N. H.O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %	XAN	
1	. 1	0.66	27	320	757	151	26	a	10.01	16	24	
	1072.020 32	1.83	22	120			85	J			200	
7	18 000 6501	18.82	22	320	181	121	29	В			53	
7	1077,160 30	0.00	77	3/4			3	No.			54	
74	1979.650	10.01	7,	2/1	150	150	0	de	10.5	7.5	55	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1,964.1519, 14	9.7%	The state of the s	1/4			W.				27	
77	15. 1001.0001	100	201	400	120	1.50	The state of the s	4			200	
- 1	1, 2006, 2000	200	100	2/2		111	水水	4	1		2/2	
UM	100011001	100	111	2	10%	22	7	Vs.	7.7	7.6	7/1	
2	12 00000	1 2 X C	KK	水水	071	11/4	To the second	4			7	
20	25 006 14 01	16:0 2	KK	12		+	N	18			1	
X	7012 1011	1.53	X	3/4	150	121	N.	17	10.4	600	11/2	
7	1106,212.60	1.61	22	137.3			32	de			1	
ď	1109,840.5	17.30	77	3/3	149	157	2	2			12	
1	1113.420 57	1.54	ナナ	313			25	7.			24/	
6	رَ	133	7	2	252	256	28	õ	0'07	1, 10	ਰ	
2	11.20, 19, 10, 50	1,35	++	308			200	2		,	1,7°	
0/	1123 000 6.57	1.00	1	200	150	150	2	2			53	
	11/44/4/10/20	1:00	77	2000		0///	6	9			200	
	12 344 1901	1,02	M	5/2	121	142	S	2/2	011	\$ · · ·	22	
	1124,200		111	2/2	9110	4	N	2			5%	
F	1136 15	パイン	111		144	246	2	2			52	
12/12/110	114112000	1134	1	77			1/2/2	2/			24	
						1						

Chritish CVM. =078 Friesh C. VM =0.16 BH.

				NO771 E		NI QUETED IN	N C NI CE		MDINICED	INITIAL	FINAL	TOTAL GAIN	NIV
CLIENT //	1 11/1/1/1			PROBE		00 7-7	100	250	VOLUMES	(mL)	[m]	(mL)	
SOURCE	Mark -1								Imp. #1	6	1/25	7	
PARAMETER / RUN No	N No	1000	KINE	PORT LENGTH					lmp. #2	1001	112	19	
DATE QUE	0.14.11			STATIC PRESSURE, IN. H2O	SURE, IN. H	20/	13		lmp. #3	0	8	2	
OPERATOR: (STACK DIAMETER	ETER 🛫	6'1			Imp. #4	200			
CONTROL UNIT	A4~15 Y	197. U Y	1	STACK HEIGHT	 - -				lmp. #5				
		ΔH@			ħ		*		lmp. #6				
BAROMETRIC PRESSURE, IN. Hg	11	.95 5		INITIAL LEAK TEST	<u>`</u>	100% 100	100		Upstream Diameters	ameters			
ASSUMED MOIST	URE, Bw /5 %			FINAL LEAK TEST	TEST 0.0	22 10	15:		Downstream Diameters	Diameters			
Clock Time	e Dry Gas Meter ft ³	Pitot AP	Orifice AH		Te	Temperature °F			Pump Vac.	Fyr	Fyrites		
Point np.37	201 Ch1 t	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Вох	Impinger	IN. Hg	CO ₂	O ₂	CAX	
	198.32	940	1.73	72	502	1252	197	36	0	0.01	10.2	43	
	148.351	24.		72	なのが			80	O			73	
7	151.401	1.47	1.72.	67	300	251	250	36	Ø			75	
7	164,49	9.43	11/1/	120	202			2	0			7	
€~\x	157.65	カダル	1.10	2	2000	250	120	le le	0	105	6.5	20	
7	160 194	7110	11/1	20	シケイ			S.	الن			1/2/	
1	1.65.00	175	100	200	52	120	122		W			7	
h	100,001	140	イロイ	40	T SS	4		7	The state of the s		*	100	ę
M	1,40,15	11/2	1.45	Y	200	150	181	27	1	50	0.11		
2	173,40	1000	135	1	イジケイ			14	W			27	
0	160,001	67.6	1.8		2007	101	100	27	4			26	
0	169,45	4.00	THE PERSON NAMED IN COLUMN TO THE PE	11/11	200	and the	(N	de la constant de la	1		2/2	
1	184. 11	カップ	1,43	1/4	2000	161	1250	1h	4	2.5	01		
1/2		1	J٧	十 火 十	1	1000	230	1	Ą			272	
		200 C	25.7				3	4	r			45	Ī
0		Ļ.	le le	7	407	250	250	42	y⊊!	0,01,	10,1	43	
d	200,86	0, 40	121	H	304			7/5	20			15/15	
0)	20416	0. 18	1130	K	305	250	181	27	d.			13/3	
0/	207,42	27 72	1.27	3	202			10	3				
	210 00	Ø. 50	135	117	200	757	150	V V	2	10.5	2,3	10	
	2/4, 14	6/2 10	1,31	N.	3000			0	7			200	
77	217.23 6	0.42	10/0	200	300	121	16/1	V	0			200	
71,	220.21	7, 39	1,05	70	30%		•	200	2			20%	
				1									Ī
													Ī

