

WWTP Emergency Storage / Langley SSO

Regional Wet Weather Management

Paul Kadota, MASc, MPA, PEng.

Director, Policy Planning & Analysis

Metro Vancouver Conference Day, May 12, 2023 59167963

Brent Burton, MASc, FEC, PEng.

Division Manager, Utility Policy Planning and Resilience

metrovancouver

OUTLINE

- 1. The Why
- 2. Cost Apportionment
- 3. Case for Not Building Bigger
- 4. Tips to Reduce Your Levies

Part 1: The Why

West Vancouver King Tide

CHALLENGES

Atmospheric river, November 2021

CHALLENGES

Storm surge and king tide, January 2022

1-IN-20-YEAR WETTEST DAY PRECIPITATION (PAST)

1-IN-20-YEAR WETTEST DAY PRECIPITATION (2050s)

GOAL: MINIMIZE WET WEATHER FLOWS

Direct rainwater to ground

- Public safety & environmental protection
- Eliminate regulatory noncompliance
- Build climate resiliency
- Address aging & failing assets
- Boost minimum stream flows
- Reduce costs for all

1.200.000 1,000,000 800.000 600,000 400.000 200,000 0 2013 2014 2015 2016 2018 2019 2020 2011 2017 2021 201

■ Volume per year

SSO volume per year (m³)

Part 2: Cost Apportionment

West Vancouver King Tide

COST APPORTIONMENT HISTORY

Original (Pre-1990s): 100% to each Sewage Area Regional cost apportionment principles (1990s):

- User-pay
- Benefiter-pay

Wet weather cost apportionment (starting 2024) Growth pays for growth (via DCCs)

Definitions

Expenditure Category	Secondary Upgrade Related	Not Secondary Upgrade Related
Operating	All Operating Costs	All Operating Costs
Tier I	Primary + Collection System	Collection System
Tier II	Secondary	Primary + Secondary
Tier III	Tertiary + Resource Recovery	Tertiary + Resource Recovery

Operating & Tier I Non-growth

Tier III Non-growth

metrovancouver

Tier II Non-growth

COST APPORTIONMENT SUMMARY

Non-growth

WET WEATHER RATE STRUCTURE

Strengthening User-pay Principle

- Separated systems
 ▶ 75 percentile flow (WWF_s)
- Combined systems
 ▶ 60 percentile flow (WWF_c)
- Phase-in period
 10 years
- Starting year for phase-in ► Commencing with spring 2024 bills
- Periodic review of parameters
 - ► Full bylaw review proposed every 3 years

Percentile

ALLOCATIONS

Indicative Estimates

GVSⅅ Member	2022 Levy (\$)	Future Levy* (\$)	% Change over 10 yrs
City of Burnaby	29,838,017	27,660,411	(7.3%)
City of Coquitlam	13,923,535	14,131,970	1.5%
City of Delta	9,008,835	10,203,896	13.3%
City of Langley	2,040,395	2,152,036	5.5%
Township of Langley	10,344,072	9,391,084	(9.2%)
City of Maple Ridge	8,190,012	7,982,284	(2.5%)
City of New Westminster	11,225,358	11,636,236	3.7%
City of North Vancouver	7,971,747	7,165,423	(10.1%)
District of North Vancouver	13,327,918	14,094,844	5.8%
City of Pitt Meadows	1,652,675	1,423,502	(13.9%)

Based on available flows

GVSⅅ Member	2022 Levy (\$)	Future Levy* (\$)	% Change over 10 yrs
City of Port Coquitlam	6,076,032	6,162,431	1.4%
City of Port Moody	2,553,053	3,200,771	25.4%
City of Richmond	28,681,273	28,239,663	(1.5%)
City of Surrey	56,564,465	56,061,804	(0.9%)
University Endowment Lands	623,851	258,135	(58.6%)
UBC (non-member)	2,027,499	1,682,975	(17.0%)
City of Vancouver†	86,819,138	89,451,698	3.0%
District of West Vancouver	8,743,505	8,782,903	0.5%
City of White Rock	1,813,307	1,742,621	(3.9%)
			* In Year 10

THE STA

FIX LEAKY PIPES VS. CONVEY STORE & TREAT

Back-of-the-envelope analysis

- NSSA Example & Context
- Assumptions
- Comparison
- Conclusion & emerging principle

INFLOW & INFILTRATION "HEAT MAP"

North Shore Sewerage Area

LYNN CATCHMENTS

Scope and assumptions of analysis

- Blue areas: 560ha; 645 properties
 - "Excess" I&I = 49,600 L/ha/d or 27.8 MLD

Fix Leaky Pipes	Convey & Treat	Store
Fix rate: Up to 20% of private properties; 2% of public / private interface	7.1 - 8.5 km "twinning" Lynn to NS WWTP	Required storage: 19,000m ³
Includes additional: testing CCTV repair mgmt.	Prelim. + Primary capacity (exclude Secondary, Outfall)	

• Assumptions: modelling, cost-curves

COMPARISONS

Back-of-the-envelope analysis

Fix Leaky Pipes		Convey and Treat		Store
Laterals	\$700k - \$1M	Convey	7.1 km @ \$58M 8.5 km twin @ \$75M	19,000 m ³ @ \$48M
Municipal Sewers	\$21M	Treatment	\$13M	
Sum	\$22M	\$71M - \$88M		\$48M
Unit Costs	\$440 L/ha/d	\$2.5M - \$3.2M / MLD		\$2,500 / m ³

NORTH SHORE WWTP Space Constrained Site

NAV

PROPOSED PRINCIPLE

- Fixing leaky pipes:
 - least cost; preserves capacity for growth
 - improves system resiliency
 - public & environmental health benefits

• Proposed principle:

Prioritize fixing leaky collection systems over expanding conveyance, storage & treatment capacity

Part 4: Tips to Reduce Your Levies

TARGET INFLOW FIRST

Subdivisions "not acting their age"

- Stormwater Inflow (SWI)
 - Deliberate or accidental connection of catch basins, roof leaders, lawn basins, clean-out caps, etc.
- Identified through:
 - Summer / early fall flow analysis
 - Smoke and dye testing
 - CCTV camera
 - (Section 4.4 KWL template)

Figure 2-4: Updated 2021 I&I Versus Catchment Age Relationship

TARGET INFLOW FIRST

Analyze data for inflow

- Use "first storm"
- Filter-out infiltration data
- Do *inflow* analysis
- Produce inflowcentric heat maps

Inflow analysis using first storm after long dry periods

5 STEPS TO REDUCE COST ALLOCATION IMPACTS

Target inflow before infiltration

- 1. Establish monitoring and identify priority catchments, prioritizing private lateral inflow
- 2. Develop and deliver general communication initiatives; target messaging for priority catchments
- 3. Inspect and prioritize actions public and private system
- 4. Establish and implement rehabilitation / diversion programs
- 5. Measure and track results

TIPS AND SUPPORT

- Key municipal actions:
 - Existing laterals Follow the five steps
 - New laterals Inspect and enforce standards
- Regional support:
 - Expand inflow analysis?
 - Enforcement guidelines?
 - Regional equity guidelines for lateral grants?
 - Regional engineering guidelines for laterals?

Discussion

metrovancouver