CE METER / RUN NO ATOR: ROL UNIT METRIC PRESSURE, IN. Hg Clock Time Dry Gas Meter ft		PROBE		O do	0,67	30	VOLUMES Imp. #1	(ml.)	(ml.)	(mL)
AETER / RUN No ATOR! ATOR! ATOR! AND MOISTURE, BW / S / C / C / C / C / C / C / C / C / C	PUMPUL	PORT LENGTH					Imp. #1	0		
ATOR: ATOR: ATOR: ATOR: ATOR: ACL UNIT METRIC PRESSURE, IN. Hg ALTOR: AL	THE THIRT	TPORT LENGTH						. de.		
ATOR: ROL UNIT NETRIC PRESSURE, IN. Hg MED MOISTURE, Bw Clock Time Dry Gas Meter ft ²							lmp. #2	727		
V Y AHIT AHIS WANTE, IN. HIS WANTE, BW A Meter ft' A Time Dry Gas Meter ft'		STATIC PRESSURE, IN. H2O	RE, IN. H2(8.5/- c	2		lmp. #3	0		
Y AH		STACK DIAMETER	R HO.	0			Imp. #4	200		
4 eter ft.	9.9971	STACK HEIGHT					lmp. #5			
19.43					7		lmp. #6			
13%		INITIAL LEAK TEST	ST 0.0L	101	50		Upstream Diameters	ameters		
Clock Time Dry Gas Meter ft ³		FINAL LEAK TEST	0'0'	1000	2:		Downstream Diameters	Diameters		
Clock Tillie Dry Gas marks in	tot AD Oriting AU		Tom	noroture of			Dum Vac	E	Evritee	
		ŀ		remperature r	-		rump vac.	5	- 1	
Point 220.21	IN. H ₂ O IN. H ₂ O	Dry Gas Ste	Stack	Probe	yog	Impinger Exit	IN. Hg	Vol. %	O ₂ Vol. %	04X
1 223.20 0.3	34 1,05	197	208	246	727	57	4	10,5	7.5	1sts
226,060,0	760 36	. 97	120			57	ď	,		13
	35 0.44	8 32	100	1862	1/57	47	, J			24
731.650.	24 0.72	26 3	00,			4	B	·		K
3 234.3510.	24.0 16	26 3	90	760	121	The state of the s	1	0.14	9.2	42
31 1 032.1510.	34 0,92	76 3	90			12	D			275
1 740.02 0.	36 9.95	160 30	00	251	252	1	1			Ch'
4 242. 710.	32 0 16	2 22 3	20	(26	Q			40
[5] 245, 31.0.	34 0,42	74 3	30	150 1	152	200		10.0	10.4	23
5 248.37.31	36 0.98	74 8	20			2	L			43
6 25/220.	25 2.97	17 3	100	750	152	50				77
254,020.	34 0.92	11 1	120			100	D	_		1/1/2
7 257.55 0.	54147	76 3	200	181	75%	2	A.	0	7:7	43
2 761.13.0	56 1.52	N. C.	0			Y	B			45
0 12 150	58 1.57	12	200	25%	18/1	4	5			X
7.65.320	55 1.50	177	70			200	2		\$	77
9 271.94.9	57 7.54	76		750	750	26	2	10.5	8.6	202
7 275, 66 0.6	00 1.63	74	200				7			7/
10 779.520.0	65 1.20	799 31	700	100	727	1/2	20			20
10 743, 32 0.6	63 1.76	79 7	000			200	24			1/0
10.	62 1.00	129 3	1.60	150	287	5%	γ	10.5	7.6	Z
10 78 7062 11	521 178	E 1 67. L	01			S. F.	6			X
47	CS'/ 65	S 0#	0/	150	18	20	Ŋ			36
10 12:40 797 54 54 54 54 54 54 54 54 54 54 54 54 54	46 1,25	100	90	N. Carlot		53	0			28
								42)
•										
			1							
	AMARIAMENT									

APPENDIX 5 CALIBRATION DATA and CERTIFICATION

A.Lanfranco & Associates inc.

EPA Method 5 Meter Box Calibration English Meter Box Units, English K' Factor

(in. Hg) 9-Jul-18 Barometric Pressure: 30.05 Theoretical Critical Vacuum: 14.17 Date: AU 15 0028SPC-081915-1

Model #: Serial #:

IIIIIIIIII For valid test results, the Actual Vacuum should be 1 to 2 in. Hig greater than the Theoretical Critical Vacuum shown above. IMPORTANT The Critical Orifice Coefficient, K*, must be entered in English units, (ft)-3° (deg R)-0°,5((in. Hg)* (min)).

	Average (dea F)	77.0	79.0	80.0	81.0	82.0				ş	(value)	0.727	0.732	0.731	0.742	0.733	0.733
s,	Ambient Temperature	77.0	81.0	81.0	82.0	82.0		*****									Average Ko>
-CRITICAL ORIFICE READINGS-	- Amb Initial (deg F)	77.0	77.0	79.0	80.0	82.0		ORIFICE	CTOR	Variation		0.014	0.014	0.034	-0.065	0.004	Ave
TTICAL ORIF	Actual Vacuum (in Hg)	18.2	20.8	22.2	23.2	25.0		-	CALIBRATION FACTOR	Value	(mm H2O)	43.87	43.88	44.38	41.86	43.61	43.5
Ď	K' Orifice Coefficient (see above)	0.8185	0.5956	0.4606	0.3560	0.2408	***************************************		CALI		~	1.727	1.727	1.747	1.648	1.717	1.713
	Orifice Serial# (number)	73	63	55	48	40	****										Average dH@>
	Final Temps. st Outlet F) (deg F)	77.0	78.0	80.0	79.0	80.0	*********	METER	N FACTOR Y	Variation	(unumper)	0.001	-0.003	-0.006	0.008	0.000	Avera
	je g	0.77	78.0	80.0	0.62	80.0	JLTS ******	- DRY GAS METER -	CALIBRATION FACTOR	Value	(unmper)	1.001	966.0	0.993	1,008	1.000	0.9997
	Initial Temps. Inlet Outlet (deg F) (deg F)	76.0	77.0	78.0	79.0	79.0	RESI										Average Y>
	Initial Te Inlet (deg F)	76.0	0.77	78.0	79.0	79.0	******	1	VOLUME	Vcr	(cn II)	15.053	11,758	9.708	8.449	4.767	Avera
METER READIN	Volume Total (cu ft)	14.900	11,717	9.730	8.338	4.741	**************************************	ORIFICE	VOLUME CORRECTED	Vcr(std)	(ilters)	420.8	327.5	269.9	234.5	132.0	
	Volume Final (cu ft)	493,900	505,917	515.730	524.338	529.141	电荷收收收收收收收收收收收		VOLUME CORRECTED	Vcr(std)	(tr una)	14.859	11.564	9.530	8.279	4.662	
	Volume Initial (cu ft)	479.000	494.200	506.000	516.000	524.400											
	Time (min)	14,00	15.00	16.00	18.00	15.00		S METER	VOLUME CORRECTED	Vm(std)	(sieis)	420.5	328.7	271.7	232.6	132.0	
	dH (in H2O)	3.50	1,85	1.12	0.63	0.30		DRY GAS METER	VOLUME	Vm(std)	(10 00)	14.848	11.608	9,595	8.213	4.662	

		Results	Percent of	Absolute	%00.0	%00.0	%00.0	0.00%	0.00%
NOI	18768	Re	Variation	(dedF)	0	0	0	0	0
TEMPERATURE CALIBRATION	Omega Model CL23A S/N:T-218768	Temperature Device	Reading	(deg F)	32	100	300	200	1000
F	Calibration Standard>	Reference Temperature	Set-Point	(deg F)	32	100	300	200	1000

Note For Calterton Faster V in enter of the reading of the calcidation meet in the dry gan review, acceptable between of individual values from the average is +-0.02.

For Calter of an extract relief or the order of there

Calibrated by: Mat Harrington

Date: July 9, 2018

		BAROMETE	R CALIBRATION	FORM		
		Pbar E	nv Canada	Device (inc	hes of Hg)	Difference
					Elevation	
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)
LA	July 17, 2018	101.6	30.01	29.90	29.97	0.04
DS	July 17, 2018	101.6	30.01	29.91	29.98	0.03
CL	July 17, 2018	101.6	30.01	29.89	29.96	0.05
ML	July 17, 2018	101.6	30.01	29.90	29.97	0.04
МН	July 17, 2018	101.6	30.01	29.91	29.98	0.03
SH	July 17, 2018	101.6	30.01	29.91	29.98	0.03
JB	July 17, 2018	101.6	30.01	29.97	30.04	-0.03
SF	July 17, 2018	101.6	30.01	29.99	30.06	-0.05
JG	July 17, 2018	101.6	30.01	29.89	29.96	0.05
SB	July 17, 2018	101.6	30.01	29.89	29.96	0.05

Calibrated by:

Daryl Sampson

Date:

July 17, 2018

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

http://www.weatheroffice.gc.ca/city/pages/bc-74 metric e.html

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

GLASS NOZZLE DIAMETER CALIBRATION FORM

Date:

Calibrated by: Michael Goods June 22, 2018 /

Signature:

ound	,		<i>f</i>)
· ·			L /
ŧ	1	<i>a</i> 1	
<u> </u>	\mathcal{A}	*	Y

A G-165 P-20 J E P-13	(inch) 0.1250 0.1640 0.1855 0.1880 0.2070 0.2112	(inch) 0.1240 0.1655 0.1865 0.1880 0.1895 0.2080	(inch) 0.1245 0.1660 0.1835 0.1880 0.1882	(inch) 0.0010 0.0020 0.0030 0.0000	(inch) 0.1245 0.1652 0.1852	(ft²) 0.0000845 0.0001488
G-165 P-20 J E P-13 L	0.1640 0.1855 0.1880 0.1880 0.2070 0.2112	0.1655 0.1865 0.1880 0.1895	0.1660 0.1835 0.1880	0.0020 0.0030	0.1652	0.000148
P-20 J E P-13 L	0.1855 0.1880 0.1880 0.2070 0.2112	0.1865 0.1880 0.1895	0.1835 0.1880	0.0030		
J E P-13 L	0.1880 0.1880 0.2070 0.2112	0.1880 0.1895	0.1880		0.1852	
E P-13 L	0.1880 0.2070 0.2112	0.1895		0.0000		0.000187
P-13 L	0.2070 0.2112		0.1882	0.0000	0.1880	0.000192
L	0.2112	0.2080	J. 1002	0.0015	0.1886	0.000193
L		2.2000	0.2075	0.0010	0.2075	0.000234
		0.2120	0.2105	0.0015	0.2112	0.000243
G-215	0.2160	0.2150	0.2130	0.0030	0.2147	0.000251
Q	0.2190	0.2170	0.2185	0.0020	0.2182	0.000259
V-07	0.2430	0.2460	0.2450	0.0030	0.2447	0.000326
G-250	0.2480	0.2500	0.2555	0.0075	0.2512	0.000344
P	0.2580	0.2570	0.2575	0.0010	0.2575	0.000361
P-2	0.2790	0.2780	0.2790	0.0010	0.2787	0.000423
G-280	0.2850	0.2840	0.2850	0.0010	0.2847	0.000442
G-306	0.3060	0.3060	0.3065	0.0005	0.3062	0.000511
V-06	0.3200	0.3210	0.3210	0.0010	0.3207	0.000560
G-337	0.3380	0.3355	0.3365	0.0025	0.3367	0.000618
P-27	0.3390	0.3380	0.3390	0.0010	0.3387	0.000625
G-343	0.3430	0.3440	0.3435	0.0010	0.3435	0.000643
P-9	0.3650	0.3640	0.3655	0.0015	0.3648	0.000726
G-368	0.3685	0.3665	0.3690	0.0025	0.3680	0.000738
G-372	0.3710	0.3730	0.3740	0.0030	0.3727	0.000757
ı	0.3785	0.3785	0.3785	0.0000	0.3785	0.000781
0	0.3910	0.3915	0.3905	0.0010	0.3910	0.000833
P-14	0.3910	0.3935	0.3920	0.0025	0.3922	0.000838
P-17	0.4070	0.4075	0.4065	0.0010	0.4070	0.000903
c	0.4255	0.4225	0.4235	0.0030	0.4238	0.000979
#21	0.4305	0.4325	0.4315	0.0020	0.4315	0.001015
G-434	0.4345	0.4335	0.4350	0.0015	0.4343	0.001028
G-437	0.4340	0.4350	0.4360	0.0020	0.4350	0.001032
G-468	0.4680	0.4670	0.4680	0.0010	0.4677	0.001192
P-29	0.4650	0.4650	0.4660	0.0010	0.4653	0.001181
P-7	0.4965	0.4940	0.4930	0.0035	0.4945	0.001333
В	0.5015	0.5030	0.5025	0.0015	0.5023	0.001376
G-540	0.5405	0.5400	0.5405	0.0005	0.5403	0.001592
MV-248	0.2485	0.2490	0.2485	0.0005	0.2487	0.000337
MV-248	0.2660	0.2650	0.2670	0.0020	0.2660	0.000385
MV-280	0.2800	0.2795	0.2810	0.0015	0.2802	0.000428
MV-02	0.3040	0.3070	0.3040	0.0030	0.3050	0.000507
M V-01	0.3050	0.3060	0.3070	0.0020	0.3060	0.000510

Where:

D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in. (a)

(b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.

Average = average of D1, D2 and D3 (c)

Pitot Tube Calibration

Date:

11-Jul-18

Pbar (in.Hg): 29.69

Temp (R): 530 Dn (in.): 0.25

Ditat ID:

Pitot ID:	7A			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.290	0.400	35.8	0.8430	0.0006
0.360	0.500	39.9	0.8400	0.0035
0.460	0.640	45.1	0.8393	0.0042
0.570	0.790	50.2	0.8409	0.0026
0.700	0.940	55.6	0.8543	0.0108
		Average:	0.8435	0.0043

Pitot ID:

PROCID.				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		Average .	#DIV//OI	#DI\//01

PITOT IU:	/B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.120	0.160	23.0	0.8574	0.0111
0.260	0.370	33.9	0.8299	0.0164
0.410	0.550	42.6	0.8548	0.0085
0.530	0.740	48.4	0.8378	0.0085
0.640	0.865	53.2	0.8516	0.0053
		Average:	0.8463	0.0099

Pitot ID:

	PILOLID.				
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
			0.0	#DIV/0!	#DIV/0!
			0.0	#DIV/0!	#DIV/0!
			0.0	#DIV/0!	#DIV/0!
			0.0	#DIV/0!	#DIV/0!
			0.0	#DIV/0!	#DIV/0!
		Average:	#DIV/0!	#DIV/0!	

Pitot ID: 7 AL GVRD

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.290	0.400	35.8	0.8430	0.0041
0.350	0.480	39.3	0.8454	0.0065
0.470	0.670	45.6	0.8292	0.0097
0.600	0.840	51.5	0.8367	0.0021
0.720	1.000	56.4	0.8400	0.0012
		Average:	0.8388	0.0047

Pitot ID:

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
1				
-				
		Average:		

Pitot ID: 7C

Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.260	0.360	33.9	0.8413	0.0076
0.320	0.440	37.6	0.8443	0.0046
0.400	0.550	42.0	0.8443	0.0046
0.510	0.680	47.5	0.8574	0.0084
0.660	0.880	54.0	0.8574	0.0084
		Average:	0.8489	0.0068

Pitot ID:

	FROUD.				
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
	·				
			Average:		

Signature: MANA MA * Average absolute deviation must not exceed 0.01.

Calibrated by: Jeremy Gibbs

Date:

July 11, 2018

Shawn Harrington

has met the requirements of

Stack Testing for Pollutants (CHSC 7760)

School of Process, Energy and Natural Resources Chemical Sciences Program

Endorsed by:

Environment Canada

Province of British Columbia Ministry of Environment, Lands and Parks

School of Process, Energy and Natural Resources

Harsh Hemekey, Dean